1 Setting

Objects:

X : a "nice space"

"nice" means paracompact and Hausdorff

L: a complex line bundle over X

 $\mathcal{O}(1)$: the universal line bundle

f: a continuous map

Def: Given a cohomology theory E, the first Chern class of L with respect to E is $c_1^E(L) = f^*t$, with $t \in E^2(\mathbb{CP}^{\infty})$.

Let's simplify some things.

Def: A complex-oriented cohomology theory E is one whose Atiyah–Hirzebruch spectral sequence $H^p(X, E^q(\cdot)) \Rightarrow E^{p+q}(X)$ degenerates at the second page.

From here on out E is complex-oriented multiplicative, so $E^*(X \times Y) \cong E^*(X) \times E^*(Y)$.

For such E, $E^*(\mathbf{CP}^{\infty}) \cong E^*(\mathrm{pt})[[t]]$ and $t \in E^2(\mathbf{CP}^{\infty})$. Same t as above

We talk about the first Chern class because that's easier to compute than other Chern classes.

Q: What is $c_1^E(L \otimes L')$?

A: When E is singular cohomology, it is $c_1^E(L) + c_1^E(L')$. Not clear in general.

The bundle $L \otimes L'$ is over X. It suffices to consider it over $\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}$. Set $M = \pi_1^* \mathcal{O}(1) \otimes \pi_2^* \mathcal{O}(1)$.

$$E^*(\mathbf{CP}^{\infty}) \cong E^*(\mathrm{pt})[[t]]$$
$$E^*(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E^*(\mathrm{pt})[[u, v]]$$
$$u = \pi_1^* t \qquad v = \pi_2^* t$$

So $c_1^E(M) = c_1^E(L \otimes L') = f(u, v) \in E^*(\mathrm{pt})[[u, v]].$

Q (refined): What is f? **A** (refined): When E is singular cohomology, f(u, v) = u + v. Not clear in general.

What do we know about f? Related to the tensor product: so it has similar properties

$$\begin{split} f(u,v) &= f(v,u),\\ f(u,0) &= u,\\ f(u,f(v,w)) &= f(f(u,v),w). \end{split}$$

Def: Let R be a commutative ring. Any $f \in R[[x, y]]$ that satisfies the properties above is called a *formal* group law (or fgl).

So every multiplicative complex-oriented cohomology theory determines a fgl over the ring $E^{\text{even}}(\cdot)$.

Doesn't always work the other way around.

Example: If f(u, v) = u + v + uv, then the associated cohomology theory is complex K-theory.

How do we come up with fgls? Take a step back to a larger ring.

Thm/Def: There exist:

 \cdot a commutative ring L, called the Lazard ring,

· a fgl $f \in L[[u, v]]$, called the *universal fgl*, such that

for any fgl over a commutative ring R, there is a ring homomorphism $L \to R$ that takes f to the given fgl.

The map φ induces a map on formal power series that takes f to the given fgl

We may write $f(x, y) = \sum_{i,j} c_{ij} x^i y^j$. Tensor product conditions give:

$$c_{ij} = c_{ji}$$
$$c_{i0} = \delta_{i1}$$
$$p_k(c_{ij}) = 0$$

Def: The Lazard ring is by $L := \mathbf{Z}[c_{ij}]/(p_k(c_{ij}))$ where the p_k include all the polynomial relations above

L has a grading: For $c_{ij} \in L$, set $\deg(c_{ij}) = 2(i+j-1)$. This is chosen so *f* has degree -2.

What have we learned so far?

choosing a fgl over R is equiv to choosing $\{c_{i,j}\} \subset R$ satisfying $p_k(c_{i,j}) = 0$ is equiv to choosing $\varphi \in \text{Hom}(L, R)$

This concludes the introduction. Let's get to the next part.

2 Lazard's theorem

Thm: (Lazard, 1955) $L \cong \mathbb{Z}[t_1, t_2, ...]$, where deg $(t_i) = 2i$.

To prove this, we need some tools and some lemmas.

Remark: Let $f \in R[[x, y]]$ be a fgl and $g = z + b_1 z^2 + b_2 z^3 + \cdots \in R[[z]]$. Then $(g \circ f)(g^{-1}(x), g^{-1}(y))$ is a fgl over R.

Tensor laws (first two) satisfied easily. Inverse exists because constant term is 0 and linear coeff is 1.

Then $\tilde{g}(x,y) = g(g^{-1}(x) + g^{-1}(y))$ is an FGL over $\mathbf{Z}[b_i]$. Let $\varphi: L \to \mathbf{Z}[b_i]$ be the associated ring homomorphism.

 $I(\subset L)$ = the ideal consisting of elements of positive degree of L $J(\subset \mathbf{Z}[b_i])$ = the ideal generated by the b_i .

Lazard's isomorphism will be made on graded parts. Consider two new spaces:

$$I/I^2 \qquad \qquad \left(J/J^2\right)_{2n} \cong {\bf Z}$$

Both have an induced grading from their rings.

To prove the theorem, we need to prove some lemmas.

Lemma 1: For n > 0, there is an injection $(I/I^2)_{2n} \stackrel{i}{\hookrightarrow} \mathbf{Z}$. Moreover, $i((I/I^2)_{2n}) = \begin{cases} p\mathbf{Z} & \text{if } n+1=p^r, \\ \mathbf{Z} & \text{else.} \end{cases}$

Think of showing $(I/I^2)_{2n} \cong \mathbb{Z}$ as showing $\operatorname{Hom}((I/I^2)_{2n}, M) \cong M$ for an abelian group M.

Compare functor corepresented by $(I/I^2)_{2n}$ to functor corepresented by L.

MORE

Lemma 2: There is a surjective map θ : $\mathbf{Z}[t_i] \to L$, where $t_i \in L_{2n}$ is the lift of a generator of $(I/I^2)_{2n}$.

Done by showing $\theta_n : \mathbf{Z}[t_n] \to L_{2n}$ is surjective, by induction.

HOW INDUCTION WORKS

Lemma 3: The map θ is injective.

Instead show the composition $\mathbf{Z}[t_i] \longrightarrow L \longrightarrow \mathbf{Z}[b_i]$ is injective.

Use above lemmas for rational part.

Since θ is a bijective ring homomorphism, it is a ring isomorphism.

WHY θ HOMOMORPHISM