Quasi locally constant functions

Jānis Lazovskis

Secret seminar / Grovinar / Grovesloquium 2018-09-26

1 Motivation

Let X, Y be topological spaces and (A, \leq) a poset. Let $\varphi \colon X \to Y$ be a function.

Def: φ is locally constant if for every $x \in X$, there is $U \ni x$ open so that $\varphi|_U$ is constant. **Def:** φ is A-constructible if there is a continuous function $f: X \to (A, \leq)$ such that $\varphi|_{f^{-1}(a)}$ is locally constant, for all $a \in A$.

The pair (X, f), or just X when f is clear, is called a "A-stratified space." f is an "A-stratification" of X. Often we have Y = A. Continuity can be hard to check. Extending this def to sheaves causes issues with restriction sheaf.

Ex 1: If X is connected, φ locally constant $\implies \varphi$ constant. **Ex 2:** $\varphi(x) = \lceil x \rceil$ is not locally constant $\mathbf{R} \to \mathbf{R}$, but is **Z**-stratified by $f(x) = \lceil x \rceil$, as function $\mathbf{R} \to (\mathbf{Z}, \leq)$.

Question: What happens to φ as a boundary is crossed? How do φ and f hold this data?

2 Simplicical complexes and partial orders

Def: An abstract simplical complex is a pair C = (V(C), S(C)), where V(C) is a set and $S(C) \subseteq P(V(C))$ is closed under taking subsets. A simplicial map $C \to C'$ is a set map $V(C) \to V(C')$ whose natural extension $S(C) \to S(C')$ is well-defined.

Let SC be the set of abstract simplicial complexes. Put a binary relation \leq on SC by $C \leq C'$ if there exists a simplicial map $C' \rightarrow C$ that is surjective on vertices.

Prop: The relation \leq is a partial order. Uses partial order of set containment.

3 The Ran space

Let M be a manifold. **Def:** The Ran space of M is $\operatorname{Ran}^{\leq n}(M) := \{P \subseteq M : 0 < |P| \leq n\}$. **Prop:** There natural map $\operatorname{Ran}^{\leq n}(M) \to \mathbb{Z}$ is continuous.

Topologize $\operatorname{Ran}^{\leq n}(M)$ by the topology induced by the Hausdorff distance of sets. **Def:** The Čech map \check{C} : $\operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0} \to (\mathsf{SC}, \leq)$ is defined by: $V(\check{C}(P, r)) = P$ $P' \in S(\check{C}(P, r))$ iff $\bigcap_{p' \in P'} \overline{B}_M(p', r) \neq \emptyset$. **Thm:** The Čech map is continuous. **Thm:** Every path $\gamma: I \to \operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}$ satisfying $\check{C}(\gamma(t)) \leq \check{C}(\gamma(t'))$ whenever $t \leq t'$, induces a unique simplicial map $\check{C}(\gamma(0)) \to \check{C}(\gamma(1))$.

Paths like this are called entry paths. Ex: For every $P \in \operatorname{Ran}^{\leq n}(M)$, the (infinite) path $\{P\} \times \mathbf{R}_{\geq 0}$ is an entry path.

Taking the homology of $\check{C}|_{\{P\}\times\mathbf{R}_{\geq 0}}$ gives the persistent homology of P. **Goal:** Extend an entry path (in the **Z**-stratification) from P to Q to a morphism of diagrams

 $H_k(\check{C}|_{\{P\}\times\mathbf{R}_{\geq 0}}) \to H_k(\check{C}|_{\{Q\}\times\mathbf{R}_{\geq 0}}).$