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1 Fundamentals

Definition 1.0.1. A knot K is a closed broken line without self-intersections (polygonal line) in 3-space. A
knot is a 1-component link. The empty set is a knot.

Definition 1.0.2. A link L is one or more disjointly embedded knots in 3-space. An n-component link
consists of n separate knots. The empty set is not a link.

Definition 1.0.3. A knot diagram is a 2 dimensional projection of the knot onto the plane.

Definition 1.0.4. A △-move is the adding of two (or subtracting of one) and subtracting of one (or adding
of two) line to (or from) the knot diagram so that all the lines being changed form a triangle.

Definition 1.0.5. Two knots K,K ′ are equivalent if there exists a sequence of triangular moves that take

K to K ′. This relationship is expressed K ∼ K ′ and K
△-move−−−−−−→ K ′. Note that △-move = Ω0.

Equivalent knots are also termed isotopic or ambient isotopic.
Define K = {knot diagrams} and L = {link diagrams}

2 Knot topology

2.1 Homotopy

Definition 2.1.1. The Conway-Alexander polynomial is a knot invariant, or an assignment to every link
(in particular, knot), that satisfies three actions:

1. L ∼ L′ =⇒ ▽
L
(x) = ▽

L′ (x)
2. ▽0(x) = 1
3. ▽

L+ (x)−▽
L− (x) = x · ▽

L0 (x)

The latter action may be summarized in the following manner:

▽(G)−▽(H) = x▽ (J)

Definition 2.1.2. There are 3 Reidemeister moves which formalize knot equivalence:

1. Ω1-move:l ≈ m ≈ n
2. Ω2-move:o ≈ p ≈ q
3. Ω3-move:r ≈ s

Theorem 2.1.3. [Riedemeister Lemma]

Given K,K ′ ∈ K , K ∼ K ′ ⇐⇒ K
{Ωi}−−−−→ K ′ for i ∈ {0, 1, 2, 3}.

Theorem 2.1.4. [Hass, Lagarias, Pippenger - 1998]
For all n ∈ N, there exists C(n) ∈ O(2n) such that if K ∼ K ′ have n crossing points or less, then K → K ′

in at most C(n) Reidemeister moves.

Remark 2.1.5. There are several simplest invaraints attributable to knots:
1. Stick number - Least number of straight lines for embedding the knot in the plane
2. Crossing number - Least number of crossings of a diagram of a knot
3. Unknotting number - Least number of crossing changes needed to make the unknot

2



Definition 2.1.6. The genus g(K) of a knot K is the least number g such that the knot is spanned by an
orientable surface of genus g.

2.2 Arithmetic of knots

Remark 2.2.1. [Equivalence of equivalences]
There are three main ways to decide whether two given knots are equivalent:

1. K ∼ K ′ ⇐⇒ K
∆-moves−−−−−−→ K ′

2. K ∼ K ′ if there exists a homeomorphism h : R3 → R3 with h = Id outside a ball containing K,K ′

3. K ∼ K ′ if there exist homeomorphisms ht : R3 → R3 for t ∈ [0, 1] with h0 = Id and h1(K) = K ′

Theorem 2.2.2. The above three equivalences are equivalent.

Definition 2.2.3. Given two knots K,K ′ ∈ K , the connected sum of these two knots is K#K ′, and entails
cutting the knots are tying one to the other.

Proposition 2.2.4. The # operation is well-defined and commutative.

Definition 2.2.5. A prime knot P ∈ K is a knot such that P ≁ K#K ′ for K,K ′ ∈ K \ {⃝}

Theorem 2.2.6. There are no inverse elements in (K ,#). That is, if K ∈ K \ {⃝}, then there does not
exist K ′ ∈ K with K#K ′ = ⃝.

Theorem 2.2.7. [Prime decomposition theorem]
For all K ∈ K , there exists a unique set of prime knots {P1, . . . , Pn} ⊂ K such that K = P1# · · ·#Pn.

