
A brief survey of K3 surfaces
Jānis Lazovskis

Abstract: This monograph gives a view, from both differential and algebraic geometry, of K3 surfaces. First
we build-up to the Riemann–Roch theorem on K3 surfaces, the statement of which needs several powerful
tools, including divisors and sheaves, which are introduced along the way. Next we describe in detail the
cohomology groups and Hodge decomposition of K3 surfaces, finishing with some current research directions.
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Introduction

A K3 surface is a 2-dimensional complex manifold M with trivial canonical bundle and H1(M,Ω2(M)) = 0.
They were first studied by André Weil in 1957, and he very quickly became convinced that K3 surfaces
are all part of a single “family” (proven in 1964 by Kunihiko Kodaira) and that they admit Kähler metrics
(proven in 1983 by Yum-Tong Siu). These are two of the most interesting properties of K3 surfaces, given
here as Assertions 1.1.4 and 1.1.5. For more history on the formative years of the topic, see [Buc03].

The modern history of K3 surfaces closely follows that of Calabi–Yau manifolds (proven to exist in 1976
by Shing-Tung Yau), as K3 surfaces are one of two examples of such manifolds in dimension 2 (the other
being complex tori). Physicists use Calabi–Yau manifolds for their models, since the properties match up
exactly with what the physicists need.

There exist algebraic (very easy to describe) and non-algebraic (very difficult to describe) K3 surfaces,
of which we will study the former. A powerful consequence of the fact that all K3 surfaces are diffeomorphic
is that we need only study the ones that are easy to describe to understand all k3 surfaces.
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1 Geometric setting

1.1 Understanding K3 surfaces

Definition 1.1.1.
· a complex n-manifold M is a manifold with charts ϕ : U → Cn

· a holomorphic bundle on M is a vector bundle with E complex and π : E →M holomorphic
· the canonical bundlecanonical

bundle
of M is ωM := Ωn(M), a line bundle generated by dx1 ∧ · · · ∧ dxn

Recall Ωp(M) =
∧p

T ∗M = (T ∗M)⊗p/I for I the ideal of elements v⊗k, k > 2. This gives the vector bundle
structure for Ωn(M).

When it is convenient, we view manifolds in the differential geometric sense equivalently as smooth
algebraic varietiesvariety . A smooth algebraic variety is the set of points in a n-dimensional vector space that
satisfy equations f1 = 0, . . . , fk = 0, where all the fi : Rn → R are smooth. That is, none of the fi have
singularities, or points where the derivative is not defined.

Further, when it is convenient (and possible), we may view all our manifolds and varieties as sitting in
projective spaceprojective

space
, which means a point (x, y, z, w) is the same as (λx, λy, λz, λw), for all non-zero λ. Since

complex projective space, or CPn is an n-dimensional manifold, we may view manifolds in projective space
as submanifolds of CPn. It is convenient (and customary) to denote an element in CPn by [x0 : x1 : · · · : xn],
and to write simpy Pn.

Recall a homogeneous polynomial of degree d in n variables is of the form∑
i1+···+in=d

ai1,...,inx
i1
1 · · ·xinn .

Proposition 1.1.2. The zero locus of any smooth homogeneous degree 4 equation is a K3 surface.

Proof: (Sketch) Let C = {(x, y, z, w) : f(x, y, z, w) = 0} for f homogeneous in degree 4. Hence we may
embed it in P3 (as it has 4 variables), which is 3-dimensional. One equation increases codimension by 1,
and a codimension 1 space in P3 is 2-dimensional. Next, C is a manifold because the graph of a function on
n variables may be projected injectively onto Cn, giving the atlas.

For the canonical bundle, a theorem from algebraic geometry states that ωC = OC(−n − 1 + d) for a
manifold in Pn defined by a degree d homogeneous equation. So in this case, we have O(−3−1+4) = OC(0),
which is the trivial bundle (see Definition 1.3.2).

For the cohomology, a smooth hypersurface in P3 is simply connected, which allows us to apply the
Lefschetz hyperplane theorem. The theorem gives that πi(C) ∼= πi(P

n) for i < n/2, so especially for i = 1.
Since π1(P3) = 0, and H1(C,C) is the abelianization of π1(C), we get H1(C,C) = 0. Since H1(C,Ω2(C))
is half this number (by Theorems 2.1.1 and 1.4.3), which is zero, H1(C,Ω2(C)) = 0. �

Example 1.1.3. The zero locus of f(x, y, z, w) = x4 + y4 + z4 + w4 is a K3 surface. This is called the
Fermat quartic. Below are some projections to R3 of this surface.
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To make some of the proofs further on easier, we assume two very strong statements.

Assertion 1.1.4. Any two K3 surfaces are diffeomorphic.

