Let M be a compact smooth m-manifold embedded in \mathbf{R}^N . Let X be a topological space. Recall the following concepts:

- $\operatorname{Ran}^{\leqslant n}(M) = \{ P \subset M : 0 < |P| \leqslant n \}$
- $\operatorname{Ran}^{\leq n}(\{U_i\}_{i \in I}) = \{P \in \operatorname{Ran}^{\leq n}(M) : P \subset \bigcup_{i \in I} U_i, P \cap U_i \neq \emptyset \forall i\}$
- the topology on $\operatorname{Ran}^{\leq n}(M)$ is the coarsest topology for which all $\operatorname{Ran}(\{U_i\}_{i \in I})$ are open, for every nonempty finite collection of pairwise disjoint open sets
- $2d(P,Q) = \sup_{p \in P} \inf_{q \in Q} d(p,q) + \sup_{q \in Q} \sup_{p \in P} d(p,q)$. Hausdorff distance is max of two terms

We also have some categories:

- Sing(X) is the category of continuous functions $\gamma : \Delta_{top}^n \to X$ and face / degeneracy maps
 - subcategory $\operatorname{Sing}^{A}(X)$
- Shv(X) is the category of sheaves and sheaf morphisms

- subcategory $\operatorname{Shv}^A(X)$

0.1 Stratifying the Ran space

Definition: A (*poset*) stratification of X is a continuous map $f : X \to A$, where A is a poset. A constructible sheaf over $f : X \to A$ is a sheaf over X that is locally constant on every stratum $X_a = \{x \in X : f(x) = a\}$.

Motivation: Consider the space $X = \operatorname{Ran}^{\leq n}(M) \times \mathbb{R}_{\geq 0}$ and SC, the collection of all ordered simplicial complexes (so $\{\{1, 2, 3\}, \{(1 \ 2)\}\}$ is not the same as $\{\{1, 2, 3\}, \{(2 \ 3)\}\}$). There is a natural map

$$\begin{array}{rccc} f & \colon X & \to & SC, \\ (P,t) & \mapsto & VR(P,t), \end{array}$$

where VR(P,t) is the Vietoris–Rips complex of radius t around the points of P. It seems like there should be a constructible sheaf over X valued in simplicial complexes. Let's try to build it!

Construction 1: We begin by defining a stratification. Let $A = \{S \in SC : |V(S)| \leq n\}$ and define a relation \leq on A by

$$(S \leqslant T) \quad \longleftarrow \quad \left(\begin{array}{c} \exists \ \sigma \in \operatorname{Sing}(X)_1 \text{ such that} \\ f(\sigma(0)) = S, \ f(\sigma(t > 0)) = T. \end{array} \right)$$

Let (A, \leq) be the poset generated by relations of the type given above, which makes $f: X \times \mathbf{R}_{\geq 0} \to A$ a stratification. To see this, take the open set $U_S = \{T \in A : S \leq T\}$ in the basis of the upwards directed topology of A, for any $S \in A$, and consider $(P,t) \in f^{-1}(U_S)$. If for all $\epsilon > 0$ we have $B_{\epsilon}^X(P,t) \cap f^{-1}(U_S)^C \neq \emptyset$, then for any such ϵ there exists $T_{\epsilon} \in A$ with $B_{\epsilon}^X(P,t) \cap f^{-1}(T_{\epsilon}) \neq \emptyset$, for $S \notin T_{\epsilon}$ (as $T_{\epsilon} \notin U_S$). This means there exists $\sigma \in \operatorname{Sing}(X)_1$ with $\sigma(0) = (P,t)$ and $\sigma(t > 0) \in f^{-1}(T_{\epsilon})$, which in turn implies $S \leq T_{\epsilon}$, a contradiction. Hence f is continuous, so $f: X \to A$ is a stratification.

Problem: This defines what an SC-valued constructible sheaf could be on X by giving the value at all the stalks, but the extension to open sets is not clear. Comparing simplices is hard, because there is no vertex order.

Partial solution 1: Instead use f on $(M^{\times k} \setminus \Delta_k) \times \mathbf{R}_{\geq 0}$, and define $\mathcal{F}(U)$ to be the subset of Δ_{top}^k containing a simplex σ if there is at least one $(P, t) \in U$ with $\sigma \in VR(P, t)$ (note the vertices must be ordered for this to be well-defined). Then we can push the sheaf forward through the quotient map

$$(M^{\times k} \setminus \Delta_k) \times \mathbf{R}_{\geq 0} \xrightarrow{S_k} \operatorname{Ran}^k(M) \times \mathbf{R}_{\geq 0}.$$

But this gives sheaf only on one piece of $\operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}$, not the whole thing.