Theorem 2.2.8. [Gordon, Luecke - 1989]
Given K,K ′ ∈ K , K ∼ K ′ ⇐⇒ R3 \K ∼ R3 \K ′ by a homeomorphism that is the identity outside a large
enough ball.

3 Invariants

3.1 Kauffman bracket

Definition 3.1.1. Given a graph G = (V,E) with edges and vertices (exactly 4 edges to 1 vertex), define
the state of V to be a function s : V → {↑, ↓} so that each vertex has a spin assigned to it. The set of all
states is S.

Definition 3.1.2. Given a link L and an intersection of the link, define the a-angle and b-angle as follows:

a

b a b

a

Definition 3.1.3. With respect to the above definition, given an intersection in a link, define a-spin and
b-spin by breaking the intersection and connecting the two a or b angles.

a d e
intersection a-spin b-spin
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Definition 3.1.4. Given L ∈ L and S the set of states of L, define the Kauffman bracket of L to be

⟨L⟩ =
∑
s∈S

aα(s)bβ(s)cγ(s)

where α(s) = number of a-angles in s
β(s) = number of b-angles in s
γ(s) = (number of disjoint circles in s)− 1

Remark 3.1.5. The Kauffman bracket has the following properties:
1. ⟨f⟩ = 1

2. ⟨L ⊔f⟩ = c⟨L⟩

3. ⟨A⟩ = a⟨D⟩+ b⟨E⟩

Remark 3.1.6. Set c = −a2 − a−2 and b = a−1 so ⟨L⟩ is Ω2 and Ω3 invariant.

3.2 Jones polynomial

Remark 3.2.1. Note that ⟨L⟩ is not Ω1 invariant. Indeed, we have

⟨l⟩ = −a−3⟨m⟩ and ⟨n⟩ = −a3⟨m⟩
Definition 3.2.2. Define the writhe number of an oriented link L to be

w(L) =
∑

crossings i

E(i) with

E(f ) = 0

E(g ) = 1

E(h ) = −1

Definition 3.2.3. Define the X-polynomial of an oriented link in the following way:

X(L) = (−a)−3w(L)⟨L⟩

Proposition 3.2.4. The polynomial X(L) is an invariant of knot equivalence, and has these properties:
1. X(f) = 1

2. X(L ⊔f) = (−a2 − a−2)X(L)
3. a4X(g )− a−4X(h ) = (a−2 − a2)X(j )

Remark 3.2.5. The X polynomial also has the following property, for all K,K ′ ∈ K :

X(K#K ′) = X(K)X(K ′)

X(K ⊔K ′) = −(a2 + a−2)X(K)X(K ′)

Definition 3.2.6. Define the Jones polynomial V (L) : L → Z[√q, 1√
q ] with the above three properties:

V (L) = X(L)|a=q−1/4

Theorem 3.2.7. There exists a unique V such that the following properties are satisfied:
1. V is invariant
2. V (f) = 1

3. V (L ⊔f) = (−q1/2 − q−1/2)V (L)

4. q−1V (g )− qV (h ) = (q1/2 − q−1/2)V (j )
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Proposition 3.2.8. Any link may be trivialized by crossing changes.

Remark 3.2.9. Some other properties of the Jones polynomial:
1. V (K#K ′) = V (K)V (K ′)
2. V (L ⊔ L′) = (−q−1/2 − q1/2)V (L)V (L′)
3. V does not in general distinguish K from mir(K), the chiral knot of K

Proposition 3.2.10. [Tait conjecture]
The crossing number of an alternating knot is equal to the number of crossings of any alternating diagram
of this knot without loops.

3.3 Vassiliev invariants

Definition 3.3.1. [Thom, Arnold, Vassiliev]
Let N = {nice objects} and S = {degenerate objects}. Consider N ∪S = L a linear space. Then S is termed
the discriminant of L.

Definition 3.3.2. Let L be a space as above with N disconnected. Let P+, P− ∈ N such that both are not
in the same component. Depending on the nature of L, different components may be assigned ”positive”
and ”negative” value.

Then on the path from P+ to P− there exists P0 ∈ S such that

ν(P+)− ν(P−) = ν(P0)

This is termed the Vassiliev relation.

