Barcodes in persistence Jānis Lazovskis

UIC Grovesloquium 2018-11-14

0.1 Motivation

Main TDA product is the *barcode*, a simple visual rep of the persistent homology of a space. **Example:** Barcode of finite subset of \mathbb{R}^2 . Dim 0 and dim 1. This is just rank of homology groups. Note how some merge, some die.

We study not just objects, but functions between objects. What is a function between barcodes? Pipeline:

finite metric space	$\begin{array}{c} \text{SCs from nerve} \\ & &$	R -indexed sequence of topological spaces	$\xrightarrow{\text{homology}} \rightarrow$	R -indexed sequence of homology groups	$\xrightarrow{\text{rank}}$	barcode
(X, d)		$F \colon (\mathbf{R}, \leqslant) \to SC$		$F\colon (\mathbf{R},\leqslant) \to Grp$?

0.2 Formalizing barcodes

What do we want a morphism of barcodes to be? **Example. Definition:** A multiset is set where the elements may repeat (a pair $\{S \in Set, m: S \to \mathbf{N}\}$). Let $Int := \{[a, b] \subseteq \mathbf{R} : a < b\}$ be the set of intervals of \mathbf{R} . **Definition:** A barcode is a multiset $B \subseteq Int$. **Theorem:** The barcode of the TDA pipeline is uniquely determined.

Definition: A matching from a set A to a set B, written $\sigma: A \to B$, is a bijection $\sigma: A' \to B'$, for some $A' \subseteq A$ and $B' \subseteq B$.

Hope is that morphisms earlier in the pipeline can be interpreted as matchings. **Problem:** Even with slight shift, functoriality in step 3 would say we can't match "obvious" bars .

Solution 1: Define metrics on ambient spaces, "induced matching" for barcodes within ϵ of each other Solution 2: Go back earlier in pipeline to induce "obvious" matching based on topological changes. Pro 1: Stable under small perturbations. Con 1: May not reflect underlying changes. Pro 2: Precisely reflects topological changes. Con 2: Carries too much information.

Example: Points at (0,0), (2,0), moving from $(2,\sqrt{3})$ to $(0,\sqrt{3})$

Definition: For $\delta \ge 0$ and $B \subseteq Int$, let $B^{\epsilon} = \{I \in B : [t, t + \delta] \subseteq I \text{ for some } t \in \mathbf{R}\}$. Note that $B^0 = B$ and $B^{\delta \gg 0} = \emptyset$.

Definition: For $\delta \ge 0$, a δ -matching from B to C is a matching $\sigma \colon B \nrightarrow C$ such that

- $B^{2\delta} \subseteq B'$,
- $C^{2\delta} \subseteq C'$,

• if $\sigma[a,b] = [x,y]$, then $[a,b] \subseteq [x-\delta,y+\delta]$ and $[x,y] \subseteq [a-\delta,b+\delta]$.

Example:

persitent homology of finite metric spaces

persistence module as a functor

maps between persistence modules as natty trans

category of barcodes

difficulty of barcode morphism, ways around by injectivity

reasons why fails: class can merge or die, barcode does not keep track solutions: Reeb graph, merge tree. but these require knowing more partial solution: what if know path between point samples?