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1 Structures

Definition 1.0.1. A subset U ⊂ X is termed open if ϕα(U ∩ Uα) ⊂ C is open ∀ α.

Definition 1.0.2. A set F ⊂ X is termed closed if X \ F is open.

Remark 1.0.3. The empty set is defined to be open.

Definition 1.0.4. A topological space is a set X together with a set S of subspaces of X such that
a. ∅ ∈ S
b. X ∈ S
c. If U0, U1, · · · ∈ S then

⋃
j Uj ∈ S

d. If U, V ∈ S then U ∩ V ∈ S

Definition 1.0.5. A homeomorphism is an injective function between topological spaces that conserves all
the topological properties of the given space.

Definition 1.0.6.A complex chart on a set X is a homeomorphism ϕ : U → V for open sets U ⊂ X, V ⊂ C.

Definition 1.0.7. A conformal mapping is a transformation that preserves local angles. A function is
conformal wherever it has nonzero derivative.

Definition 1.0.8. Given a topological space X and a point p (or a set S), a neighborhood of p (or S) is
any open set T ⊂ X containing p (or S).

Definition 1.0.9. For U open and ϕ : U → X a homeomorphism (a chart), the set
(U,ϕ), abbreviated to just U , is termed a coordinate neighborhood.

Definition 1.0.10. A Riemann surface is a set X with the properties:
1. X =

⋃
α Uα where all Uα are coordinate neighborhoods

2. For each Uα there exists a bijection ϕα : Uα → Vα for Vα ⊂ C open
3. ϕβ ◦ ϕ−1

α is a bijection from ϕα(Uα ∩ Uβ) to ϕβ(Uα ∩ Uβ) and
a conformal mapping for each (α, β)

The function ϕβ ◦ ϕ−1
α above is termed a transition function.

Theorem 1.0.11. [Implicit function theorem]

Let f : U → C for U ⊂ C be a function on two variables z1, z2. Suppose that ∂f
∂z1


p
6= 0 at p = (p1, p2) ∈ U

and f(p) = 0. Then there exist open neighbourhoods U1, U2 ⊂ C and a holomorphic map ϕ : U1 → U2 such
that {(z, ϕ(z))

 z ∈ U1} = {(z1, z2)
 f(z1, z2) = 0} ∩ (U1 ∪ U2).

2 Framework of Riemann surfaces

2.1 Basic configuration

Definition 2.1.1. A topological space X is termed compact if X =
⋃
j Uj =⇒ there exist j1, . . . jk such

that X = Uj1 ∪ · · · ∪ Ujk for Uj open sets.

Definition 2.1.2. The Riemann sphere is C̄ := C2 ∪ {∞}. It is a compact Riemann surface.

Definition 2.1.3. A lattice is a set Γ = {n1w1 + · · ·+ nkwk
 n1, . . . , nk ∈ N and w1, . . . , wk ∈ C \ {0}}.

Theorem 2.1.4. [Inverse Function Theorem]
If a function f : X → X has a non-zero derivative at 0, then there exists a neighborhood U ⊂ X such that
f−1 : f(U)→ U is also smooth.
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Definition 2.1.5. A Riemann surface X is not connected if X = U ∪ V and U ∪ V 6= ∅ for U, V open
nonempty sets.

Definition 2.1.6. Define the set Γ = {n1w+n2z
 n1, n2 ∈ Z} for some w, z ∈ C\{0} to be a lattice. Note

that Γ is a subgroup of C. Define X = C / Γ = {equivalence classes of x ∈ X
 z ∼ w ⇐⇒ z − w ∈ Γ} to

be an elliptic curve.

2.2 Holomorphic functions

Definition 2.2.1. A function f : X → C is termed holomorphic if for each Uα the following composition is
well-defined:

Uα⊂ X

Vα C

f |
Uα

##

f

��

(f |Uα )◦ϕ−1
α

//

ϕ−1

JJ

Proposition 2.2.2. If X is a compact and connected Riemann surface, then any holomorphic function
f : X → C is constant.

