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Overview

Setting.

I Simplicial complexes are finite, abstract, and Čech.

I M is a connected manifold.

I Size of every point cloud P ⊆ M is bounded by some fixed n ∈ N.

I The Ran space of M is Ran6n(M) := {P ⊆ M : 0 < |P| 6 n} and
has topology induced by Hausdorff distance of subsets.

Results.

I For M Riemannian, the map that assigns a simplicial complex to
every element of Ran6n(M)× R>0 is continuous.

I For M piecewise linear, there exists a cosheaf on Ran6n(M)× R>0

whose restriction to P ×R>0 generates the persistence module of P.

Based on arXiv:1810.12358 “Stratifications and sheaves on the Ran space”.
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https://arxiv.org/abs/1810.12358


Posets and simplicial complexes

SC is the set of simplicial complexes.

C D E

D 6SC C E 6SC D

(
D 6SC C

)
⇐⇒

(
there is a simplicial map C → D that is surjective on vertices

)

Lemma. The relation 6SC defines a

I preorder on simplicial complexes, and a

I partial order on isomorphism classes of simplicial complexes.

Let [SC] be the set of isomorphism classes of simplicial complexes.
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Stratifications

Definition. A poset stratification is a continuous map f : X → A.

Stratifications can be refined. Equivalently, they are compatible.

A poset stratification is conical
if every x ∈ X has a stratified
neighborhood that looks like a
cone.

Y C (Y ) C (Y )× Rd

x ∈ X

4 / 11



Stratifying Ran6n(M)× R>0

Let Č : Ran6n(M)× R>0 → [SC] be the
map that assigns to (P, r) its simplicial
complex isomoprhism class.

Example. Ran62([0, 1])× R>0.

Theorem. (L.)

I If M is Riemannian, Č is continuous
but not conical.

I If M is piecewise linear, there exists a
conical stratification compatible with Č .

Proof. Understand “thresholds” for (P, r).

R>0

[0, 1]
[0, 1]
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Entrance paths and homotopies

Definition. An entrance path of a stratified space f : X → A is a
continuous map |∆n| → X that respects the stratification.

σ ∈ SingA(X )2 :
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

|∆2|

X

σNew setting:

I M is piecewise linear.

I Č ′ : Ran6n(M)× R>0 → [SC]′ is a conical refinement of Č .

I Ho(Sing[SC]′(Ran6n(M)× R>0)) is the homotopy category of
entrance paths.

Lemma. Every morphism in Ho(Sing[SC]′(Ran6n(M)× R>0)) induces
functorially a unique simplicial map in SC.
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Cosheaves

A cosheaf on X is a functor F : Open(X )→ C for which the natural map
colimU⊆V F(V )→ F(U) is an isomorphism, for all U ∈ Open(X ).

Definition. Let F : Open(Ran6n(M)× R>0)→ Cat/SC be the functor

F(U) =
(

Ho(Sing[SC]′(U))→ SC
)

from the previous slide.

Theorem. (L.) The functor F is a cosheaf. The restriction of F to
{P} × R>0 is also a cosheaf, isomorphic to the persistence module of P.
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Č (P, r):
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The universal persistence cosheaf F

stratified open set

U ⊆ Ran6n(M)× R>0

R>0

stratified closed set

{P}×R>0 ⊆ Ran6n(M)×R>0

The objects of Ho(Sing[SC]′(U)) are
the simplicial complexes produced by U
through Č .

The morphisms are homotopy classes of
entrance paths with the same endpoints.

The restriction cosheaf F|{P}×R>0

produces a zigzag diagram whose
backward arrows are all the identity.
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Application: Comparing barcodes

Question. How can we compare / match two barcodes?
Bauer, Lesnick (2015): Induced Matchings and the Algebraic Stability of Persistence Barcodes.

Take two data sets P,Q and a pairing of their elements (e.g. time series).

P1

Q1

P2

Q2

P3 = Q3

P4

Q4

P5 Q5

B1(P)

B1(Q)

0.6 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B1(P) B1(Q)

The stratified space γ(I )× R>0

γ : I → Ran65(R2), γ(0) = P, γ(1) = Q
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Extension: Constructible (co)sheaves

Question. Can F be described as a constructible cosheaf?
Curry, Patel (2016): Classification of Constructible Cosheaves.

MacPherson, Patel (2018): Persistent Local Systems.

I No. For small enough basic opens V ⊆ U associated to a common
stratum F(V ⊆ U) is an isomorphism, but not for all.

I Yes. If ordered configuration space is used and the stratification is
refined to separate “swaps.”

Question. Can F be described as a constructible sheaf?
Lurie (2017): Higher Algebra, Appendix A.

“The category of constructible sheaves over X is
equivalent to the category of functors SingA(X )→ S.”

I Maybe. Every σ ∈ SingA(Ran6n(M)× R>0)k induces a unique
commutative diagram in SC. Extend as a functor into N(SC).
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End

Thank you for your attention.
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