1 Negative cyclic homology

k is a commutative ring
A is an associative k-algebra
d_{i} is the i th degeneracy map $\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(a_{0}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right)$
b_{n}, b_{n}^{\prime} are Hochschild boundary maps: $\quad b_{n}^{\prime}$ is b_{n} forgetting d_{n}

$$
b_{n}=\sum_{i=0}^{n}(-1)^{i} d_{i}: A^{\otimes n+1} \rightarrow A^{\otimes n}
$$

Define two new maps, using the cyclic operator t_{n} :
subscript n is omitted when clear

$$
\begin{aligned}
t_{n}: A^{\otimes n+1} & \rightarrow A^{n+1}, & N_{n}: A^{\otimes n+1} & \rightarrow A^{n+1} \\
\left(a_{0}, \ldots, a_{n}\right) & \mapsto\left(a_{n}, a_{0}, \ldots, a_{n-1}\right), & \left(a_{0}, \ldots, a_{n}\right) &
\end{aligned}>\left(1+t_{n}+t_{n}^{2}+\cdots+t_{n}^{n}\right)\left(a_{0}, \ldots, a_{n}\right) .
$$

Prop: There exists an anti-commuting upper half-plane double complex as below.

Def: The nth cyclic homology group of A is

$$
H C_{n}(A):=H_{n}(T C C(A)) . \quad T_{k} C C(A)=\bigoplus_{p+q=k} C C_{p q}(A)
$$

The nth negative cyclic homology group of A is

$$
\left.H C_{n}^{-}(A):=H_{n}\left(T^{\Pi} C C^{-}(A)\right) . \quad T_{k}^{\Pi} C C^{-}(A)\right)=\prod_{p+q=k} C C_{p q}(A)
$$

Have to take product for HC^{-}because have infinitely many factors in each total object

Example: Let $A=k, k^{\otimes \ell}=k \otimes_{k} \cdots \otimes_{k} k=k$. Then

$$
\begin{aligned}
1-t_{n} & =0 \\
N_{n} & =n+1
\end{aligned} \quad b_{n}= \begin{cases}0 & n \text { odd } \\
1 & n \text { even }\end{cases}
$$

Hence non-zero homology comes from second row

$$
H C_{n}^{-}(k)= \begin{cases}0 & n>0 \text { or odd } \\ k & n \text { even }\end{cases}
$$

A is smooth as a k-algebra if $\operatorname{Spec}(A)$ is smooth as a variety
Example: Let $k=\mathbf{Q}, A=\mathbf{Q}[t] . \mathbf{Q}[t]$ is a smooth commutative \mathbf{Q}-algebra.

- Thm: (Hochschild, Kostant, Rosenberg 1962) For A a smooth k-algebra, $H H_{*}(A) \cong \Omega_{A / k}^{*}$.
- (Connes) \exists LES relating $H H$ and $H C$
- \exists spectral sequence of de Rham cohomology groups differential forms abutting to $H C$

$$
H C_{n}^{-}(\mathbf{Q}[t])=\operatorname{ker}\left(\delta_{n}\right) \times \prod_{i>0} H_{d R}^{n+2 i}(\mathbf{Q}[t])
$$

$\delta_{n}: \Omega_{\mathbf{Q}[t] / \mathbf{Q}}^{n} \rightarrow \Omega_{\mathbf{Q}[t] / \mathbf{Q}}^{n+1}$ is the exterior derivative $\quad \Omega_{A / k}^{1}$ is ring of Kähler differentials $H_{d R}^{k}(\mathbf{Q}[t])$ is the de Rham cohomology

2 K-theory

Def: K-theory is a functor Ring \rightarrow Spec that takes a ring R to its spectrum $K(R)$. set of prime ideals $K_{n}(R)=\pi_{n} K(R)$.

Example: Let $R=F_{p}$. Then
rationalize

$$
K_{n}\left(F_{p}\right)=\left\{\begin{array}{ll}
\mathbf{Z} & n=0, \\
\mathbf{Z} /\left(p^{i+1}-1\right) \mathbf{Z} & n=2 i+1, \\
0 & n=2 i
\end{array} \quad \text { so } \quad K_{n}\left(F_{p}\right) \otimes \mathbf{Z} \mathbf{Q}= \begin{cases}\mathbf{Q} & n=0 \\
0 & \text { else }\end{cases}\right.
$$

3 Goodwillie's theorem

Def: Let $f: R \rightarrow S$ be a homomorphism of (simplicial) rings. The groups $K_{n}(f)$ and $H C_{n}^{-}(f)$ are defined to be the groups such that the sequences

$$
\cdots \longrightarrow K_{n}(R) \longrightarrow K_{n}(S) \longrightarrow K_{n}(f) \longrightarrow K_{n-1}(R) \longrightarrow \cdots
$$

and

$$
\cdots \longrightarrow H C_{n}^{-}(R) \longrightarrow H C_{n}^{-}(S) \longrightarrow H C_{n}^{-}(f) \longrightarrow H C_{n-1}^{-}(R) \longrightarrow \cdots
$$

are exact.
since $K, H C$ are functors, get induced maps knowing all but one group is enough to figure out group

Thm:(Goodwillie 1986) Let $f: R \rightarrow S$ be a surjective homomorphism of (simplicial) rings with nilpotent kernel. Then

$$
K_{n}(f) \otimes_{\mathbf{z}} \mathbf{Q} \cong H C_{n-1}^{-}(f) \otimes_{\mathbf{z}} \mathbf{Q}
$$

for all $n \in \mathbf{Z}_{\geqslant 0}$.
Example: For $k=\mathbf{Q}$ and $A=\mathbf{Q}[t] /\left(t^{2}\right)$, we know

$$
H C_{n}^{-}\left(\mathbf{Q}[t] /\left(t^{2}\right)\right)= \begin{cases}0 & n \text { odd } \\ \mathbf{Q} & n \text { even }\end{cases}
$$

The map $f: \mathbf{Q}[t] /\left(t^{2}\right) \rightarrow \mathbf{Q}$ given by $t \rightarrow 0$ is surjective, so we know $H C_{n}^{-}(f)$. The kernel $t \mathbf{Q}$ is nilpotent, so by Goodwillie, we know $K_{n}(f)$, and so we know $K_{n}\left(\mathbf{Q}[t] /\left(t^{2}\right)\right)$.