Definition 2.2.3. A function f has a pole at p if there exists a coordinate neighborhood Uα 3 p with

Uα
ϕα−−−→ Vα such that f ◦ ϕ−1

α has a pole at ϕα(p).

Definition 2.2.4. A meromorphic function on X is a function f : X \ S → C where S ⊂ X is a nonempty
set without cluster points and f has, at worst, poles at points of S.

Remark 2.2.5. Any meromorphic function on C̄ is a rational function of z.

Theorem 2.2.6. If f is meromorphic on C̄, then
(
# of zeros of f

)
=
(
# of poles of f counting multiplicities

)
.

The same holds if f is meromorphic on X an elliptic curve.

3 Complex projective planes

Definition 3.0.7. The complex projective plane is a 2-dimensional complex projective (and topological)

space described by 3 complex coordinates: CP 2 = {(z0 : z1 : z2)
 z0 6= 0 or z1 6= 0 or z2 6= 0}

The coordinates (z0 : z1 : z2) are termed homogeneous coordinates. They are uniquely defined up to scalar
multiplication, i.e. (1 : 2 : 5) = (4 : 8 : 20).

Remark 3.0.8. The complex plane may be embedded in CP 2 three separate ways:

C2
0 = {(1 : z : w)}

C2
1 = {(z : 1 : w)}

C2
2 = {(z : w : 1)}

 ⊂ CP 2

Moreover, we have that C2 ' CP 2.

Also, we may described this space as CP 2 = {lines in C3 passing through the origin}.

Definition 3.0.9. The set {(z0, z1, z2)
 p0z0 + p1z1 + p2z2 = 0} with at least one pi 6= 0 is a line in CP 2.

3



3.1 Differential forms

Definition 3.1.1. Let F (z0, z1, z2) be a function in three variables, Then Euler’s identity is given as

dF = z0
∂F

∂z0
+ z1

∂F

∂z1
+ z2

∂F

∂z2

Definition 3.1.2. Let U ⊂ C be open. A holomorphic 1-form on U is an expression ω = f(z)dz for f a
holomorphic function on U .Then ω is a holomorphic 1-form in the coordinate z.

Definition 3.1.3. Let X be a Riemann surface with X =
⋃
Uα and coordinate neighborhoods zα : Uα → C.

Then a holomorphic 1- form on X is a collection of holomorphic 1-forms {ωα}, one for each zα. If Uα∩Uβ 6= ∅,
then fα(zα)dzα = fα(zα)dzαdzβ

dzβ = fβ(zβ)dzβ .

Remark 3.1.4. There are no non-zero holomorphic forms on C̄.

Definition 3.1.5. Let f : Y → X be a holomorphic function of Riemann surfaces. Let ω be a meromorphic
form on X. Then the inverse image of ω is ϕ∗ω. In local coordinates, z = ϕ(ω) with ϕ∗(f(z)dz) =
f(z(ω))ϕ′(ω).

Definition 3.1.6. Given two 1-forms ω = f1dz1+· · ·+fndzn and η = g1dz1+· · ·+gndzn on an n-dimensional
manifold, define their distributive product by

ω ∧ η = (f1dz1 + · · ·+ fndzn) ∧ (g1dz1 + · · ·+ gndzn)

with the following properties:
i. dzk ∧ dzk = 0
ii. dzk ∧ dz` = −dz` ∧ dzk

3.2 Poincaré residue

Definition 3.2.1. Let X = {(z1, . . . , zn)
 f(z1, . . . , zn) = 0} be a Riemann surface with f : Cn → C

holomorphic. Given a differential form ω = g dz1 ∧ dz2 ∧ · · · ∧ dzn, the residue of ω on X is the second
expression in the product

ω =
df

f
∧ (g1dz1 + · · ·+ gndzn)

and is denoted resX(ω).

