0.1 Definitions

M is a *d*-manifold embedded in \mathbb{R}^n . We will conflate spaces and their embeddings.

The conditioning number of M is

$$\tau = \sup_{\substack{\text{embeddings}\\N^{\epsilon}M}} \epsilon$$

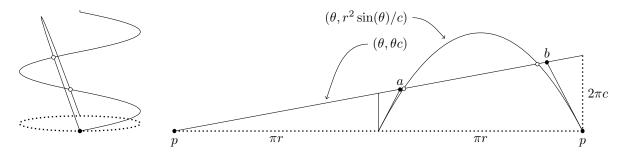
0.2How to find τ (mfld known)

0.2.1Examples

- circle: $\tau = r$
- *n*-sphere: $\tau = r$
- torus: $\tau = \min\{b, a b\}$
- helix: $M = \{(r\cos(z/c), r\sin(z/c), z) : z \in \mathbf{R}\}$ has radius r and period $2\pi c$

- 1. Mathematica helix visualization 2. Locally: intersection of normal planes $\tau_p^{\ell} = \frac{r^2 + c^2}{r}$ 3. Globally: only need to consider local and $\tau = \min_{\substack{p \in M \\ q \in N_p C \cap C}} \{\tau_p^{\ell}, d(p, q)/2\}$

To find intersection of normal plane with curve, unfold cylinder with intersection of normal plane:



Approximate with tangent lines. Too big when $c > r/\sqrt{3}$.

0.2.2 Generalize to *d*-manifolds

1. The curvature of $\gamma : \mathbf{R} \to \mathbf{R}^n$ at $\gamma(t)$ is $\kappa(t) = \sqrt{|\dot{\gamma}|^2 |\ddot{\gamma}|^2 - (\dot{\gamma}\ddot{\gamma})^2}/|\dot{\gamma}|^3 = 1/\rho(t)$. When p.by a.l, $\kappa(t) = |\ddot{\gamma}|$ 2. This was $\tau^{\ell}_{\gamma(t)}$ above. Another way: take $x, y, z \in \mathbf{R}^3$ in gen pos,

$$\begin{aligned} r(x, y, z) &= (\text{radius of unique circle through } x, y, z) \\ \lim_{\substack{y, z \to x \\ x \neq \psi \neq z \neq x}} r(x, y, z) &= \rho(x) = \tau_x^{\ell} \end{aligned} \qquad (\text{easy to calc}) \\ (\text{difficult to calc}) \end{aligned}$$

3. Generalize this approach. Take x_1, \ldots, x_{d+2} in gen pos (gives naturally copy of \mathbf{R}^d),

 $r(x_1, \dots, x_{d+2}) = (\text{radius of unique } d\text{-sphere through } x_1, \dots, x_{d+2})$ $\inf_{\substack{p \in M \\ x_i \text{ disctinct}}} r(p, x_1, \dots, x_{d+1}) = \tau$

4. Can we take limit for \approx d-curvature? No \rightarrow saddle point

4.5. Possible sol: Take curvature of all smooth paths on M through point. Still not clear

0.3 How to find τ (mfld unknown)

Definition 0.3.1. Let $\epsilon > 0$. The *Vietoris-Rips* complex of X of radius ϵ is a simplicial complex V for which a k-tuple of points $\{x_1, \ldots, x_k\}$ defines a (k-1)-simplex in V iff $d(x_i, x_j) < \epsilon$ for all $1 \leq i, j \leq k$.

Assumptions:

1. $X = \{x_1, \ldots, x_N\}$ points sampled on unknown *d*-manifold *M*

- 2. Every simplex $V' \subset V$ is inside a *d*-simplex
 - a. So resembles a *d*-manifold
 - b. Needs appropriate choice of ϵ

Local cond num is min radius of *d*-spheres nearby:

$$\tau_p^{\ell} = \min_{\substack{x_{i_j} \in X\\(p, x_{i_j}) \subset V}} r(p, x_{i_1}, \dots, x_{i_{d+1}})$$

Global cond num is min radius over all *d*-spheres:

$$\tau = \min_{\substack{X' \subset X \\ |X'| = d+2}} r(X')$$

Easy to calculate. Equation of d-sphere through x_1, \ldots, x_{d+2} :

$$\det \begin{bmatrix} \sum_{i=1}^{d+1} x_i^2 & x_1 & x_2 & \cdots & x_{d+1} & 1\\ \sum_{i=1}^{d+1} p_{1,i}^2 & p_{1,1} & p_{1,2} & \cdots & p_{1,d+1} & 1\\ \sum_{i=1}^{d+1} p_{2,i}^2 & p_{2,1} & p_{2,2} & \cdots & p_{2,d+1} & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ \sum_{i=1}^{d+1} p_{d+2,i}^2 & p_{d+2,1} & p_{d+2,2} & \cdots & p_{d+2,d+1} & 1 \end{bmatrix} = 0.$$

View x_i as lying in natural copy of $\mathbf{R}^{d+1} \subset \mathbf{R}^n$ they define.