Let R be a simplicial ring and |R| the geometric realization of R.

want to understand this

Def: Define two categories:

- \cdot Ring: objects are rings, morphisms are ring homomorphisms
- · Δ : objects are ordered *n*-tuples $(a_1 < a_2 < \cdots < a_n) \forall n$, morphisms are order-preserving maps objects may be considered only as tuples of consecutive numbers $[n] = (1, \ldots, n)$

Example:

$Hom([1], [2]) = \{(1) \rightarrow (1, 2)\}$	$Hom([2], [3]) = \{(1, 2) \rightarrow (1, 2, 3)\}$	
$1 \rightarrow 1$	$1 \rightarrow 1, \ 2 \rightarrow 1$	
$1 \rightarrow 2$	$1 \rightarrow 1, \ 2 \rightarrow 2$	II () 1
$1 \leftarrow 2, \ 1 \leftarrow 1$	$1 \rightarrow 1, \ 2 \rightarrow 3$	$\operatorname{Hom}(n,m)$ may be
	$1 \rightarrow 2, \ 2 \rightarrow 2$	viewed as maps
\wedge	$1 \rightarrow 2, \ 2 \rightarrow 3$	from an n -simplex
	$1 \rightarrow 3, \ 2 \rightarrow 3$	into an m -simplex
	$1 \leftarrow 3, \ 1 \leftarrow 2, \ 1 \leftarrow 1$	respecting edges
$\bullet \rightarrow \bullet \longrightarrow \bullet \rightarrow \bullet \longrightarrow$	$2 \leftarrow 3, \ 1 \leftarrow 2, \ 1 \leftarrow 1$	and vertices
	$2 \leftarrow 3, \ 2 \leftarrow 2, \ 1 \leftarrow 1$	
	$2 \leftarrow 3, \ 2 \leftarrow 2, \ 2 \leftarrow 1$	

Remark: There are special morphisms that may be viewed as a generating set:

face maps:	$\varphi_i : [n-1] \rightarrow$	[n]	degeneracy maps:	δ_i : $[n+1]$ –	→ [1	n]
	$k \mapsto k$	k < i		$k\mapsto k$	k	$s \leqslant i$
	$k\mapsto k+1$	$k \geqslant i$		$k\mapsto k-1$	k	c > i
maps to a face			maps two faces together			

Let $R \in \operatorname{Fun}(\Delta, \operatorname{Ring})$: $[n] \longrightarrow [m] \longrightarrow R_n$ $[n] \to [m] \longrightarrow R_n \to R_m$ ring homomorphism

	[n]	\longrightarrow	R_n	nezīmē no jauna,
Let $R \in \operatorname{Fun}(\Delta^{op}, \operatorname{Ring})$:		R		tikai izdzēs
	$[n] \to [m]$	\longrightarrow	$R_m \to R_n$ ring homomorphism	iepriekšējo

<u>Why Δ^{op} ?</u> Generalizes chain maps of singular complexes $d_n = \sum_{i=0}^n (-1)^i (1, \dots, \hat{i}, \dots, n)$ from C_n to C_{n-1}

Notation: $R_n = R([n]) \in Ob(Ring)$, the elements of which are called *n*-simpleces. s_n is the standard *n*-simplex (convex hull of $(1, 0, ..., 0), ..., (0, ..., 0, 1) \in \mathbb{R}^{n+1}$) $R \in Fun(\Delta^{op}, Ring)$ is called a simplicial ring **Def:** Let R be a simplicial ring. The geometric realization of R is the space

$$|R| = \prod_{n \ge 0} R_n \times s_n \middle/ \smallfrown$$

where

$$\begin{aligned} &(r,\varphi_i^*(t)) \sim (R(\varphi_i)(r),t) & \forall \ r \in R_n, \ t \in s_{n-1}, \ i \\ &(r,\delta_i^*(t)) \sim (R(\delta_i)(r),t) & \forall \ r \in R_n, \ t \in s_{n+1}, \ i \end{aligned}$$

Elements are equivalence classes |r, t|. The maps φ_i^*, δ_i^* are induced from φ_i, δ_i as follows:

Def: An *n*-simplex $r \in R_n$ is degenerate if $r = R(\varphi_i)(r)$ for some *i*. A class $|r,t| \in |R|$ is called degenerate if *r* is degenerate.

· Degenerate elements may be viewed as "in the boundary" of R_n .

• Every $|r,t| \in |R|$ has a representative that is non-degenerate.

Applications:

· Instead of Ring, use Ab. Let $X_n = C_n(X)$, the free abelian group of the *n*-simpleces of X. Then $|C_*(X)| = X$.

· Instead of Ring, use Set. Then for K a simplicial set, |K| is a CW-complex with exactly one *n*-cell for each non-degenerate *n*-simplex of K. model for homotopy theory of spaces

· Calculate $\pi_*(R) := \pi_*(|R|)$ topological properties now given to arbitrary objects

· Let $R \in CRing$ be simplicial. Then $\pi_0(R)$ is a commutative ring, and $\pi_i(R)$ is a $\pi_0(R)$ -module, for all homotopy groups much easier to decribe, usually hard

 \cdot CRing^{op} is the category of affine schemes (algebraic geometry)