In fact, any two K3 surfaces are deformation equivalent, an even stronger condition. See Theorem 8.6 in
Chapter VIII of [Bar+04] for more on this. We will not even get anywhere near proving this theorem, but
it will be useful for the Hodge decomposition theorem.

Assertion 1.1.5. K3 surfaces are Kähler manifolds.

A Kähler manifoldKähler
manifold

is a complex manifold with a certain inner product on tangent spaces that varies
smoothly, with an associated closed 2-form. Kähler geometry is a very rich field, but we will not discuss it
here.

Next we introduce some terms from algebraic geometry.

1.2 Divisors and line bundles

Definition 1.2.1. Let X be a variety. A divisordivisor on X is a formal finite linear combination

D =

r∑
i=1

kiCi

of codimension-1 subvarieties Ci of X and ki ∈ Z.

Recall the codimension of a variety (rather, one way to define the codimension) is the number of inde-
pendent equations used to define it, and a subvariety is a variety contained within another variety.

Example 1.2.2. Let X be the zero locus of x4 + y4 + z4 + w4, as above. Define

C1 = {(x, y, z) ∈ X : x2 = 0},
C2 = {(x, y, z) ∈ X : x+ y + z = 0},

which are codimension 1 subvarieties in X, as each is defined by a single equation. Then D = 5C1 − 3C2 is
a divisor on X.

Definition 1.2.3. Let X be an n-dimensional variety, C a codimension 1 subvariety of X, and f a mero-
morphic function on X (that is, f ∈ C(X)). Write

vC(f) :=

{
k > 0 if f has a zero of order k along C,

−k < 0 if f has a pole of order k along C.

Then div(f) =
∑
C⊂X vC(f) is the divisor associated to f .

Definition 1.2.4. Let X be a variety and D =
∑
i kiCi, D

′ =
∑
i `iCi two divisors on X. Then

· D is principal if D = div(f) for f ∈ C(X);
· D is effective if ki > 0 for all i, and we write D > 0;
· D is linearly equivalent to D′ if D −D′ = div(f) for some f .

In the context of 2-dimensional complex manifolds in P3, there are no non-constant globally-defined
meromorphic functions, so there a principal divisor is always 0.

Recall that a vector bundle π : E → X on a complex manifold X had π−1(U) ∼= U ×Cn, and a section
section of the bundle was a map s : U → E such that π ◦ s = idU . Every section has a zero locus, to which a divisor

may be associated. That is, if the section has a zero of multiplicity k along a subvariety C, then a term kC
appears in the associated divisor.
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For line bundles, when n = 1, a section is just a choice of c ∈ C, since s(x) = (x, c) ∈ U ×C. We can get
from a non-zero c1 to c2 by multiplying by c2/c1, so the difference between any two sections is just scalar
multiplication. Hence any two divisors on a line bundle are linearly equivalent.

With this correspondence, the tensor product operation on divisors is clear (it is just the tensor product
on the associated line bundles). The Picard groupPicard

group
of a variety X, denoted Pic(X), is the group of linearly

equivalent divisors with group operation tensor product. This group will become useful when we want to
compare varieties, as it is a (relatively strong) invariant of X.

1.3 Sheaves

Definition 1.3.1. Let X be a variety. Let X be a topological space. A sheafsheaf F on X is an assignment of
an abelian group F(U) to every open U ⊂ X and maps ρUV : F(U)→ F(V ) for all V ⊂ U , such that

1. ρUU = id,
2. ρVW ρUV = ρUW whenever W ⊂ V ⊂ U ,
3. for any families {Uα}α∈A and {sα}α∈A, where sα ∈ F(Uα), if

ρUα,Uα∩Uβ (sα) = ρUβ ,Uα∩Uβ (sβ)

for all α, β ∈ A, then there exists a unique s ∈ F(U =
⋃
α∈A Uα) such that ρUUα(s) = sα.

The last condition is known as the gluing axiom. Objects that satisfy the first two but not the gluing
axiom are called presheaves, though it is always possible to associate a sheaf to a presheaf, through a process
called sheafification.

Definition 1.3.2.OX The sheaf of homolorphic functions on a complex variety X is denoted OX . The
restriction map ρUV is the regular restriction map f |V , and the gluing axiom is satisfied, as being holomorphic
is a local property.

For X a variety with k connected components, ker(d(OX)) ∼= Ck.

Given sheaves F ,G over the same space X, it is possible to create new sheaves F ⊕ G, F ⊗ G, F∗, etc,
with these and other algebraic operations. We say a sheaf F is invertibleinvertible

sheaf
if there exists a sheaf G such that

F ⊗G ∼= OX . Recall that the canonical bundle on a K3 surface is trivial, so ωX ∼= OX (see below for bundle
and sheaf correspondences).

