Contents

1	1 Introduction				2
	1.1 Definitons \ldots \ldots \ldots \ldots \ldots				
	1.2 Markov	 	 	 	 . 2
2	2 Perturbations and structural stability				3
	2.1 Stability	 	 	 	 . 3
	2.2 Newhouse phenomenon	 	 	 	 . 3
	2.3 Anosov diffeomorphisms	 	 	 	 . 3
3	3 Attractors				4
	3.1 Definitions \ldots	 	 	 	 . 4
	3.2 Fixed point classification	 	 	 	 . 5

 $\underline{Note:}$ For a more complete exposition, see the following textbooks, which were used in accompaniment with this course:

 \cdot Introduction to the Modern Theory of Dynamical Systems, Anatole Katok and Boris Hasselblatt

 \cdot An Introduction to Dynamical Systems, D.K. Arrows mith and C.M. Place

1 Introduction

1.1 Definitons

Definition 1.1.1. Given a map $F : X \to X$, a point $x \in X$ is termed a fixed point of F iff F(x) = x. The <u>orbit</u> of x is the set $Fix(x) = \{F^n(x) \mid n \in \mathbb{Z}_{\geq 0}\}$.

Definition 1.1.2. Two maps $F: X \to X$ and $G: Y \to Y$ are termed <u>conjugate</u> if there exists a bijection $h: X \to Y$ such that $G \circ h = h \circ F$.

Proposition 1.1.3. If F and G are conjugated by h, then $h \mid_{\operatorname{Fix}(F)} : \operatorname{Fix}(F) \to \operatorname{Fix}(G)$ is a bijection.

Proposition 1.1.4. Suppose $G \circ h = h \circ F$ and $F(x_0) = x_0$ with $h'(x_0) \neq 0$. Then $G'(h(x_0)) = F'(x_0)$.

Definition 1.1.5. Let X be a space and $F: X \to X$ a function. Then the <u>fate</u> of a point $x \in X$ is the sequence $\ldots, \omega_{-n}\omega_{-n+1}\ldots\omega_{-1}\omega_0\omega_1\ldots\omega_n\omega_{n+1}\ldots$ with $\omega_i = k \iff F^i(x) \in R_k$ for R_k a predefined region of X.

Definition 1.1.6. A diffeomorphism between manifolds is an isomorphism that is both differentiable and has a differentiable inverse.

Definition 1.1.7. An Anosov diffeomorphism is a diffeomorphism $f: M \to M$ from a C^1 manifold M to itself such that the tangent bundle of M is hyperbolic to f. An example is the set of matrices with unit length determinant.

Remark 1.1.8. Let $f: X \to f(X)$ be a map. Then $\det(f) = \frac{\operatorname{Area}(f(X))}{\operatorname{Area}(X)}$.

Moreover, if $A \in M_n$, then the number of fixed points of A^k is $|\det(A^k - I)|$ for $k \in \mathbb{Z}_{\geq 0}$.

Remark 1.1.9. Here on in, we use the notation $\mathbb{R}^2/\mathbb{Z} = T^2$ the real torus.

1.2 Markov

Definition 1.2.1. A <u>Markov chain</u> for k random variables is a $k \times k$ matrix A such that $A_{ij} = P(\omega_{n+1} = j \mid \omega_n = i)$ for any n and for all $1 \leq i, j \leq k$.

Theorem 1.2.2. [PERRON, FROBENIUS]

Suppose the following hold:

 $A = P_{ij}$ is a map with $p_{ij} \ge 0$ for all i, j

· For all k > 0, the graph corresponding to A^k is strongly connected

Then there exists a unique set $\{p_1, \ldots, p_s\}$ with $p_i > 0$ and $(p_1 \ldots p_s)A = (p_1 \ldots p_s)$.

Moreover, if $p_{ij} > 0$, then for any initial set of probabilities q_1, \ldots, q_s we have $(q_1 \ldots q_s)A = (p_1 \ldots p_s)$.

Definition 1.2.3. Let $f: S \to S'$ be a bijective map preserving orientation. Then $F: \mathbb{R} \to \mathbb{R}$ is termed a lifting of f if and only if $\pi \circ F = f \circ \pi$. Equivalently, when the following diagram commutes.