Partial solution 2: Use Lurie's equivalence $\text{Shv}^A(X) \cong \text{Fun}(\text{Sing}^A(X), S)$. A first hurdle is all the new terminology. Also, there are conditions for this to work, in increasing order of restrictiveness:

- A satisfies the ascending chain condition.
- X is paracompact (compact is sufficient),
- X is locally of singular shape (locally contractible is sufficient), and
- the A-stratification of X is *conical*.

The first three hold, but f is not conical, as strata change without changing dimension.

Simplification: Try a simpler space which may have a nice stratification. Let $X = \operatorname{Ran}^{\leq n}(M)$ instead.

Construction 2: Let $A = \{1, ..., n\}$ with the natural order and $f : X \to A$ be given by $P \mapsto |P|$. To check that this is continuous, we need that $\operatorname{Ran}^{\geq k}(M)$ is open in $\operatorname{Ran}^{\leq n}(M)$ for all $0 < k \leq n$. This is true:

$$\begin{aligned} \operatorname{Ran}^{n}(M) &\subseteq \operatorname{Ran}^{\leqslant n}(M) \text{ is open} &\Longrightarrow & \operatorname{Ran}^{\leqslant n-1}(M) \subseteq \operatorname{Ran}^{\leqslant n}(M) \text{ is closed} \\ &\Longrightarrow & \operatorname{Ran}^{\leqslant n-2}(M) \subseteq \operatorname{Ran}^{\leqslant n}(M) \text{ is closed} \\ &\Longrightarrow & \operatorname{Ran}^{\leqslant k}(M) \subseteq \operatorname{Ran}^{\leqslant n}(M) \text{ is closed, for all } 0 < k \leqslant n \\ &\Longrightarrow & \operatorname{Ran}^{\geqslant k}(M) \subseteq \operatorname{Ran}^{\leqslant n}(M) \text{ is open, for all } 0 < k \leqslant n. \end{aligned}$$

First three conditions satisfied. Need to check conical property.

0.2 Conical stratifications

Definition: A stratified space $f: X \to A$ is *conically stratified at x* if there exist:

- a topological space Z,
- a stratified space $g: Y \to A_{>f(x)}$,
- an open embedding $Z \times C(Y) \hookrightarrow X$ whose image contains x.

There is a natural stratification $g': C(Y) \to A_{\geq f(x)}$, given by g'(Y,0) = f(x) and $g'(y,t \neq 0) = g(y)$. The product $Z \times C(Y)$ also has a natural $A_{\geq f(x)}$ -stratification by ignoring the Z factor. Here "open embedding" means "embedding whose image is open".

Construction: We will check that $f: X \to A$ is conically stratified at every $P = \{P_1, \ldots, P_k\}$. Set

$$\epsilon = \frac{1}{2} \min_{i < j} d(P_i, P_j), \qquad Z = \prod_{i=1}^k oB_{\epsilon}^{\mathbf{R}^m}(0), \qquad Y = \prod_{\substack{\sum \ell_i = n \\ \sum t_i = \epsilon}} \prod_{i=1}^k \left\{ Q \in \operatorname{Ran}^{\ell_i}(cB_{t_i}^{\mathbf{R}^m}(0)) : \mathbf{d}(0, Q) = t_i, \ \sum Q_j = 0 \right\}.$$

Both Z, Y are topological spaces. The first condition on elements of Y is the cone condition, which ensures the right topology at the cone point in C(Y). The second condition on Y is the centroid condition, which ensures that the point to which 0 maps to is the centroid of points splitting off it, so that we don't overcount when multiplying by Z. Define

$$\varphi : C(Y) \times Z \to X, \left(\operatorname{Ran}^{\ell_i}(cB_{t_i}^{\mathbf{R}^m}(0)), t, R \right) \mapsto \operatorname{Ran}^{\ell_i}(cB_{tt_i}^M(R_i)),$$

where $t \in [0, 1)$ is the cone component and $R = \{R_1, \ldots, R_k\} \in Z$ is an element of $\operatorname{Ran}^k(M)$ near P. It is sufficient to describe where the $\operatorname{Ran}^{\ell_i}$ map to, as every Q inside it is only scaled by t. That is, Q at a distance t_i from 0 maps to $\varphi(Q)$ at a distance tt_i from R_i , by scaling every component Q_j by t, then changing the center 0 to R_i .

The map φ is continuous by construction, injective by the centroid condition, and a homeomorphism onto its image by the cone condition. Hence φ is an embedding, and since the image is open, it is an open embedding.

0.3 Larger picture

Observation: The space $\operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}$ was not conically stratified at the boundary between strata in the same dimension. Put in new stratum of one dim lower as boundary, representing when $t = d(P_i, P_j)$ in (P, t). But then:

- What will the stratifying poset be?
- Boundary has to be ordered lower than original strata (because of cone point), seem to lose structure.
 - Why should more edges be "higher" than less edges?
 - Is there a general order on simplicial complexes with unordered vertices? What is "more structure?"
- Maybe stratify $\mathbf{R}_{\geq 0}$ alone, then take product of stratified spaces?