The Grassmannian and group actions

Def: The Grassmannian $G_{k}\left(\mathbb{C}^{n}\right)$ is the set of k-dimensional subspaces of \mathbb{C}^{n}.

- Can use other vector spaces, this is most common
- $G_{k}\left(\mathbb{C}^{n}\right)$ is an $k(n-k)$-dimensional compact manifold.

Eg: $G_{1}\left(\mathbb{C}^{n}\right) \cong \mathbb{C P}^{n-1}$
There is an association $V \in G_{k}\left(\mathbb{C}^{n}\right) \rightarrow A_{V} \in M_{k \times n}^{*}$ (full-rank matrices)

- Not one-to-one. To make one-to-one, need to get rid of repetitions
- Repetitions are same subspaces with different bases, associated by change of basis matrices
. Since $V \subseteq \mathbb{C}^{n}$ and $G L_{n}(\mathbb{C})$ acts transitively on $\mathbb{C}^{n}, G L_{n}$ also acts on $G_{k}\left(\mathbb{C}^{n}\right)$.
- More precisely, some part of $G L_{n}(\mathbb{C})$ acts transitively on V. Which part?

To see which part, need to use Schubert cell decomposition

Def: A flag of a vector space V is an ordered collection of subspaces $V_{0}, V_{1}, \ldots, V_{n}$ such that $0=V_{0} \subsetneq V_{1} \subsetneq$ $\cdots \subsetneq V_{n}=V$. The flag is complete if $n=\operatorname{dim}(V)$.

Eg: For $\left\{e_{1}, \ldots, e_{n}\right\}$ the standard basis of \mathbb{C}^{n} and $V_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}$, the collection $0, V_{1}, \ldots, V_{n}$ is a complete flag for \mathbb{C}^{n}.

Def: For every n-tuple σ of non-increasing integers bounded by 0 and k, define the Schubert cell

$$
e(\sigma)=\left\{X \in G_{k}\left(\mathbb{C}^{n}\right): \operatorname{dim}\left(X \cap V_{1}\right)=\sigma_{1}, \ldots, \operatorname{dim}\left(X \cap V_{n}\right)=\sigma_{n}\right\}
$$

Note that:

- $\bigcup_{\sigma} e(\sigma)=G_{k}\left(\mathbb{C}^{n}\right)$

Every element of $e(\sigma)$ may be written in a nice way so that it is clear how $G L_{n}$ acts on it.
$\mathbf{E g}:$ For $G_{2}\left(\mathbb{C}^{4}\right)$, we have

$$
\begin{array}{lll}
\sigma^{1}=(1,2,2,2) & \sigma^{2}=(1,1,2,2) & \sigma^{3}=(1,1,1,2) \\
\sigma^{4}=(0,1,2,2) & \sigma^{5}=(0,1,1,2) & \sigma^{6}=(0,1,2,2)
\end{array}
$$

Each $X \in \sigma^{i}$ may be written in a special way so that it is clear how $G L_{n}$ acts on it

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & * & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
* & 1 & 0 & 0 \\
* & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
* & 1 & 0 & 0 \\
* & 0 & * & 1
\end{array}\right]\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & 0 & 1
\end{array}\right]}
\end{aligned}
$$