3.4 Gauss number

Given any oriented link embedded in 3-space, there are two different singular points, namelyO andR.

Definition 3.4.1. Given an intersection of the type above, define the co-orientation of the intersections as
below, with positive co-orientation from left to right:

M O N
positive co-orientation−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Proposition 3.4.2. For 2-component links L, define the Gauss linking number λ(L) to describe links as
below. For such L, there are 2 Vassiliev relations:

λ(N)− λ(M) = λ(O) = 1

λ(Q)− λ(P) = λ(R) = −1

with the base case given by

λ(K ⊔K ′) = 0
Remark 3.4.3. For a link L, λ(L) = 0 does not imply that L may be unlinked.
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4 Vassiliev invariants

4.1 Motivation

Definition 4.1.1. Consider σ : S1 → R3 such that Im(σ) has n ⩾ 0 transveral intersections, such asi.

Thus there are n points on S1 where σ is not 1-1. Then define Σn = {σ} for σ as above.

Moreover, define the set of all knots to be Σ∞ = K ∪ Σ1 ∪ Σ2 ∪ · · · , which is an infinite dimensional space
with knots as points.

Further, Σ∞ \ K , the set of all singular knots, is termed the discriminant of Σ∞.

Definition 4.1.2. Given an object X in a linear space Y , denote the codimension of X to be the difference
in dimension between X and the ambient space Y . In other words, codim(X) = dim(Y )− dim(X).

Definition 4.1.3. Define a Vassiliev invariant of order n to be a function v : Σ∞ → F such that char(F) = 0
and v|Σk

= 0 if k > n. Most often F = C is used. Also, the following relation is satisfied:

v(G)− v(H) = v(I)

Definition 4.1.4. A Vassiliev invariant is said to be of exactly order n if the order of v is n, but not n− 1.

Remark 4.1.5. Vassiliev invariants of order n form a linear space over F, denoted Vn. Here n denotes the
codimension of knots in Vn.

Remark 4.1.6. There is only one Vassiliev invariant of order 0 and 1. In other words, V0 ≃ V1 ≃ C.

4.2 1-term and 4-term relations

Theorem 4.2.1. [1-term relation]

For any Vassiliev invariant, v(k) = 0. More generally, if a knot K ∈ Σ∞ can be separated completely in

two separate parts with only a singular point joining the two, then v(K) = 0.

Theorem 4.2.2. [4-term relation]
For any Vassiliev invariant v and a knot K ∈ Σn⩾2, the following holds:

v(t)− v(v) + v(u)− v(w) = 0

Remark 4.2.3. The 4-term relation is equivalent to the Jacobi identity.

Theorem 4.2.4. [Crossing change lemma]

Let K,K ′ ∈ Σn and v ∈ Vn. If K
crossing changes−−−−−−−−−−−→ K ′, then v(K) = v(K ′).

Proposition 4.2.5. Any finite knot K ∈ Σ∞ may be represented by a Gauss diagram.

Theorem 4.2.6. [1-term relation with Gauss diagrams]

Let v ∈ Vn. If no chords intersect the shown chord, then v(b) = 0.

Theorem 4.2.7. [4-term relation with Gauss diagrams]
Let v ∈ Vn. If no chords end in each smallest space separating every two chords below, then

v(j)− v(k)− v(l) + v(m) = 0
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4.3 The algebra of Gauss diagrams

Definition 4.3.1. Define Gn := (the linear space over C of Gauss diagrams of knots exactly in Σn).

Proposition 4.3.2. The following are bases for the given spaces:

G0 = ⟨a⟩ G2 = ⟨c,d⟩

G1 = ⟨b⟩ G3 = ⟨e,f,g,h,i⟩

Definition 4.3.3. Define Gn := Gn

/(
1-term relation
4-term relation

)
That is, in G, K ∼ K ′ if K

1-term relation
GGGGGGGGGGGGGGGGGGGGA

4-term relation
K ′.

