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1 Introduction

1.1 Definitons

Definition 1.1.1. Given a map F : X → X,a point x ∈ X is termed a fixed point of F iff F (x) = x. The

orbit of x is the set Fix(x) = {Fn(x)
 n ∈ Z>0}.

Definition 1.1.2. Two maps F : X → X and G : Y → Y are termed conjugate if there exists a bijection
h : X → Y such that G ◦ h = h ◦ F .

Proposition 1.1.3. If F and G are conjugated by h, then h

Fix(F )

: Fix(F )→ Fix(G) is a bijection.

Proposition 1.1.4. Suppose G ◦ h = h ◦ F and F (x0) = x0 with h′(x0) 6= 0. Then G′(h(x0)) = F ′(x0).

Definition 1.1.5. Let X be a space and F : X → X a function. Then the fate of a point x ∈ X is the
sequence . . . , ω−nω−n+1 . . . ω−1ω0ω1 . . . ωnωn+1 . . . with ωi = k ⇐⇒ F i(x) ∈ Rk for Rk a predefined region
of X.

Definition 1.1.6. A diffeomorphism between manifolds is an isomorphism that is both differentiable and
has a differentiable inverse.

Definition 1.1.7. An Anosov diffeomorphism is a diffeomorphsim f : M → M from a C1 manifold M to
itself such that the tangent bundle of M is hyperbolic to f . An example is the set of matrices with unit
length determinant.

Remark 1.1.8. Let f : X → f(X) be a map. Then det(f) = Area(f(X))
Area(X) .

Moreover, if A ∈Mn, then the number of fixed points of Ak is |det(Ak − I)| for k ∈ Z>0.

Remark 1.1.9. Here on in, we use the notation R2/Z = T 2 the real torus.

1.2 Markov

Definition 1.2.1. A Markov chain for k random variables is a k × k matrix A such that Aij = P (ωn+1 =
j
 ωn = i) for any n and for all 1 6 i, j 6 k.

Theorem 1.2.2. [Perron, Frobenius]
Suppose the following hold:
· A = Pij is a map with pij > 0 for all i, j
· For all k > 0, the graph corresponding to Ak is strongly connected

Then there exists a unique set {p1, . . . , ps} with pi > 0 and (p1 . . . ps)A = (p1 . . . ps).
Moreover, if pij > 0, then for any initial set of probabilities q1, . . . , qs we have (q1 . . . qs)A = (p1 . . . ps).

Definition 1.2.3. Let f : S → S′ be a bijective map preserving orientation. Then F : R → R is termed a
lifting of f if and only if π ◦ F = f ◦ π. Equivalently, when the following diagram commutes.

S′ S

R R

= R/Z
f //

π

��

F //

π

��

In this case we also define the rotation number by

ρ(f) = lim
n→∞

[
Fn(x)− x

n

]
with the following properties:

1. ρ(f) = 0 ⇐⇒ f has a fixed point
2. ρ(fk) = kρ(f)
3. f(x+ 1) = f(x) + 1
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Theorem 1.2.4. [Denjoy]
Let f : S1 → S1 be a bijective C2-map. Suppose that ρ(f) /∈ Q and the second derivative is continuous.
Then f is conjugated to Rρ(f) : X to

Theorem 1.2.5. Let {x} denote the fractional part of x and #S for S a set denote the cardinality of S. If
I is an interval on R/Z and α and angle, then for m ∈ R,

lim
n→∞

[
#{0 6 m 6 n

 {mα} ∈ I}
n

]
= |I|

Moreover, if α /∈ Q, then for any function ϕ on R,

lim
n→∞

[
1

n

n−1∑
k=0

ϕ({x+ αk})

]
=

∫ 1

0

ϕ(y)dy

2 Perturbations and structural stability

2.1 Stability

Definition 2.1.1. A map F is termed structurally stable if there exists ε > 0 such that for every F ′ with
||F − F ′||C1 < ε, F ′ is conjugated to F .

Definition 2.1.2. For X a space, F : X → X is termed a contracting map if there exists λ ∈ (0, 1) such
that for all x, y ∈ X, d(F (x)− F (y)) 6 λd(x, y).

Theorem 2.1.3. [Contracting map principle]
Let X be a complete metric space and F : X → X a contracting map. Then F has a unique fixed point. In
other words, there exists unique x ∈ X such that F (x) = x.

Note that the above implies both the inverse and implicit function theorems.

2.2 Newhouse phenomenon

Definition 2.2.1. Given a fixed point and its phase portrait, a curve with a transversal intersection with
another curve is termed a separatrix.

Definition 2.2.2. Given a phase portrait of a dynamical system, if a separatrix intersects the same curve
non-transversally that it separates, then the non-transversal intersection is termed a homoclinic tangency.

Theorem 2.2.3. [Newhouse phenomenon]
Consider a one-parameter family of dynamical systems with a set of fixed points and homoclinic tangen-
cies of F0 with Fε, such that increasing the parameter changes a homoclinic tangency to two transversal
intersections. Then there exist ”many” ε > 0 such that Fε has infinitely many stable periodic points.