Definition 3.2.2. Given a piecewise smooth path γ([a : b]) ⊂ X for X =
⋃
Uα a Riemann surface and ω a

differential 1-form, the integral of ω is ∫
γ

ω =

∫
[a0:a1]

ω + · · ·+
∫

[an−1:an]

ω

for a division a = a0 < a1 < · · · < an = b of [a : b] such that [aj , aj+1] ⊂ Uβ for some β and for all j.

Theorem 3.2.3. [Cauchy]
If γ1 is homotopic to γ2, then

∫
γ1
ω =

∫
γ2
ω for any differential 1-form ω.

Remark 3.2.4. Let X be a Riemann surface, ω a meromorphic differential form on X, p ∈ X a pole of ω
and γ ∈ X a closed path in X that only encircles one pole of ω, namely p. Then

resp(ω) =
1

2πi

∫
γ

ω
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Proposition 3.2.5. Let X be a Riemann surface, ω a meromorphic differential form on X, p ∈ X a pole of
ω and z be a local coordinate at p such that z(p) = 0. Then

ω =

( ∞∑
k=−N

ckz
k

)
dz =⇒ resp(ω) = c−1

Proposition 3.2.6. If ω is a meromorphic form on a compact Riemann surface X, then
∑
p∈X

resp(ω) = 0.

3.3 Triangulation

Theorem 3.3.1. Suppose that X is a compact Riemann surface. Then X may be presented as a disjoint
union of a finite number of sets of vertices, edges and faces, such that

1. Each vertex is a point
2. Each edge is homeomorphic to an open line segment
3. Each face is homeomorphic to the interior of a triangle
4. The closure of an edge includes the edge and both vertex endpoints
5. The closure of a face includes that face, all three bordering edges and all three bordering vertices
6. Each edge is a piecewise smooth curve

This is termed a triangulation of X.

Theorem 3.3.2. Each compact Riemann surface is homeomorphic to a ”sphere with handles.”

Definition 3.3.3. The sphere is a sphere with 0 handles. To attach a handle, remove the interior of two
disjoint disks on a surface and attach ends of a cylinder to the disks. The number of handles g of a surface
is termed the genus of the surface.

Theorem 3.3.4. If a surface X has genus g and is triangulated with e edges, v vertices and f faces, then

v − e+ f = 2g − 2

Proposition 3.3.5. Let f be a meromorphic function on CPn in n variables. Then the zeros and poles of
f are (n− 1)-dimensional surfaces.

4 Ramification

4.1 Holomorphic functions

Definition 4.1.1. Let U ⊂ C be open and connected, and f : U → C a holomorphic and non-constant
function with a ∈ U such that f ′(a) = 0. Then f is said to ramified at a.

Further, if f around a is given by f(a) = b+ ck(z− a)k + ck+1(z− a)k+1 + · · · for k the smallest index such
that ck 6= 0, then k is termed the ramification index of f at a.

Proposition 4.1.2. With respect to the above conditions, the ramification index of f at a is k if and only
if there exist punctured neighborhoods of a where f is k-to-1.

Definition 4.1.3. Let f : X → Y be a non-constant, holomorphic map of Riemann surfaces with a ∈ X.
Then f is ramified at a with index n if and only if it is ramified in some local coordinates at a with index n.

Denote the set of ramification points by R = {a ∈ X
 f is ramified on X at a}.

Proposition 4.1.4. Suppose X,Y are compact, connected Riemann surfaces with f : X → Y holomorphic
and non-constant. Then exactly one of the following hold:

i. f(X) = Y
ii. there exist a finite number of ramification points of f
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Proposition 4.1.5. Let B = f(R) ⊂ Y . Then f |X\f−1(B) : X \ f−1(B)→ Y \B is a covering.

That is, for each y ∈ Y \ B, there exists a neighborhood U 3 y with U ∩ B = ∅ such that f−1(U) =
V1 t V2 t · · · t Vd with Vi ⊂ X \ f−1(B) open and f |Vi : Vi → U an isomorphism for each i.

