Def: The Grassmannian $G_k(\mathbb{C}^n)$ is the set of k-dimensional subspaces of \mathbb{C}^n .

- \cdot Can use other vector spaces, this is most common
- · $G_k(\mathbb{C}^n)$ is an k(n-k)-dimensional compact manifold.

Eg: $G_1(\mathbb{C}^n) \cong \mathbb{CP}^{n-1}$

There is an association $V \in G_k(\mathbb{C}^n) \to A_V \in M^*_{k \times n}$ (full-rank matrices)

- \cdot Not one-to-one. To make one-to-one, need to get rid of repetitions
 - \cdot Repetitions are same subspaces with different bases, associated by change of basis matrices
- · Since $V \subseteq \mathbb{C}^n$ and $GL_n(\mathbb{C})$ acts transitively on \mathbb{C}^n , GL_n also acts on $G_k(\mathbb{C}^n)$.
- · More precisely, some part of $GL_n(\mathbb{C})$ acts transitively on V. Which part?

To see which part, need to use Schubert cell decomposition

Def: A flag of a vector space V is an ordered collection of subspaces V_0, V_1, \ldots, V_n such that $0 = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n = V$. The flag is *complete* if $n = \dim(V)$.

Eg: For $\{e_1, \ldots, e_n\}$ the standard basis of \mathbb{C}^n and $V_i = \operatorname{span}\{e_1, \ldots, e_i\}$, the collection $0, V_1, \ldots, V_n$ is a complete flag for \mathbb{C}^n .

Def: For every *n*-tuple σ of non-increasing integers bounded by 0 and k, define the Schubert cell

 $e(\sigma) = \{ X \in G_k(\mathbb{C}^n) : \dim(X \cap V_1) = \sigma_1, \dots, \dim(X \cap V_n) = \sigma_n \}.$

Note that:

 $\cdot \bigcup_{\sigma} e(\sigma) = G_k(\mathbb{C}^n)$

• Every element of $e(\sigma)$ may be written in a nice way so that it is clear how GL_n acts on it.

Eg: For $G_2(\mathbb{C}^4)$, we have

$$\begin{array}{ll} \sigma^1 = (1,2,2,2) & \sigma^2 = (1,1,2,2) & \sigma^3 = (1,1,1,2) \\ \sigma^4 = (0,1,2,2) & \sigma^5 = (0,1,1,2) & \sigma^6 = (0,1,2,2) \end{array}$$

Each $X \in \sigma^i$ may be written in a special way so that it is clear how GL_n acts on it

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & * & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & 1 \end{bmatrix}$ $\begin{bmatrix} * & 1 & 0 & 0 \\ * & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} * & 1 & 0 & 0 \\ * & 0 & * & 1 \end{bmatrix} \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 1 \end{bmatrix}$