0.1 What is the Ran space?

Let M be a compact manifold.

Definition: The Ran space of M is $\operatorname{Ran}(M) := \{S \subset M : 0 < |S| < \infty\}$. mention $n, \leq n$

Topology: Let $\{U_i\}$ be a collection of open subsets of M. Set

$$\operatorname{Ran}(\{U_i\}) = \{P \in \operatorname{Ran}(M) : P \subseteq \bigcup_i U_i, \ P \cap U_i \neq \emptyset \ \forall \ i\} \subseteq \operatorname{Ran}(M).$$

A neighborhood of $P = \{P_1, \ldots, P_n\} \in \operatorname{Ran}(M)$ is

 $\operatorname{Ran}(\{U_i\}_{i=1}^n : U_i \text{ is an open neighborhood of } p_i, U_i \cap U_j = \emptyset \iff i \neq j\}.$

The topology on $\operatorname{Ran}(M)$ is the coarsest topology for which neighborhoods of all $P \in \operatorname{Ran}(M)$ are open.

Example: Ran^{≤ 2}(*I*) draw square, diagonal for Ran¹

Theorem: (Beilinson–Drinfeld, 1995) If M is path-connected, then Ran(M) is weakly contractible.

Now fix an embedding of M into \mathbf{R}^N , for large enough N.

Extension: Consider the space $X = \operatorname{Ran}(M) \times \mathbf{R}_{\geq 0}$. There is a natural map from X to the space of simplicial complexes by $(P, t) \mapsto \check{C}ech(P, t)$, the Čech complex of radius t. Recall that for a k-simplex σ ,

$$\sigma = \underbrace{\{\sigma_1, \dots, \sigma_k\}}_{\subseteq P = \{P_1, \dots, P_n\}} \in \check{C}ech(P, t) \quad \Longleftrightarrow \quad B(\sigma_i, t) \cap B(\sigma_j, t) \neq \emptyset \; \forall \; 1 \leqslant i, j \leqslant k.$$

Usually take Euclidean distance in \mathbf{R}^{N} . draw simple example

0.2 Stratifying $\operatorname{Ran}^{\leq n}(M) \times \operatorname{R}_{\geq 0}$

Motivation: What types of simplicial complexes do we get from X? Types up to homotopy?

Definition: A stratification on a topological space X is a continuous map $f: X \to (A, \leq)$.

Definition: A subset $U \subseteq A$ is open in the *upset topology* on (A, \leq) if $x \in U$ and $x \leq y$, then $y \in U$. tree example, cube example, disconnected example. draw circles for sets.

Claim: Ran^{$\leq n$}(M) × **R**_{≥ 0} is stratified (in the product topology).

2017-09-08

Proof: First stratify $\operatorname{Ran}^k(M) \times \mathbf{R}_{\geq 0}$ for all $1 \leq k \leq n$. For example, when k = 3:

 $\operatorname{Ran}^{k}(M)$ has $2^{1+\dots+k}$ nodes. All edges are open. Note $\operatorname{Ran}^{n}(M)$ is open in $\operatorname{Ran}^{\leq n}(M)$ (points can't split, can only merge). Hence $\operatorname{Ran}^{\geq k}(M)$ is open in $\operatorname{Ran}^{\leq n}(M)$. Make image into poset as below.

Preimages of opens are open, so cts.

0.3 Exit paths on stratifications

Motivation: Classify all (A-constructible) sheaves on X. But also, more geometric structure?

Embed simplices into a stratified space.

Definition: An *exit path* in an A-stratified space X is a continuous map $\gamma : [0,1] \to X$ for which there exists a pair of chains $a_1 \leq \cdots \leq a_n$ in A and $0 = t_0 \leq \cdots \leq t_n = 1$ in [0,1] such that $f(\gamma(t)) = a_i$ whenever $t \in (t_{i-1}, t_i]$.

This really is a path, and so gives good intuition for what is happening. Recall that the geometric realization of the *n*-simplex Δ^n is $|\Delta^n| = \{(t_0, \ldots, t_n) \in \mathbf{R}^{n+1} : t_0 + \cdots + t_n = 1\}$. Oserving that $[0, 1] \cong |\Delta^1|$, this definition may be generalized by instead considering maps from $|\Delta^n|$.

Definition: An *exit path* in an A-stratified space X is a continuous map $\gamma : |\Delta^n| \to X$ for which there exists a chain $a_0 \leq \cdots \leq a_n$ in A such that $f(\gamma(t_0, \ldots, t_i, 0, \ldots, 0)) = a_i$ for $t_i \neq 0$.

Example: Consider a particular $\gamma : |\Delta^2| \to \operatorname{Ran}^{\leq 2}(M)$.