Definition 2.2.4. Let Ui be an open, dense set. Then

∞⋂
i=1

Ui is termed a residual set.

The set S = {α
 ∀ε > 0,∀N ∈ N, there exists p

q ∈ Q, q > N with |α− p
q | <

ε
q3 } is a residual set of Lebesgue

measure 0.

2.3 Anosov diffeomorphisms

Theorem 2.3.1. Let A = ( 2 1
1 1 ) be a map A : T 2 → T 2. Then for each ε > 0 there exists a δ > 0 such that

there is a sequence {Pn}∞n=−∞ with ||APn − Pn+1|| < δ and p ∈ T 2 such that ||Anp− Pn|| < ε.

Definition 2.3.2. A sequence {Pn}∞n=−∞ is termed a δ-pseudo orbit of a torus map A if ||APn−Pn+1|| < δ.
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Remark 2.3.3. Any map close enough to ( 2 1
1 1 ) is topologically conjugated to it, and therefore is an Anosov

diffeomorphism.

Theorem 2.3.4. Let F be a function on vectors with v1, v2 vector fields on Rn. If

dF

dx


v1(x)

,
dF

dx


v2(x)

∈ the angle between v1(F (x)) and v2(F (x))

for all x ∈ Rn, then F is an Anosov diffeomorphism.

Definition 2.3.5. A map A : T 2 → T 2 is termed ergodic if for any continuous function ϕ, almost everywhere

lim
n→∞

[∑n−1
k=0 ϕ(An(x, y))

n

]
=

∫
T 2

ϕ dx dy

3 Attractors

3.1 Defintions

Definition 3.1.1. An attractor, very generally, is a subset of the phase space such that all points except a
set of measure 0 tend to the subset.

Definition 3.1.2. A maximal attractor for a map F : U → U for U open with F (U) ⊂ U and F (U) compact

in U is the set Amax :=

∞⋂
n=0

Fn(U). Essentially, we have

F (U) F 2(U) F 3(U) · · ·

U F (U) F 2(U) · · ·

⊃ ⊃ ⊃

⊃ ⊃ ⊃
∪ ∪ ∪

Definition 3.1.3. Let F : Rn → Rn be a map. A Milnor attractor is the minimal closed set AM such that
lim
n→∞

[d(Fn(x), AM )] = 0 for all x ∈ Rn except possibly a set of measure 0.

Definition 3.1.4. Let F : M →M be a map with attractor A ⊂M . Then F is termed Lyapunov stable if
for fixed ε > 0 , there exists δ > 0 such that for all x ∈M with d(x,A) < δ, d(Fn(x), A) < ε for all n.

In other words, if we start in an ε-neighborhood of x, then we never leave a δ-neighborhood of x.

Open problem 3.1.5. How can it be determined for a generic dynamical system that AM is Lyapunov
stable?

Theorem 3.1.6. Let F : M →M be a map with attractor A ⊂M and x ∈M . Then x ∈ AM ⇐⇒ for all
open U 3 x, measure(S) > 0 for S = {y

 for all N ∈ N, there exists n > N such that Fn(y) ∈ U}.

Definition 3.1.7. Let F : Rn → Rn be a map with x ∈ Rn a Lyapunov stable point. Then x is termed
asymptotically stable if there exists ε > 0 such that for all y ∈ Rn, d(x, y) < ε =⇒ lim

n→∞
[Fn(y)] = x.

Theorem 3.1.8. Let F : Rn → Rn be a map in C1 with x0 ∈ Rn such that F (x0) = x0. Let A = F ′(x0)
with λ1, . . . , λn be the eigenvalues of A. Then
· |λi| < 1 for all i =⇒ x0 is asymptotically stable
· |λi| > 1 for at least one i =⇒ x0 is not asymptotically stable

Proposition 3.1.9. The Milnor attractor is invariant under forward and backward applications of F .
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3.2 Fixed point classification

A map F : R2 → R2 may have several types of fixed points.

To determine the type of fixed point at (x, y) ∈ R2 for F (x, y) = (u(x), v(y)), let

J =

(
du
dx

du
dy

dv
dx

dv
dy

)

be the Jacobian of F . Evaluate J(x, y) and identify it with one of the matrix types below.

Saddle point Node Axis of fixed points Center(
2 0
0 −3

) (
2 0
0 2

) (
1 0
0 2

) (
0 1
−1 0

)
Stable if ad > 0
Unstable if ad < 0

Stable if a = d < 0
Unstable if a = d > 0

Stable if d < 0
Unstable if d > 0

Focus Jordan cell(
0 2
−2 0

) (
2 1
0 2

)
Stable if bc > 0
Unstable if bc < 0

Stable if a, d < 0
Unstable if a, d > 0

The variables above refer to the general matrix

(
a b
c d

)
.
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