Proposition 4.3.4. The following are dimensions and bases for the given spaces:

dim(G0) = 0 dim(G2) = 1 with G2 = ⟨d⟩

dim(G1) = 0 dim(G3) = 1 with G3 = ⟨i⟩

Proposition 4.3.5. Multiplication of Gauss diagrams in Gn is well defined.

Theorem 4.3.6. [Kontsevich]
As above, Gn ≃ Vn as graded algebras (or linear spaces).

5 Braids

5.1 Group structure

Definition 5.1.1. A braid in n strands is the image of a smooth injective map f : In → R3 such that
f(0, . . . , 0) and f(1, . . . , 1) each lie on non-coincidental axes parallel to each other.

Theorem 5.1.2. [Artin]
Braids, in contrast with knots, form a group, termed the braid group Bn.

· The identity element is a braid homotopic in each variable to n parallel lines

.

· · ·
.

· The group operation for b1, b2 ∈ Bn, is demonstrated through example by

.

∗

.

=

.

· There are n− 1 generators of Bn, namely
.

· · ·
.

,

.

· · ·
.

,

.

· · ·
.

,
· · ·

,

.

· · ·
.
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Remark 5.1.3. There exists a homeomorphism γ : Bn → Sn the permutation group, given by

braid with strand starting in jth position
and ending in ijth position for all j

7→
(
1 2 · · · n
i1 i2 · · · in

)
Therefore Bn is not Abelian.

Theorem 5.1.4. [Artin]
Cosider B̂n := ⟨b1, . . . , bn

 bibi+1b1 = bi+1b1bi+1 ∀ 1 ⩽ i ⩽ n − 2 and bibj = bjbi ∀ i, j with |i − j| ⩾ 2⟩.
Then B̂n ≃ Bn for all n ∈ N.

5.2 Link to knots

Definition 5.2.1. Given a braid b ∈ Bn, its closure is the link that results from connecting every ith open
end at the top to its corresponding ith open end at the bottom, and is denoted cl(b).

Remark 5.2.2. For b ∈ Bn, if γ(b) contains k cycles, then cl(b) is a k-component link.

Theorem 5.2.3. [Alexander]
For any L ∈ L , there exists b ∈ Bn such that cl(b) = L.

Theorem 5.2.4. [Markov]
A braid b ∈ Bn−1 is invariant under the following equalities. Let a ∈ Bn−1 and bn ∈ Bn and /∈ Bn−1. Then

b = aba−1

b = bbn

These are termed Markov moves.

Theorem 5.2.5. [Markov]

Let b, b′ ∈ Bn, Then cl(b) ∼ cl(b′) ⇐⇒ b
Markov moves−−−−−−−−−−→ b′.

Proposition 5.2.6. [Kontsevich]
Let K ∈ K and Gp ∈ Gm. Then there exists an invariant

Z(K) =

∞∑
m=0

1

(2πi)m

∫
τ<t1<···<tm<T

 ∑
p={(zj ,z′

j)}

(−1)↓Gp

m∧
j=1

dzj − dz′j
zj − z′j


Note that the coefficient of every Gp is an element of C, equivalently a Vassiliev invariant. Also, ↓ denotes
the number of disjoint sections where the direction of flow along the knot is downward.
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6 Some classification

6.1 Knot and link tables

Right Hopf link Left Hopf link Right trefoil Left trefoil

31 41 51 52 61

6.2 Knot and link summary

Link Conway polynomial Kauffman bracket Writhe number Jones polynomial

Right Hopf link x −a−4 − a4 2 −q1/2 − q5/2

Left Hopf link −x −a−4 − a4 −2 −q−5/2 − q−1/2

0 1 1 0 1
31 (right) 1 + x2 a−7 − a−3 − a5 3 q1 + q3 − q4

31 (left) −a−5 − a3 + a7 −3 −q−4 + q−3 + q−1

41 1− x2 a−8 − a−4 + 1− a4 + a8 0 q−2 − q−1 + 1− q1 + q2

51 1 + 3x2 + x4 −5 q2 + q4 − q5 + q6 − q7

Link Gauss linking number

Right Hopf link 1
Left Hopf link −1
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