A vector bundle is a special type of sheaf, where instead of π−1(U) ∼= U × V locally, for V some vector
space, we have π−1(U) ∼= U × A, for A some abelian group. A locally free sheaf is the same as a vector
bundle. Hence we use the words “canonical bundle” and “canonical sheaf” interchangeably.

Definition 1.3.3. Let X be a variety and D a divisor on X. Then

OX(D) = {f ∈ C(X) : div(f) +D > 0}

is a subsheaf of OX , called the invertible sheaf associated to D. Sometimes it is denoted L(D).

Before we get into cohomology, we need a few more adjectives for sheaves.

Definition 1.3.4. Let F a sheaf on a variety X. Then
· an injective resolution of F , denoted F•, is a particular sequence of sheaves 0→ F1 → F2 → · · · ;
· a global section of F is a nowhere vanishing element of F(X).

The functor Γ that takes in sheaves and spits out global sections is called the global section functor.
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1.4 The Riemann–Roch theorem

The goal of this section is to understand the statement of the Riemnn–Roch theorem (a proof will not be
given, since it is quite long and involved) so that we may use it in the next section.

Definition 1.4.1.de Rham
cohomo-

logy

Let M be a complex n-manifold and Ωr(M) :=
∧r

T ∗M the space of differential r-forms
on M . Then the de Rham cohomology of M is the cohomology of the sequence

0 −−−→ Ω1(X)
d−−−→ · · · d−−−→ Ωn(X) −−−→ 0,

with coefficients in C, where d is the formal derivative.

Definition 1.4.2. Let X be a variety and F a sheaf on X. The ith cohomology group of F is the ith
cohomology group of Γ(X,F•). That is, Hi(X,F) := Hi(Γ(X,F•)).

The above definition needs some unpacking to get at what is going on behind the scenes. In practice, we
rarely use injective resolutions to find the cohomology with coefficients in a sheaf, since such resolutions are
difficult to find. Instead we use slick duality theorems.

Theorem 1.4.3. [Serre]Serre
duality Let F be a locally free sheaf over an n-dimensional algebraic variety X. Then for all 0 6 k 6 n,

Hk(X,F) = Hn−k(X,F∗ ⊗ ωX)∗.

The above theorem is known as Serre duality, and it uses the idea of a dual sheafdual
sheaf

, defined as F∗ :=
Hom(F ,OX). This theorem will be applied almost exclusively when F = OX , so O∗X = OX . From this we
get more information about K3 surfaces.

Proposition 1.4.4. Let X be a K3 surface. Then dim(H1(X,OX)) = 0 and dim(H2(X,OX)) = 1.

Proof: The first statement is from the definition of a K3 surface. For the second statement, apply Serre
duality with k = 2 and n = 2. Since O∗X ⊗ ωX ∼= O∗X ∼= OX , as ωX is the identity element in the Picard
group, and OX is its own inverse. Hence H2 = H0 = C, whose dimension is 1. �

The next theorem is not required for the statement or proof of the Riemann–Roch theorem, but it is
quite useful and will be applied for the main result of the next section. The (co)homologies used are the
regular singular/cellular versions.

Theorem 1.4.5. [Poincaré]Poincaré
duality Let M be a compact oriented complex n-manifold. Then Hk(M,C) ∼= Hn−k(M,C) for all 0 6 k 6 n.

Definition 1.4.6. Let F be a sheaf over a variety X. The holomorphic Euler characteristic of F is

χ(F) :=

dim(X)∑
i=0

(−1)i dim(Hi(X,F)).

Example 1.4.7. Let X be a topological space and F the trivial bundle over X. Then χ(F) = χ(X), the
topological Euler characteristic of X. For instance, if X is a 2-dimensional space that has been triangulated,
then χ(X) = (number of vertices)− (number of edges) + (number of faces).

Definition 1.4.8.inter-
section
number

Let X be a variety and L1, L2 two line bundles over X. The intersection number of L1

and L2 is, equivalently, any of the following expressions:

L1.L2 := χ(OX)− χ(L∗1)− χ(L∗2) + χ(L∗1 ⊗ L∗2) (sum of Euler characteristics)

= [nm]χ(X,Ln1 ⊗ Lm2 ) (coefficient in a polynomial)

=

(
number of times, with multiplicity, the

associated divisors of L1 and L2 intersect

)
. (natural interpretation)
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For more on why these are equivalent, see [Huy15], Chapter 1.1.

The way we’ve defined the intersection number above, it is not clear what an “intersection” of divisors
is. Since it is a difficult task to define this precisely and needs many more tools from algebraic geometry, we
use the heurstic interpretation of curves intersecting on a surface. In general, the intersection number may
be viewed as a symmetric bilinear map Pic(X)×Pic(X)→ Z, lending to the usefulness of the Picard group.

We are now ready to understand the statement of the Riemann–Roch theorem.

