Sheaf theory on universal persistent homology spaces

JMM AMS Special Session on Topological Data Analysis: Theory and Applications

19 January, 2019

Jānis Lazovskis University of Illinois at Chicago

Slides available online at math.uic.edu/~jlv

Overview

Setting.

- Simplicial complexes are finite, abstract, and Čech.
- ► *M* is a connected manifold.
- Size of every point cloud $P \subseteq M$ is bounded by some fixed $n \in \mathbf{N}$.
- The Ran space of *M* is Ran^{≤n}(*M*) := {*P* ⊆ *M* : 0 < |*P*| ≤ *n*} and has topology induced by Hausdorff distance of subsets.

Results.

- For *M* Riemannian, the map that assigns a simplicial complex to every element of Ran^{≤n}(M) × R_{≥0} is continuous.
- For *M* piecewise linear, there exists a cosheaf on Ran^{≤n}(*M*) × R_{≥0} whose restriction to *P* × R_{≥0} generates the persistence module of *P*.

Based on arXiv: 1810.12358 "Stratifications and sheaves on the Ran space".

Posets and simplicial complexes

SC is the set of simplicial complexes.

 $\left(D\leqslant_{\mathsf{SC}} C\right) \iff \left(\text{there is a simplicial map } C \to D \text{ that is surjective on vertices}\right)$

Lemma. The relation \leq_{SC} defines a

- preorder on simplicial complexes, and a
- partial order on isomorphism classes of simplicial complexes.

Let [SC] be the set of isomorphism classes of simplicial complexes.

Stratifications

Definition. A *poset stratification* is a continuous map $f: X \rightarrow A$.

Stratifications can be refined. Equivalently, they are compatible.

A poset stratification is *conical* if every $x \in X$ has a stratified neighborhood that looks like a cone.

Stratifying $\operatorname{Ran}^{\leqslant n}(M) imes \mathbf{R}_{\geqslant 0}$

Let \check{C} : Ran^{$\leq n$}(M) × **R**_{≥ 0} \rightarrow [SC] be the map that assigns to (P, r) its simplicial complex isomoprhism class.

Example. Ran^{≤ 2}([0,1]) × **R**_{≥ 0}.

Theorem. (L.)

- If *M* is Riemannian, Č is continuous but not conical.
- If M is piecewise linear, there exists a conical stratification compatible with Č.

Proof. Understand "thresholds" for (P, r).

Entrance paths and homotopies

Definition. An *entrance path* of a stratified space $f: X \to A$ is a continuous map $|\Delta^n| \to X$ that respects the stratification.

- ► *M* is piecewise linear.
- ▶ \check{C}' : Ran^{≤n}(M) × $\mathbf{R}_{\geq 0}$ → [SC]' is a conical refinement of \check{C} .
- Ho(Sing_[SC] (Ran^{≤n}(M) × R_{≥0})) is the homotopy category of entrance paths.

Lemma. Every morphism in Ho(Sing_{[SC]'}(Ran^{$\leq n$}(M) × **R**_{≥ 0})) induces functorially a unique simplicial map in SC.

Cosheaves

A cosheaf on X is a functor $\mathcal{F} : \operatorname{Open}(X) \to \mathcal{C}$ for which the natural map $\operatorname{colim}_{U \subseteq V} \mathcal{F}(V) \to \mathcal{F}(U)$ is an isomorphism, for all $U \in \operatorname{Open}(X)$.

Definition. Let \mathcal{F} : Open(Ran^{$\leq n$}(M) × $\mathbf{R}_{\geq 0}$) \rightarrow Cat_{/SC} be the functor

$$\mathcal{F}(U) = \left(\mathsf{Ho}(\mathsf{Sing}_{[\mathsf{SC}]'}(U)) \to \mathsf{SC}\right)$$

from the previous slide.

Theorem. (L.) The functor \mathcal{F} is a cosheaf. The restriction of \mathcal{F} to $\{P\} \times \mathbf{R}_{\geq 0}$ is also a cosheaf, isomorphic to the persistence module of P.

The universal persistence cosheaf ${\cal F}$

stratified open set $U \subseteq \operatorname{Ran}^{\leqslant n}(M) \times \mathbf{R}_{\geqslant 0}$ The **objects** of Ho(Sing_{[SC]'}(U)) are the simplicial complexes produced by Uthrough \check{C} .

The **morphisms** are homotopy classes of entrance paths with the same endpoints.

stratified closed set $\{P\} \times \mathbf{R}_{\geq 0} \subseteq \operatorname{Ran}^{\leq n}(M) \times \mathbf{R}_{\geq 0}$ The restriction cosheaf $\mathcal{F}|_{\{P\}\times \mathbf{R}_{\geq 0}}$ produces a **zigzag** diagram whose backward arrows are all the identity.

Application: Comparing barcodes

Question. How can we compare / match two barcodes?

Bauer, Lesnick (2015): Induced Matchings and the Algebraic Stability of Persistence Barcodes.

Take two data sets P, Q and a pairing of their elements (e.g. time series).

Application: Comparing barcodes

Question. How can we compare / match two barcodes?

Bauer, Lesnick (2015): Induced Matchings and the Algebraic Stability of Persistence Barcodes.

Take two data sets P, Q and a pairing of their elements (e.g. time series).

Application: Comparing barcodes

Question. How can we compare / match two barcodes?

Bauer, Lesnick (2015): Induced Matchings and the Algebraic Stability of Persistence Barcodes.

Take two data sets P, Q and a pairing of their elements (e.g. time series).

Extension: Constructible (co)sheaves

Question. Can \mathcal{F} be described as a constructible cosheaf?

Curry, Patel (2016): *Classification of Constructible Cosheaves*. MacPherson, Patel (2018): *Persistent Local Systems*.

- ▶ No. For small enough basic opens $V \subseteq U$ associated to a common stratum $\mathcal{F}(V \subseteq U)$ is an isomorphism, but not for all.
- Yes. If ordered configuration space is used and the stratification is refined to separate "swaps."

Question. Can \mathcal{F} be described as a constructible sheaf? Lurie (2017): *Higher Algebra, Appendix A.*

"The category of constructible sheaves over X is equivalent to the category of functors $Sing_A(X) \rightarrow S$."

Maybe. Every σ ∈ Sing_A(Ran^{≤n}(M) × R_{≥0})_k induces a unique commutative diagram in SC. Extend as a functor into N(SC).

Thank you for your attention.

References.

- 1. Bauer, Ulrich and Michael Lesnick. *Induced Matchings and the Algebraic Stability of Persistence Barcodes*, 2015.
- 2. Curry, Justin and Amit Patel. Classification of Constructible Cosheaves, 2016.
- 3. Lazovskis, Janis. Stratifications and sheaves on the Ran space, 2018.
- 4. Lurie, Jacob. Higher Algebra, 2017.
- 5. MacPherson, Robert and Amit Patel. Persistent Local Systems, 2018.
- 6. Shiota, Masahiro. Geometry of Subanalytic and Semialgebraic sets, 1997.
- Topaz, Ziegelmeier, Halverson. Topological Data Analysis of Biological Aggregation Models, 2015.