Theorem 4.1.6. Let X,Y be manifolds with f : X → Y a continuous function such that:
1. For each x ∈ X, there exist open sets V 3 x with f |V : V → f(V ) homomorphisms and f(V ) ⊂ Y
2. If K ⊂ Y is compact, then f−1(K) ⊂ X is also compact

Then R is a covering.

Corollary 4.1.7. If y ∈ Y \B, then #(f−1(y)) does not depend on y and is termed the degree of f .

Proposition 4.1.8. Let f : X → Y be a holomorphic, non-constant map of compact Riemann surfaces
with deg(f) = d. For y ∈ Y , we have f−1(y) = {x1, . . . , xm} for 1 6 m 6 d. Then

m∑
i=1

(
ramification

index of f at xi

)
= d = deg(f)

Note that if f is not ramified at some xi, then its ramification index is 1.

Theorem 4.1.9. [Riemann-Hurwitz]
Let f : X → Y be a non-constant holomorphic mapping of compact Riemann surfaces X,Y . Suppose that
R = {x1, . . . , xn} with ei = (ramification index of f at xi) and deg(f) = d. Then

2− 2g(X) = d(2− 2g(Y ))−
r∑
i=1

(ei − 1)

4.2 Divisors

Definition 4.2.1. Given a compact Riemann surface X, a divisor D is a finite formal linear combination of
points of X with integer coefficients

D =
∑
j

njpj for nj ∈ Z, pj ∈ X

Definition 4.2.2. Let f : X → Y be a meromorphic function. Then a principal divisor is denoted by

(f) =
∑
p∈X

ordp(f) · p

Definition 4.2.3. The degree of a divisor D =
∑
j njpj is deg(D) =

∑
j nj ∈ Z.

Proposition 4.2.4. If D is a principal divisor, then deg(D) = 0.

Proposition 4.2.5. For functions f, g over identical spaces, (fg) = (f)+(g). Moreover, the sum of principal
divisors is a principal divisor.

Definition 4.2.6. Two divisors D1,D2 are termed equivalent if D1−D2 is principal, and is denoted D1 ∼ D2.
This is an equivalence relation.

Remark 4.2.7. If D1 ∼ D2, then deg(D1) = deg(D2).

Proposition 4.2.8. On the Riemann sphere, every divisor of degree 0 is principal.

Proposition 4.2.9. On the Riemann sphere, given a finite set {p1, . . . , pn} with principal parts at each pi
fixed, there exists a meromorphic function with poles at each pi and principal parts as given, and no other
poles.
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4.3 Effective and canonical divisors

Definition 4.3.1. Let D be a divisor. Then L(D) = {f
 f is meromorphic on X and (f) +D > 0}.

We write D > 0 ⇐⇒ nj > 0 for all j where D =
∑
j njpj . Such a divisor D is termed effective.

Proposition 4.3.2. If D > 0, then dim(L(D)) 6 deg(D) + 1.

Definition 4.3.3. If ω is a meromorphic form on X, then the following divisor is termed canonical.

(ω) =
∑
p∈X

ordp(ω) · p

Proposition 4.3.4. Given a compact Riemann surface X, any two canonical divisors are equivalent. They
then belong to a common canonical class.

Proposition 4.3.5. If X is a compact Riemann surface of genus g, then deg(canonical class) = 2g − 2.

Proposition 4.3.6. If D1 ∼ D2, then L(D1) = L(D2).

Proposition 4.3.7. If K is a canonical divisor, then L(K) '
(

space of holomorphic
forms on X

)
.

Corollary 4.3.8. The space of holomorphic forms on X is always finite-dimensional.

Further on, for any divisor D, denote dim(L(D)) = `(D).

Theorem 4.3.9. For K a canonical divisor, `(K) = g.

Theorem 4.3.10. [Riemann, Roch]
For K a canonical divisor,

`(D) = deg(D) + 1− g + `(K −D)

Proposition 4.3.11. Suppose that f is a meromorphic function on a Riemann surface X. If a ∈ X is a
zero or pole of f , then df/f has a simple pole at a and resa(df/f) = orda(f).