In this case we also define the <u>rotation number</u> by

$$\rho(f) = \lim_{n \to \infty} \left[\frac{F^n(x) - x}{n} \right]$$

with the following properties:

ρ(f) = 0 ⇐⇒ f has a fixed point
 ρ(f^k) = kρ(f)
 f(x + 1) = f(x) + 1

Theorem 1.2.4. [DENJOY]

Let $f : \mathbb{S}^1 \to \mathbb{S}^1$ be a bijective C^2 -map. Suppose that $\rho(f) \notin \mathbb{Q}$ and the second derivative is continuous. Then f is conjugated to $R_{\rho}(f) : X$ to

Theorem 1.2.5. Let $\{x\}$ denote the fractional part of x and #S for S a set denote the cardinality of S. If I is an interval on \mathbb{R}/\mathbb{Z} and α and angle, then for $m \in \mathbb{R}$,

$$\lim_{n \to \infty} \left[\frac{\#\{0 \leqslant m \leqslant n \mid \{m\alpha\} \in I\}}{n} \right] = |I|$$

Moreover, if $\alpha \notin \mathbb{Q}$, then for any function φ on \mathbb{R} ,

$$\lim_{n\to\infty}\left[\frac{1}{n}\sum_{k=0}^{n-1}\varphi(\{x+\alpha k\})\right] = \int_0^1\varphi(y)dy$$

2 Perturbations and structural stability

2.1 Stability

Definition 2.1.1. A map F is termed structurally stable if there exists $\epsilon > 0$ such that for every F' with $||F - F'||_{C^1} < \epsilon$, F' is conjugated to F.

Definition 2.1.2. For X a space, $F : X \to X$ is termed a <u>contracting map</u> if there exists $\lambda \in (0, 1)$ such that for all $x, y \in X$, $d(F(x) - F(y)) \leq \lambda d(x, y)$.

Theorem 2.1.3. [CONTRACTING MAP PRINCIPLE]

Let X be a complete metric space and $F: X \to X$ a contracting map. Then F has a unique fixed point. In other words, there exists unique $x \in X$ such that F(x) = x.

Note that the above implies both the inverse and implicit function theorems.

2.2 Newhouse phenomenon

Definition 2.2.1. Given a fixed point and its phase portrait, a curve with a transversal intersection with another curve is termed a separatrix.

Definition 2.2.2. Given a phase portrait of a dynamical system, if a separatrix intersects the same curve non-transversally that it separates, then the non-transversal intersection is termed a homoclinic tangency.

Theorem 2.2.3. [Newhouse Phenomenon]

Consider a one-parameter family of dynamical systems with a set of fixed points and homoclinic tangencies of F_0 with F_{ϵ} , such that increasing the parameter changes a homoclinic tangency to two transversal intersections. Then there exist "many" $\epsilon > 0$ such that F_{ϵ} has infinitely many stable periodic points.

Definition 2.2.4. Let U_i be an open, dense set. Then $\bigcap_{i=1}^{\infty} U_i$ is termed a residual set.

The set $S = \{ \alpha \mid \forall \epsilon > 0, \forall N \in \mathbb{N}, \text{ there exists } \frac{p}{q} \in \mathbb{Q}, q > N \text{ with } |\alpha - \frac{p}{q}| < \frac{\epsilon}{q^3} \}$ is a residual set of Lebesgue measure 0.

2.3 Anosov diffeomorphisms

Theorem 2.3.1. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ be a map $A : T^2 \to T^2$. Then for each $\epsilon > 0$ there exists a $\delta > 0$ such that there is a sequence $\{P_n\}_{n=-\infty}^{\infty}$ with $||AP_n - P_{n+1}|| < \delta$ and $p \in T^2$ such that $||A^n p - P_n|| < \epsilon$.

Definition 2.3.2. A sequence $\{P_n\}_{n=-\infty}^{\infty}$ is termed a $\underline{\delta}$ -pseudo orbit of a torus map A if $||AP_n - P_{n+1}|| < \delta$.

Remark 2.3.3. Any map close enough to $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ is topologically conjugated to it, and therefore is an Anosov diffeomorphism.

Theorem 2.3.4. Let F be a function on vectors with v_1, v_2 vector fields on \mathbb{R}^n . If

$$\left. \frac{dF}{dx} \right|_{v_1(x)}, \left. \frac{dF}{dx} \right|_{v_2(x)} \in \text{ the angle between } v_1(F(x)) \text{ and } v_2(F(x)) \right.$$

for all $x \in \mathbb{R}^n$, then F is an Anosov diffeomorphism.

