Recall how simplicial complexes are special (nicer) cases of CW complexes. The goal of this talk is to create an analogous idea with categories:

CW complexes are to simplicial complexes like simplicial sets are to infinity categories.

Recall a CW complex is just a set of instructions of how to map n-spheres, increasing in n, by their boundary to what already has been constructed.

0.1 Simplicial complexes

Recall a (topological) k-simplex is

$$\Delta_{top}^{n} = \{a_0 t_0 + \dots + a_k t_k \in \mathbf{R}^{k+1} : t_0 + \dots + t_k = 1\},\$$

where the $a_i \in \mathbf{R}^{k+1}$ are the vertices of the simplex and $t_i \in [0, 1]$. This may also be viewed as the convex hull of the set $A = \{a_0, \ldots, a_k\}$. A face of Δ_{top}^n is the convex hull of any proper subset of A, with the *i*th face being the convex hull of $\{a_0, \ldots, \hat{a_i}, \ldots, a_k\}$. Then a simplicial complex S is a collection of simplices for which

- $\sigma \in S \implies \tau \in S$ for all faces τ of σ , and
- for all $\sigma, \tau \in S$, either $\sigma \cap \tau \in S$ or $\sigma \cap \tau = \emptyset$.

A simplicial map from a simplicial complex S to a simplicial complex T is a map $f: S \to T$ such that the images of the vertices of S span simplices in T. Hence f is determined by f on the vertices of S.

Remark. For σ a k-simplex and τ a (k + 1)-simplex, there are natural maps

for all $0 \leq i \leq k+1$. The vertices follow the ordering in the images.

0.2 Simplicial sets + examples

Now we will define a category Δ . The objects are [n] = (0, 1, ..., n) and the morphisms are non-decreasing (equivalently order-preserving) maps $[n] \rightarrow [m]$. Note that every morphism is a composition of:

coface maps
$$s^i : [n] \to [n-1]$$
, hits *i* twice $(i, i+1 \mapsto i)$
codegeneracy maps $d^i : [n] \to [n+1]$, skips *i*

For example:

Remark: Every object [n] of Δ may be viewed as a category by itself. It contains n + 1 objects, and $|\text{Hom}_{[n]}(a,b)| = 1$ iff $a \leq b$, and is empty otherwise.

Definition: Let sSet = Fun(Δ^{op} , Set) be the category of *simplicial sets*. An object (functor) may be described as $S = \{S_n = S([n])\}_{n \ge 0}$ with

face maps
$$S(s^i) = s_i : S_n \to S_{n+1}$$

degeneracy maps $S(d^i) = d_i : S_n \to S_{n-1}$

Morphisms $f: S \to T$ are natural transformations.

Now we give some standard examples of simplicial sets.

Example 1: The standard k-simplex Δ^k is a simplicial set, with $\Delta^n_k = \text{Hom}_{\Delta}([k], [n])$. The collection of morphisms $[k] \to [n]$ is a set. A morphism $\varphi : [\ell] \to [k]$ induces a morphism $\Delta^n_k \to \Delta^n_\ell$, by $\alpha \in \text{Hom}_{\Delta}([k], [n])$ becoming $\alpha \circ \varphi \in \text{Hom}_{\Delta}([\ell], [n])$, so contravariance is also satisfied.

Example 2: Let C be a category. The *nerve* N(C) of the category C is a simplicial set defined by $N(C)_n = \operatorname{Fun}([n], C)$. Note that

$$\begin{array}{lll} N(C)_0 &=& \text{objects of } C\\ N(C)_1 &=& \text{morphisms of } C\\ N(C)_2 &=& \text{pairs of composable arrows of } C\\ &\vdots\\ N(C)_n &=& \text{strings of } n \text{ composable arrows of } C \end{array}$$

Hence $N(C)_n$ can be thought of as a path of n segments in the category C.

Example 2.1: Consider the category $C = S_3$. This is a particular type of category, a *groupoid*, with a single object. The single object is the collection $\{e, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (1 \ 3 \ 2)\}$ of the elements of S_3 , and the morphisms, all invertible, are multiplication by these same elements. Elements of $N(S_3)_n$ should be viewed as all the ways to multiply by n elements of S_3 . The nerve looks like this:

$$N(S_3)_0 = \bullet$$
 $N(S_3)_{k \ge 1} =$

Example 3: Let X be a topological space. Then $\operatorname{Sing}(X)$ is a simplicial set, with $\operatorname{Sing}(X)_n = \operatorname{Hom}_{\operatorname{Top}}(\Delta_{top}^n, X)$.

Example 4: A ordered directed graph G = (V, E) is a simplicial set, by setting $G_n = \operatorname{Fun}([n], G)$, where G is interpreted as glued copies of [1]. If we call it G, then $G_0 = V$, $G_1 = V \cup E$ and G_k for $k \ge 2$ does not contain any non-degenerate maps

Definition: Let S be a simplicial set. The *geometric realization* of S is a topological space |S| created in the following way:

$$S_n \ni s \quad \mapsto \quad \Delta_{top}^n,$$

$$(s_i: S_n \to S_{n+1}) \quad \mapsto \quad \{\Delta_{top}^n \to \Delta_{top}^{n+1}\},$$

$$(d_i: S_n \to S_{n-1}) \quad \mapsto \quad \{\Delta_{top}^n \to \Delta_{top}^{n-1}\},$$

0.3 Infinity categories

Remark: Let X be a simplicial complex. Then X = |Sing(X)|. This called an *adjunction* between the geometric realization and Sing.

Definition: An ∞ -category is a simplicial set S whose geometric realization |S| is well-defined.

Example 1: The nerve of any category is an ∞ -category. Consider $|N(S_3)|$ as before. A pair of elements has a unique composition, for example, $(1 \ 3)(1 \ 2) = (1 \ 3 \ 2)$. Since this is unique, the geometric realization is well-defined.

All 2-cells in $N(S_3)_2$ are glued by what the composition of two elements is. For example, we glue one with edges (1 2), (1 3), and (1 3 2).

Example 2: When X is not a simplicial complex, |Sing(X)| doesn't make sense. Consider the two CW complexes below, only the one on the right is a simplicial complex.

On X, the map $s_0 : X_1 \to X_2$ takes the edge (1, 2) to an edge of the 2-simplex (0, 1, 2), and $s_3 : X_1 \to X_2$ takes it to an edge of (1, 2, 3). However, in Y, the map $s_2 : Y_1 \to Y_2$ should take the edge (0, 1) to the edges of both of the elements of Y_2 , which is not a function (functions cannot be multi-valued).