Proposition 4.3.12. Let Ω(X) = {ω
 ω is a holomorphic form on X}. Then dim(Ω(X)) = g(X).

Proposition 4.3.13. If g(X) = 0, then X ' C̄.

Definition 4.3.14. Let X be a Riemann surface defined by X = {(z, w)
 w2 = (z−a1)(z−a2) · · · (z−an)}.

For n > 4, X is termed a hyperelliptic curve.

Proposition 4.3.15. For X a Riemann surface, if g(X) > 0 and p ∈ X, then `(p) = 1.

Moreover, `((n+ 1) · p) > `(n · p) for n ∈ Z>0.

Proposition 4.3.16. If X is a compact Riemann surface of genus g with deg(D) > 2g − 2, then `(D) =
deg(D) + 1− g.

5 Linear systems

5.1 Separation of points

Definition 5.1.1. For D a divisor on X with `(D) > 0, the complete linear system defined by D is

|D| = {D′
 D′ > 0,D′ ∼ D}

Definition 5.1.2. |D| = P (L(D)) =

(
L(D) \ {0}

)/
C∗
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Remark 5.1.3.
1. D1 ∼ D2 =⇒ |D1| = |D2|
2. If D is effective, then D ∈ |D|

Corollary 5.1.4. The space of ordered n-tuples of points of S2 is homeomorphic to CPn.

Definition 5.1.5. Let |D| be a complete linear system. A point p ∈ X is termed a basepoint of |D| if D′ > p
for all D′ ∈ |D|.

Definition 5.1.6. If X is a Riemann Surface with genus > 1 and KX is its canonical class, then |KX | is
termed a canonical linear system.

Proposition 5.1.7. If g > 1 for a Riemann surface X, then |KX | has no basepoints.

Theorem 5.1.8. A divisor D has no basepoints ⇐⇒ `(D − p) = `(D)− 1 for all p ∈ X.

Definition 5.1.9. Define the following mapping for a Riemann surface X and a divisor D:

ϕ|D| : X → CPn = |D|∗ by x 7→ {D′
 D′ ∈ |D|,D > x}

We note that if D has no basepoints, then this mapping is well-defined. Moreover, if D has no basepoints,
then it defines a holomorphic mapping into projective space.

Proposition 5.1.10. If L(D) = 〈f0, . . . , fn〉, then ϕ|D| : x 7→ (f0(x) : · · · : fn(x))

Proposition 5.1.11. If D has no basepoints, then ϕ|D| is injective ⇐⇒ for all p 6= q, `(D−p−q) = `(D)−2.

Definition 5.1.12. Let X = C̄ and D be a divisor of X with deg(D) = n > 1. Note that D does not have
basepoints, and ϕ|D| : X → CP 2 is injective. Then ϕ|D|(X) = Xn is termed a rational normal curve, or
Veronese curve.

5.2 Separation of tangent vectors

Definition 5.2.1. Let ϕ : X → Cn be a map of a Riemann surface X ⊂ C with ϕ : z 7→ (ϕ1(z), . . . , ϕn(z)).
Then ϕ′(z) = (ϕ′1(z), . . . , ϕ′n(z)) is termed degenerate at p ∈ X if ϕ′1(p) = · · · = ϕ′n(p) = 0.

Proposition 5.2.2. The derivative of ϕ|D| is non-degenerate at p ∈ X ⇐⇒ `(D − 2p) = `(D)− 2.

Theorem 5.2.3. If |D| is a complete linear system without basepoints and `(D − p− q) = `(D)− 2 for all
p, q ∈ X, then ϕ|D| : X → P dim(|D|) is an embedding, and ϕ|D|(X) is a smooth curve.

Proposition 5.2.4. Suppose that X is a compact Riemann surface, D is a divisor of X with deg(D)� 0.
Then D has no basepoints and ϕ|D| embeds X as a smooth curve.

