Tiling the hyperbolic plane

Aside: Based off Jake's talk. Posed more questions than answered.

1. Recap + motivation

- · Ordering braids. Start with *n*-punctured disk D_n .
- · Fix basepoint of D_n on ∂D_n . Choose path (geodesic) on D_n from basepoint (best to separate pts).
- · Apply braid moves. Compare which higher/lower. This is left-ordering (g < h implies fg < fh).
- \cdot For example:

- \cdot Recall huge picture of \mathbf{H}^2 Jake drew. This was part of proof that this gives ordering.
- · Pic was lift of D_n with trivial curve diagram and geodesic to universal cover of D^2
- \cdot Universal cover embeds in $\mathbf{H}^2.$

- · Question Q1: How much of \mathbf{H}^2 is not covered by the universal cover?
 - · Look at boundary S^1_{∞} of \mathbf{H}^2 .
 - · Punctures at ∞ are Cantor set (maybe fat?). Intervals at ∞ are not in universal cover.
 - \cdot Area in UC is infinite (infinite finite area shapes).
 - · Area not in UC is infinite (integral along intervals at ∞ will be ∞).

· Poorly posed question.

- · Better question Q2: What is the ratio of (area in UC)/(area not in UC)?
 - \cdot Guess: 0. Problem: How to express area in UC?

2. Calculating area on H^2

- \cdot Q3: Is there a canonical way to draw universal cover?
 - · Draw first disk. Length on edge? Where to put edges? Do these things matter? Shouldn't.
- · Guess: All ways are fine. May have to adjust metric (which way works for standard metric?) \cdot How to express area not in UC?
 - · Label as X. Should be $\int_X \omega$, for ω an appropriate metric.
- Using Poincare disk model, so $\omega = 4 \frac{dx^2 + dy^2}{(1 \|(x, y)\|^2)^2}$, giving \mathbf{H}^2 coordinates from unit sphere in \mathbb{R}^2 Problem of infinite area justified here. Radius=1

 - \cdot Problem: parametrize area not in UC (X)