The homotopy category Jānis Lazovskis

Math 568 2018-09-28

Lurie's "Higher Topos Theory," Chapter 1.2.3 Cisinski's "Higher Categories and Homotopical Algebra," Chapter 1.6

1 Overview and setup

Overview from adjunctions. 1-cats and ssets, induced by scats and ssets.

 $\mathfrak C$ defined explicitly $\to N'$ is its right adjoint \to induces Ho-N adjunction.

 $Obj(\pi(C)) = C_0$. Morphisms are harder.

2 Construction of morphisms

Define $\operatorname{Edge}(x, y)$ Define homotopic edges Prop: homotopy is equiv rel on $\operatorname{Edge}(x, y)$ Define $\operatorname{Hom}_{\pi(\mathcal{C})}(x, y)$ as set. composition is well-defined. Check identity and associativity to have that $\pi(\mathcal{C})$ is category

3 Examples

Eg1. View $\mathcal{C} \in \operatorname{Cat}_1$ as an ∞ -cat. Then $\operatorname{Ho}(\mathcal{C}) = \mathcal{C}$ because $\mathcal{C}_2 = \mathcal{C}_1$. Eg2. Let X be a top space. $\operatorname{Sing}(X)_n := \{\gamma \colon |\Delta^n| \to X \text{ continuous}\}$. Then $\operatorname{Ho}(\operatorname{Sing}(X)) = \Pi_1(X)$.