Definition 2.3.5. A map $A: T^2 \to T^2$ is termed ergodic if for any continuous function φ , almost everywhere

$$\lim_{n \to \infty} \left[\frac{\sum_{k=0}^{n-1} \varphi(A^n(x, y))}{n} \right] = \int_{T^2} \varphi \, dx \, dy$$

3 Attractors

3.1 Definitions

Definition 3.1.1. An <u>attractor</u>, very generally, is a subset of the phase space such that all points except a set of measure 0 tend to the subset.

Definition 3.1.2. A <u>maximal attractor</u> for a map $F : U \to U$ for U open with $\overline{F(U)} \subset U$ and $\overline{F(U)}$ compact in U is the set $A_{max} := \bigcap_{n=0}^{\infty} F^n(U)$. Essentially, we have

Definition 3.1.3. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a map. A <u>Milnor attractor</u> is the minimal closed set A_M such that $\lim_{n \to \infty} [d(F^n(x), A_M)] = 0$ for all $x \in \mathbb{R}^n$ except possibly a set of measure 0.

Definition 3.1.4. Let $F: M \to M$ be a map with attractor $A \subset M$. Then F is termed Lyapunov stable if for fixed $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in M$ with $d(x, A) < \delta$, $d(F^n(x), A) < \epsilon$ for all n.

In other words, if we start in an ϵ -neighborhood of x, then we never leave a δ -neighborhood of x.

Open problem 3.1.5. How can it be determined for a generic dynamical system that A_M is Lyapunov stable?

Theorem 3.1.6. Let $F: M \to M$ be a map with attractor $A \subset M$ and $x \in M$. Then $x \in A_M \iff$ for all open $U \ni x$, measure(S) > 0 for $S = \{y \mid \text{ for all } N \in \mathbb{N}, \text{ there exists } n > N \text{ such that } F^n(y) \in U\}.$

Definition 3.1.7. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a map with $x \in \mathbb{R}^n$ a Lyapunov stable point. Then x is termed asymptotically stable if there exists $\epsilon > 0$ such that for all $y \in \mathbb{R}^n$, $d(x, y) < \epsilon \implies \lim_{n \to \infty} [F^n(y)] = x$.

Theorem 3.1.8. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a map in C^1 with $x_0 \in \mathbb{R}^n$ such that $F(x_0) = x_0$. Let $A = F'(x_0)$ with $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

- $|\lambda_i| < 1$ for all $i \implies x_0$ is asymptotically stable
- $|\lambda_i| > 1$ for at least one $i \implies x_0$ is not asymptotically stable

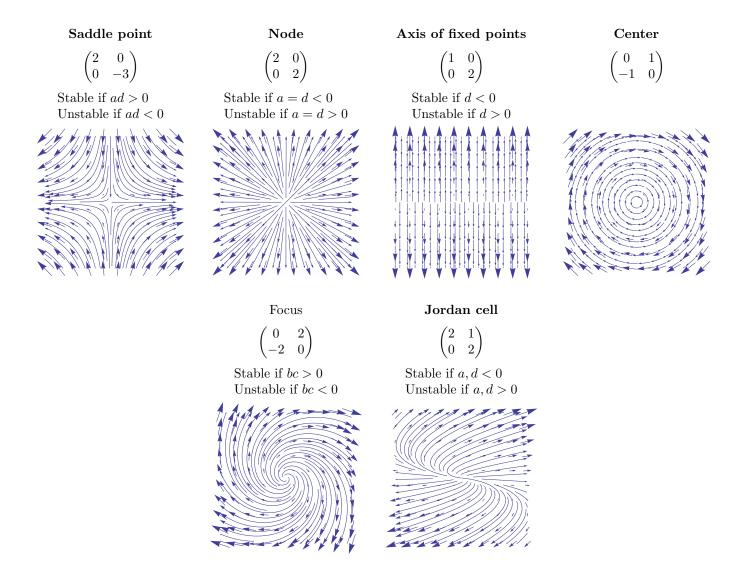
Proposition 3.1.9. The Milnor attractor is invariant under forward and backward applications of F.

3.2 Fixed point classification

A map $F : \mathbb{R}^2 \to \mathbb{R}^2$ may have several types of fixed points. To determine the type of fixed point at $(x, y) \in \mathbb{R}^2$ for F(x, y) = (u(x), v(y)), let

$$J = \begin{pmatrix} \frac{du}{dx} & \frac{du}{dy} \\ \frac{dv}{dx} & \frac{dv}{dy} \end{pmatrix}$$

be the Jacobian of F. Evaluate J(x, y) and identify it with one of the matrix types below.



The variables above refer to the general matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.