Theorem 1.4.9. [Riemann, Roch]
Let X be a K3 surface and L a line bundle over X. Then

χ(L) =
1

2
L.L+ 2.

For an arbitrary complex projective surface X, the theorem says χ(L) = 1
2L.(L − ωX) + χ(OX). For a

K3 surface, since ωX is trivial, L.ωX = 0. Also, H1(X,OX) = C as we assume X is connected, and so by
Proposition 1.4.4, χ(OX) = 1− 0 + 1 = 2, which gives the stated result.

2 Applications

Now that we have assembled powerful tools, let us apply them to prove some interesting results.

2.1 Hodge theory

William Hodge lent his name to a number of objects, among which is the Hodge decomposition. This in
given in terms of Hodge numbers, which are arranged to give the Hodge diamond.

Theorem 2.1.1. [Hodge decomposition]Hodge
numbers Let X be a K3 surface. Then the cohomology groups of X split as

Hk(X,C) =
⊕
p+q=k

Hp,q(X) for Hp,q(X) = Hq(X,Ωp(X)).

Th number hp,q(X) = dim(Hp,q(X)) is called the (p, q)th Hodge number.

This is Corollary 13.4 in Chapter I of [Bar+04], which only assumes X is a compact Kähler manifold.
Also, since X has complex dimension 2, its (singular) cohomology groups exist for k 6 4. We now apply this
decomposition to calculate the Hodge numbers of K3 surfaces.

Lemma 2.1.2. The topological Euler characteristic of a K3 surface X is χ(X) = 24.

Proof: A generalization of Theorem 1.4.9, called the Hirzebruch–Riemann–Roch theorem, when applied to
OX , gives 12χ(OX) = ωX .ωX + χ(X) For this we must assume X is Kähler, which was Assertion 1.1.5.
Since ωX is trivial, ωX .ωX = 0. Finally, since OX = ωX = Ω2(X), apply the observations of the proof of
Theorem 2.1.3 to get that χ(OX) = 1− 0 + 1 = 2, and so χ(X) = 24. �

Proof: (Alternate) By Assertion 1.1.4, all K3 surfaces are diffeomorphic, so we will compute the topological
Euler characteristic of a specific K3 surface. Consider the zero locus of u2 = x6 + y6 + z6, which we assert
(without proof) is a K3 surface, call it Y . We may view this surface as a double cover of P2 (in coordinates
[x : y : z]) ramified along the zero locus of x6+y6+z6, a curve we call C. By the Riemann–Hurwitz theorem,
the genus of C is g = (d− 2)(d− 1)/2 = (6− 2)(6− 1)/2 = 10, as C is a sextic curve. Since the topological
Euler characteristic is invariant under diffeomorphism,

χ(X) = χ(Y ) = 2χ(P2)− χ(C) = 2 · 3− (2− 2 · 10) = 6 + 18 = 24.

We have that χ(P2) = 3 because it has exactly one cell in each dimension, and the topological Euler
characteristic of a complex curve is 2− 2g, for g its genus. �
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Theorem 2.1.3. Let X be a K3 surface. The Hodge numbers of X are

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1

0 0

1 20 1

0 0

1

Proof: We proceed in steps:
· h2,1 = h1,2 = 0 since H1(X,C) = 0 (as in the proof of Proposition 1.1.2) and Poincaré duality
· h1,0 = h0,1 = 0 by Serre duality on (n, k) = (2, 0), (2, 1) and the previous step
· h0,0 = h2,0 = 1 since X is connected, meaning H0(X,OX) = C, and Ω2(X) = Ω0(X) = OX
· h0,2 = h2,2 = 1 by Serre duality on (n, k) = (2, 2) and the previous step

For the last step, finding h1,1, recall the topological Euler characteristic of a manifold is the alternating sum
of the dimensions of the (co)homology groups, so in this case, χ(X) = 1 − 0 + 2 + h1,1 − 0 + 1 = 4 + h1,1.
By Lemma 2.1.2, χ(X) = 24 = 4 + h1,1, so h1,1 = 20. �

2.2 Current research directions

The papers [HT15] and [KKP14] use the idea of a manifold being “fibered by a K3 surface.” A fiber bundle
is a generalization of a vector bundle, where π−1(U) ∼= U ×F , for F some topological space (not necessarily
a vector space or an abelian group), for U ⊂ M . More generally, a fibrationfibration does not require that all the
fibers are the same, only that they are homotopy equivalent. Since diffeomorphism is a weaker condition, a
fibration by K3 surfaces makes sense, in light of Assertion 1.1.4 that all K3 surfaces are diffeomorphic.

Both of these papers also use the moduli spacemoduli
space

of K3 surfaces. A moduli space is a new topological space
where each point represents some other topological space (in this case, a K3 surface), and understanding
the topology of the moduli space and its curves or submanifolds gives insight into the nature of K3 surfaces.
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