Calculations with the conditioning number Janis Lazovskis,

18 November 2016.

. Definitions and pictures

How big a neighborhood of a manifold can be embedded along with the manifold?

This is also known as the *reach*, the *critical radius*, or the *injectivity radius*. It is determined by some point(s) in the

ambient space where their normal spaces intersect.

Defn 2. The *medial axis* of *M* is the closure of the set of all $x \in \mathbf{R}^n$ for which there exist $p \neq q \in M$ such that

$$\inf_{y \in M} |x - y| = |x - p| = |x - q|.$$

The medial axis is affected by local properties (how "curved" the manifold is) and by global properties (how "close to itself" the manifold is).

2 Curves in \mathbf{R}^n

Let *C* be a smooth curve embedded in \mathbb{R}^n . For local properties, take $p, q \in C$ close to each other and intersect their normal planes N_pC and N_qC . Measuring the shortest distance from *p* to *q* along these planes will describe τ "locally." "Globally," we only need to consider pairs of points (p, q) that are in each other's normal planes. Fix *p* and set

$$\tau_p^{\ell} = \frac{1}{2} \lim_{q \to p} \left[\inf_{\substack{x \in N_p C \cap N_q C}} \{ d(p, x) + d(q, x) \} \right],$$

$$\tau_p^g = \frac{1}{2} \inf_{\substack{q \in N_p C \\ p \in N_q C}} d(p, q)$$

as the *local* and *global* conditioning numbers at p, respectively. Then the conditioning number of the curve is

$$\tau = \min\left\{\inf_{p \in C} \tau_p^{\ell}, \inf_{p \in C} \tau_p^{g}\right\}$$

In special cases, we may take advantage of the regularity or symmetry of the curve. For example, consider the helix:

With radius r and period $2\pi c$, its equations are

$$f_1(x, y, z) = x - r \cos(z/c),$$

$$f_2(x, y, z) = y - r \sin(z/c).$$

The local conditioning number is $\tau^{\ell} = (r^2 + c^2)/r$, which simplifies to $\tau^{\ell} = r$ when c = 0, when the helix has collapsed to a circle. The global conditioning number is also found easily, by observing that the helix rises at an angle of $\arctan(c/r)$. Hence

$$\tau_{\text{helix}} = \min\left\{\frac{r^2 + c^2}{r}, \frac{\pi cr}{\sqrt{r^2 + c^2}}\right\}$$

3 Settings

Ideal: We know the (equations of the) manifold. **Semi-ideal:** We may sample as many points as we want. **Realistic:** We are given a finite point sample.

So far we have considered the ideal case. Now we turn to situations when all is not known about the manifold.

Calculations with the conditioning number Janis Lazovskis,

18 November 2016.

4 Finite point sampling

Sample points on M according to a random variable X. It may not be truly random (*sampling bias*) and may have support strictly larger than M (*noise*).

Defn 3. The probability density function of X is the function $f : M \to \mathbf{R}$ satisfying (a) $f(p) \ge 0$ for all $p \in M$, and (b) $\int_N f(p) dp = P(X \in N)$ for any $N \subseteq M$.

A lower bound on the number of sampled points necessary to find the homology of M is given in [2].

Thm 1. There is an algorithm that will find the homology of a *d*-manifold *M*, with probability $1 - \delta$, from a random point sample of at least

$$\log\left(\frac{\delta}{\ell}\right)\log\left(1-\frac{\pi^{d/2}(\delta/4)^d}{\Gamma(d/2+1)}\right)$$

points on M, for ℓ a function in $1/\tau^d$.

For example, consider the unit 2-sphere, with $\tau = 1$. For $\delta = 0.5$, the algorithm then needs at least 174 points; for $\delta = 0.1$, at least 6919 points. Below we have 250.

5 Applications

Knot theory: Given a knot K of fixed length, which embedding of K into \mathbf{R}^3 will have the largest τ ?

Such an embedding, described in [1], gives the *ideal shape* of K, representing the "tightest" a knot can be pulled.

Mechanics: A wire of diameter d and length ℓ , when coiled into a spring of radius r, can be compressed down to a height of no less than $2\pi r\ell/d$.

Chemistry: A protein is a chain of amino acids and *folding* describes how its physical states change. Some states, "tightest" in some sense, make the organism function properly, while others cause problems.

Given an potential embedding of a protein, knowing τ indicates if it is not a valid embedding.

6 References

- [1] Oscar Gonzalez and John H. Maddocks. "Global curvature, thickness, and the ideal shapes of knots". In: *Proc. Natl. Acad. Sci. USA* 96.9 (1999), 4769–4773 (electronic). ISSN: 1091-6490.
- [2] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. "Finding the homology of submanifolds with high confidence from random samples". In: *Discrete Comput. Geom.* 39.1-3 (2008), pp. 419–441. ISSN: 0179-5376.

The full survey is available online at math.uic.edu/~jlv/docs/2016-11-17-indstudy.pdf