0.1 Definitions

M is a d-manifold embedded in \mathbf{R}^{n}. We will conflate spaces and their embeddings.

$$
\begin{array}{cc}
T_{p} M \oplus N_{p} M \cong \mathbf{R}^{n} & B_{\epsilon}^{d} \longrightarrow N^{\epsilon} M \\
\left(N^{\epsilon} M\right)_{p}=N_{p} M \cap B_{\epsilon, p}^{n} &
\end{array}
$$

The conditioning number of M is

$$
\tau=\sup _{\substack{\text { embeddings } \\ N \epsilon M}} \epsilon
$$

0.2 How to find τ (mfld known)

0.2.1 Examples

- circle: $\tau=r$
- n-sphere: $\tau=r$
- torus: $\tau=\min \{b, a-b\}$
- helix: $M=\{(r \cos (z / c), r \sin (z / c), z): z \in \mathbf{R}\}$ has radius r and period $2 \pi c$

1. Mathematica helix visualization
2. Locally: intersection of normal planes $\tau_{p}^{\ell}=\frac{r^{2}+c^{2}}{r}$
3. Globally: only need to consider local and $\tau=\min _{\substack{p \in M \\ q \in N_{p} C \cap C}}\left\{\tau_{p}^{\ell}, d(p, q) / 2\right\}$

To find intersection of normal plane with curve, unfold cylinder with intersection of normal plane:

Approximate with tangent lines. Too big when $c>r / \sqrt{3}$.

0.2.2 Generalize to d-manifolds

1. The curvature of $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{n}$ at $\gamma(t)$ is $\kappa(t)=\sqrt{|\dot{\gamma}|^{2}|\ddot{\gamma}|^{2}-(\dot{\gamma} \ddot{\gamma})^{2}} /|\dot{\gamma}|^{3}=1 / \rho(t)$. When p.by a.l, $\kappa(t)=|\ddot{\gamma}|$
2. This was $\tau_{\gamma(t)}^{\ell}$ above. Another way: take $x, y, z \in \mathbf{R}^{3}$ in gen pos,

$$
\begin{array}{rlr}
r(x, y, z) & =(\text { radius of unique circle through } x, y, z) & \\
\lim _{y, z \rightarrow x} r(x, y, z) & =\rho(x)=\tau_{x}^{\ell} & \text { (easy to calc) } \\
\inf _{\substack{x \rightarrow C \\
x \neq y \neq z \neq x}} r(x, y, z) & =\tau & \text { (difficult to calc) }
\end{array}
$$

3. Generalize this approach. Take x_{1}, \ldots, x_{d+2} in gen pos (gives naturally copy of \mathbf{R}^{d}),

$$
\begin{aligned}
r\left(x_{1}, \ldots, x_{d+2}\right) & =\left(\text { radius of unique } d \text {-sphere through } x_{1}, \ldots, x_{d+2}\right) \\
\inf _{\substack{p \in M \\
x_{i} \in M \\
\text { disctinct }}}^{r\left(p, x_{1}, \ldots, x_{d+1}\right)}= & =\tau
\end{aligned}
$$

4. Can we take limit for \approx d-curvature? No \rightarrow saddle point
4.5. Possible sol: Take curvature of all smooth paths on M through point. Still not clear

0.3 How to find τ (mfld unknown)

Definition 0.3.1. Let $\epsilon>0$. The Vietoris-Rips complex of X of radius ϵ is a simplicial complex V for which a k-tuple of points $\left\{x_{1}, \ldots, x_{k}\right\}$ defines a $(k-1)$-simplex in V iff $d\left(x_{i}, x_{j}\right)<\epsilon$ for all $1 \leqslant i, j \leqslant k$.

Assumptions:

1. $X=\left\{x_{1}, \ldots, x_{N}\right\}$ points sampled on unknown d-manifold M
2. Every simplex $V^{\prime} \subset V$ is inside a d-simplex
a. So resembles a d-manifold
b. Needs appropriate choice of ϵ

Local cond num is min radius of d-spheres nearby:

$$
\tau_{p}^{\ell}=\min _{\substack{x_{i j} \in X \\\left(p, x_{i_{j}}\right) \subset V}} r\left(p, x_{i_{1}}, \ldots, x_{i_{d+1}}\right)
$$

Global cond num is min radius over all d-spheres:

$$
\tau=\min _{\substack{X^{\prime} \subset X \\\left|X^{\prime}\right|=d+2}} r\left(X^{\prime}\right)
$$

Easy to calculate. Equation of d-sphere through x_{1}, \ldots, x_{d+2} :

$$
\operatorname{det}\left[\begin{array}{cccccc}
\sum_{i=1}^{d+1} x_{i}^{2} & x_{1} & x_{2} & \cdots & x_{d+1} & 1 \\
\sum_{i=1}^{d+1} p_{1, i}^{2} & p_{1,1} & p_{1,2} & \cdots & p_{1, d+1} & 1 \\
\sum_{i=1}^{d+1} p_{2, i}^{2} & p_{2,1} & p_{2,2} & \cdots & p_{2, d+1} & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\sum_{i=1}^{d+1} p_{d+2, i}^{2} & p_{d+2,1} & p_{d+2,2} & \cdots & p_{d+2, d+1} & 1
\end{array}\right]=0
$$

View x_{i} as lying in natural copy of $\mathbf{R}^{d+1} \subset \mathbf{R}^{n}$ they define.

