M is smooth, compact 2*n*-dimensional manifold

vector bundle: M a topological manifold, F a field. A *F*-vector bundle over M of rank k is a triple (E, M, π) , usually denoted by just E, where

- **1.** *E* is a topological space called the *total space*,
- **2.** $\pi: E \to M$ is a continuous map called the *projection map*,
- **3.** $\forall p \in M$, the fiber $E_p := \pi^{-1}(p)$ has a vector space structure, and

4. $\forall p \in M, \exists a \text{ neighborhood } U \ni p, a \text{ homeomorphism } \varphi : \pi^{-1}(U) \to U \times F^k \text{ so that } v \in \pi^{-1}(\{p\}) \mapsto \varphi(p,v) \in F^k \text{ is a linear isomorphism } (local triviality condition).$

0.0.1 Intro

Examples of vector bundles: DRAW PICTURES

tangent bundle on S^1

Mobius bundle on S^1

<u>Goal</u>:

• Give explicit constructions of cohomology classes that determine isomorphism class of 2n-dim cpt mflds • up to finite number of possibilites, that admit principal $GL^+(2n)$ -bundle

Assumption:

 \cdot Euler number e(M) is invariant of bundles

0.0.2 Euler number

· A characteristic class of a vector bundle E is a cohomology class $c \in H^*(M; R)$.

- $\cdot R$ is some ring
- · Related to E because class is pullback from $H^*(E; R)$ induced from projection map π
- · Euler (denoted e), Chern, Pontryagin, Thom, Stiefel–Whitney, etc.
- The fundamental class [M] of M compact, connected, orientable, is a generator for $H_n(M; \mathbb{Z}) = \mathbb{Z}$. • +1 and -1 are only choices
- The Euler number e(M) of a vector bundle E is the evaluation of e on [M], in this case $\int_M e$ • Works because Euler class is element in poly ring. Maybe inner prod
 - When E = TM, $e(M) = \chi(M)$ (the Euler number is the Euler characteristic of M)
- \cdot Euler number of odd-dim mflds is zero
 - · Follows from universal coefficient theorem

0.0.3 Principal bundles

• A principal bundle is a vector bundle with a group G (structure group) and a G-action $\rho: E \times G \to E$ • such that $\pi: E \to M$ is isomorphic to the quotient map $E \to E/G$. Also fiber bundle • GL(k), O(k), U(k), Lie groups

Example of principal bundle: **DRAW PICTURE** - sphere with tangent bundle Given M^n , $E_p = \{$ ordered bases of $T_pM \} = \{$ isomorphisms $\mathbb{R}^n \to T_pM \}$, $G = GL(n, \mathbb{R})$ Called a 'frame bundle'

· A connection on a principal $G\text{-}\mathrm{bundle}$ is a special $\mathfrak{g}\text{-}\mathrm{valued}$ 1-form ω on E

 $\cdot \mathfrak{g}$ is the Lie algebra of G

• The curvature of ω is a special \mathfrak{g} -valued 2-form on $E\left(\frac{d\omega+\frac{1}{2}(\omega\wedge\omega)}{\omega}\right)$

 \cdot A *flat connection* has curvature zero

 \cdot We are interested in manifolds with flat connections

0.0.4 Milnor and Sullivan

Thm: (Milnor, 1957)

For g > 0, $|e(M^2)| \ge g$ iff the $GL^+(2)$ -bundle over M^2 does not have a connection with curvature zero. • Will talk about forward direction

Thm: (Sullivan, 1975)

If the $GL^+(2n)$ -bundle over M^{2n} has a connection with curvature zero, then $|e(M^{2n})| < k_M$.

• Hence the name 'bounded' cohomology

 \cdot For every M, G, there is a map h and an isomorphism

$$[h:\pi_1(M)\to G]\cong H^{\dim(M)}(M,\pi_1(G))$$

• image of h is the holonomy group **DRAW PICTURE** - sphere with 90 - 90 - 90 triangle, rot • elements linear transformations of T_pM , operation multiplication (composition of loops) • isomorphism from Hurewicz theorem

· Proof uses commutative diagram: pieraksti lietas pa labi uz tafeles cita krasa

r is take rotational component of map
matrix in GL⁺(2) is rotation and scaling
GL⁺(2) is universal cover of G

is R³ because SL(2) ≅ S¹ × R²

θ is take angle with multiplicity
column exact because ker(p) = π₁(GL⁺(2))
φ sends to generator to Euler class (±1)
multiply by 2π to make commute
R is universal cover of SO₂, since SO₂ is circle
apply exp to make commute
why dashed vert arr?

· φ carries obstruction class from $H^2(M^2; \pi_1(GL^+(2)))$ into Euler class.