This talk goes through pages 38-48 in Casson and Bleiler's "Automorphisms of surfaces"

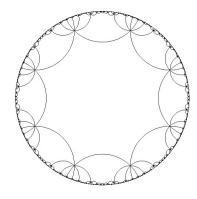
F is a closed hyperbolic surface (recall \mathbf{H}^2 may be tiled with F)

0.1 Part 1: Setup

Definitions: A complete geodesic on \mathbf{H}^2 is a diameter or a circle intersecting at 90°. A geodesic on F is the image of a complete geodesic on \mathbf{H}^2 via the tiling. A lamination L of F is a non-empty closed subset of F that is a disjoint union of geodesics, called *leaves* of the lamination.

Example:

- draw fundamental domain of genus 2 surface
- label edges $aba^{-1}b^{-1}cdc^{-1}d^{-1}$
- since one vertex, angle is $2\pi/8$ at corners
- draw genus 2 surface in \mathbf{R}^3
- draw geodesic from a to a^{-1} centers (closed)
- draw geodesic from c to c^{-1} centers (closed)
- draw geodesic approximating both (not closed)



L is a geodesic lamination of F

Geodesics are unoriented.

Lemma 3.1: Geodesics are (at least) C^1

Lemma 3.2: *L* is non-empty, disjoint union $\implies \overline{L}$ is a lamination Ensures that limit of non-closed geodesics is still geodesic.

Lemma 3.3: a) L is nowhere dense in F, b) L may be expressed uniquely

0.2 Part 2: Structure / lifting

Definitions: For any space X, the Hausdorff distance on $\mathbf{P}(X)$ is defined as

$$d(U,V)\leqslant\epsilon\quad\iff\quad U\subset\bigcup_{v\in V}B(v,\epsilon),\ V\subset\bigcup_{u\in U}B(u,\epsilon).$$

Set the projective tangent bundle of F to be $PT(F) \xrightarrow{p} F$ with $p^{-1}(x) = \{(x, \sigma) : \sigma \text{ is a geodesic on } F$ with $|\sigma| = 2, \sigma(1) = x\}$. Note that $p^{-1}(U) \cong U \times \mathbf{RP}^1$.

 $\mathbf{P}^{c}(X) = \{Y \in \mathbf{P}(X) \setminus \emptyset : Y \text{ is closed} \}$ $\Lambda(F) = \{\text{geodesic laminations on } F\} \subset \mathbf{P}^{c}(F)$

Theorem 3.4: $(\Lambda(F), d)$ is (sequentially) compact

Now lift everything we have learned so far:

The map p is 1-1 and onto. This implies that p_* is a homeomorphism.

Lemma 3.5: $(\Lambda(F), \mathbf{P}^{c}(F)) = (\Lambda(F), \mathbf{P}^{c}(PT(F)))$ as topological spaces with base of topology

Definitions: A leaf γ of L is *isolated* if for every $x \in \gamma$ there exists $U \subset F$ such that $U \setminus \gamma$ has two components. A lamination L of F is *isolated* if there exists $\epsilon > 0$ such that $d(L, M) \ge \epsilon$ for all $M \neq L$ in $\Lambda(F)$. Set $L' = L \setminus \{\text{isolated leaves}\}$.

Example: Laminations with leaves that are not closed on F are not isolated (taking M to have leaves that are the limits of non-closed leaves in L).

Lemma 3.6: $L' = \emptyset \implies$ a) L is isolated in $\Lambda(F)$, b) $L = \bigcup_{i=1}^{n} \gamma_i$ for every γ_i simple closed