1 Setting

Objects:
$X:$ a "nice space" \quad "nice" means paracompact and Hausdorff
L : a complex line bundle over X
$\mathcal{O}(1)$: the universal line bundle
f : a continuous map
Def: Given a cohomology theory E, the first Chern class of L with respect to E is $c_{1}^{E}(L)=f^{*} t$, with $t \in E^{2}\left(\mathbf{C P}^{\infty}\right)$.

Let's simplify some things.
Def: A complex-oriented cohomology theory E is one whose Atiyah-Hirzebruch spectral sequence $H^{p}\left(X, E^{q}(\cdot)\right) \Rightarrow$ $E^{p+q}(X)$ degenerates at the second page.

From here on out E is complex-oriented multiplicative, so $E^{*}(X \times Y) \cong E^{*}(X) \times E^{*}(Y)$.
For such $E, E^{*}\left(\mathbf{C P}^{\infty}\right) \cong E^{*}(\mathrm{pt})[[t]]$ and $t \in E^{2}\left(\mathbf{C P}^{\infty}\right)$. Same t as above
We talk about the first Chern class because that's easier to compute than other Chern classes.
Q: What is $c_{1}^{E}\left(L \otimes L^{\prime}\right)$?
A: When E is singular cohomology, it is $c_{1}^{E}(L)+c_{1}^{E}\left(L^{\prime}\right)$. Not clear in general.
The bundle $L \otimes L^{\prime}$ is over X. It suffices to consider it over $\mathbf{C P}{ }^{\infty} \times \mathbf{C P}^{\infty}$. Set $M=\pi_{1}^{*} \mathcal{O}(1) \otimes \pi_{2}^{*} \mathcal{O}(1)$.

$$
\begin{array}{rl}
E^{*}\left(\mathbf{C P}^{\infty}\right) & \cong E^{*}(\mathrm{pt})[[t]] \\
E^{*}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C P}^{\infty}\right) & \cong E^{*}(\mathrm{pt})[[u, v]] \\
u=\pi_{1}^{*} t & v=\pi_{2}^{*} t
\end{array}
$$

So $c_{1}^{E}(M)=c_{1}^{E}\left(L \otimes L^{\prime}\right)=f(u, v) \in E^{*}(\mathrm{pt})[[u, v]]$.
Q (refined): What is f ?
A (refined): When E is singular cohomology, $f(u, v)=u+v$. Not clear in general.
What do we know about f ? Related to the tensor product: so it has similar properties

$$
\begin{aligned}
f(u, v) & =f(v, u) \\
f(u, 0) & =u \\
f(u, f(v, w)) & =f(f(u, v), w)
\end{aligned}
$$

Def: Let R be a commutative ring. Any $f \in R[[x, y]]$ that satisfies the properties above is called a formal group law (or fgl).

So every multiplicative complex-oriented cohomology theory determines a fgl over the ring $E^{\text {even }}(\cdot)$.

Doesn't always work the other way around.
Example: If $f(u, v)=u+v+u v$, then the associated cohomology theory is complex K-theory.
How do we come up with fgls? Take a step back to a larger ring.
Thm/Def: There exist:

- a commutative ring L, called the Lazard ring,
- a fgl $f \in L[[u, v]]$, called the universal fgl, such that
for any fgl over a commutative ring R, there is a ring homomorphism $L \rightarrow R$ that takes f to the given fgl.
The map φ induces a map on formal power series that takes f to the given fgl
We may write $f(x, y)=\sum_{i, j} c_{i j} x^{i} y^{j}$. Tensor product conditions give:

$$
\begin{aligned}
c_{i j} & =c_{j i} \\
c_{i 0} & =\delta_{i 1} \\
p_{k}\left(c_{i j}\right) & =0
\end{aligned}
$$

Def: The Lazard ring is by $L:=\mathbf{Z}\left[c_{i j}\right] /\left(p_{k}\left(c_{i j}\right)\right)$ where the p_{k} include all the polynomial relations above
L has a grading: For $c_{i j} \in L$, set $\operatorname{deg}\left(c_{i j}\right)=2(i+j-1)$. This is chosen so f has degree -2 .
What have we learned so far?
choosing a fgl over R is equiv to choosing $\left\{c_{i, j}\right\} \subset R$ satisfying $p_{k}\left(c_{i, j}\right)=0$
is equiv to choosing $\varphi \in \operatorname{Hom}(L, R)$
This concludes the introduction. Let's get to the next part.

2 Lazard's theorem

Thm: (Lazard, 1955) $L \cong \mathbf{Z}\left[t_{1}, t_{2}, \ldots\right]$, where $\operatorname{deg}\left(t_{i}\right)=2 i$.
To prove this, we need some tools and some lemmas.
Remark: Let $f \in R[[x, y]]$ be a fgl and $g=z+b_{1} z^{2}+b_{2} z^{3}+\cdots \in R[[z]]$. Then $(g \circ f)\left(g^{-1}(x), g^{-1}(y)\right)$ is a fgl over R.

Tensor laws (first two) satisfied easily. Inverse exists because constant term is 0 and linear coeff is 1 .
Then $\tilde{g}(x, y)=g\left(g^{-1}(x)+g^{-1}(y)\right)$ is an FGL over $\mathbf{Z}\left[b_{i}\right]$.
Let $\varphi: L \rightarrow \mathbf{Z}\left[b_{i}\right]$ be the associated ring homomorphism.
$I(\subset L)=$ the ideal consisting of elements of positive degree of L
$J\left(\subset \mathbf{Z}\left[b_{i}\right]\right)=$ the ideal generated by the b_{i}.

$$
\begin{aligned}
& \text { Lazard's isomorphism will be made on graded parts. Consider two new spaces: } \\
& \qquad I / I^{2} \\
& \qquad\left(J / J^{2}\right)_{2 n} \cong \mathbf{Z}
\end{aligned}
$$

Both have an induced grading from their rings.
To prove the theorem, we need to prove some lemmas.
Lemma 1: For $n>0$, there is an injection $\left(I / I^{2}\right)_{2 n} \stackrel{i}{\hookrightarrow} \mathbf{Z}$. Moreover, $i\left(\left(I / I^{2}\right)_{2 n}\right)=\left\{\begin{array}{cc}p \mathbf{Z} & \text { if } n+1=p^{r}, \\ \mathbf{Z} & \text { else. }\end{array}\right.$
Think of showing $\left(I / I^{2}\right)_{2 n} \cong \mathbf{Z}$ as showing $\operatorname{Hom}\left(\left(I / I^{2}\right)_{2 n}, M\right) \cong M$ for an abeliean group M.

$$
\begin{gathered}
\text { Compare functor corepresented by }\left(I / I^{2}\right)_{2 n} \text { to functor corepresented by } L . \\
M O R E
\end{gathered}
$$

Lemma 2: There is a surjective map $\theta: \mathbf{Z}\left[t_{i}\right] \rightarrow L$, where $t_{i} \in L_{2 n}$ is the lift of a generator of $\left(I / I^{2}\right)_{2 n}$.
Done by showing $\theta_{n}: \mathbf{Z}\left[t_{n}\right] \rightarrow L_{2 n}$ is surjective, by induction.

HOW INDUCTION WORKS

Lemma 3: The map θ is injective.
Instead show the composition $\mathbf{Z}\left[t_{i}\right] \longrightarrow L \longrightarrow \mathbf{Z}\left[b_{i}\right]$ is injective.

Use above lemmas for rational part.
Since θ is a bijective ring homomorphism, it is a ring isomorphism.

$$
W H Y \text { ө HOMOMORPHISM }
$$