Proposition 5.2.5. ϕ|D| is not an embedding ⇐⇒ there exists a D such that deg(D) = 2 and `(D) = 2.
In this case X is a hyperelliptic curve.

Corollary 5.2.6. |KX | does not define an embedding ⇐⇒ X is a hyperelliptic curve.

Remark 5.2.7. If g > 2, then a Riemann surface of genus g is not hyperelliptic. Moreover, if X is not
hyperelliptic, then ϕ|KX | : X ↪→ CP g−1 is an embedding, and deg(ϕ|KX |(X)) = 2g−2. Here ϕ|Kx| is termed
a canonical curve.

Proposition 5.2.8. A Riemann surface of genus 1 is isomorphic to an elliptic curve.

Definition 5.2.9. Define the Weierstrass p-function to be ℘ : X → R, given by

℘(z) =
1

z2
+

∑
γ∈Γ\{0}

(
1

(z − γ)2
− 1

γ2

)
Note that this function converges on X = C/Γ an elliptic curve.
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Theorem 5.2.10. [Properties of the ℘-function]
1. ℘(z) = ℘(−z)
2. ℘′(z) = −℘′(−z)
3. ℘′(z) = −2

∑
γ∈Γ

1

(z − γ)3

4. ℘′(z + α) = ℘′(α) for all α ∈ Γ
5. ℘(z + α) = ℘(α) for all α ∈ Γ

Theorem 5.2.11. Let X = C/Γ for Γ = 〈ω1, ω2〉 a lattice. Then ℘′(z) has three distinct zeros on X.

The value of ℘ at these points is denoted:

e1 = ℘
(ω1

2

)
e2 = ℘

(ω2

2

)
e3 = ℘

(
ω1 + ω2

2

)
Moreover,

(℘′(z))
2

= 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

5.3 Embeddings

Remark 5.3.1. Let X be the space of homogeneous polynomials of degree d in m variables.

Then dim(X) =

(
d+m− 1

d

)
.

Proposition 5.3.2. Let X be a compact Riemann surface. For n > 3, X may be embedded in CPn−1.

Proposition 5.3.3. Let X = C/Γ be an elliptic curve for Γ a lattice. Then X is isomorphic to the Riemann
surface Y = {(x, y)

 y2 = 4(x− e1)(x− e2)(x− e3)} for ei as above.

Remark 5.3.4. A Riemann surface of genus 1 is isomorphic to a cubic curve. Any Riemann surface of
genus 2 is a hyperelliptic curve.

Proposition 5.3.5. If D > 0, then `(D) = deg(D).

Note the following new notation on divisors of a Riemann surface X. The sets below are groups with the
group operation of addition.

· Div(X) = {all divisors on X}
· Div0(X) = {D ∈ Div(X)

 deg(D) = 0}
· Principal(X) = {D ∈ Div(X)

 D is principal}
· Pic0(X) = Div0(X)/Principal(X), the Picard group

5.4 Elliptic curves

Theorem 5.4.1. [Abel, Jacobi]
Let +,− denote operations for points of a divisor. Let ⊕,	 denote operations on group elements in C/Γ.

Suppose that D = m1a1 + · · · + mkak is a divisor on X = C/Γ with mj ∈ Z, aj ∈ X, and deg(D) =
m1 + · · ·+mk = 0. Then D is principal ⇐⇒ m1a1 ⊕ · · · ⊕mkak = 0.

Corollary 5.4.2. If X = C/Γ, then Pic0(X) ' X.

Theorem 5.4.3. Pic0(X) = Cg/Γ for Γ ⊂ Cg a lattice of rank 2g.

Definition 5.4.4. Let k ∈ Z>2 and Γ ⊂ C a lattice. Then Gk :=
∑

γ∈Γ\{0}

1

γ2k
is termed an Eisenstein series.
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Remark 5.4.5. By rewriting ℘ in terms of Eisenstein series, the following conclusions are reached:

(℘′(z))2 = 4℘3(z)− 60G2℘(z) + 140G3

e1 + e2 + e3 = 0

e1e2 + e1e3 + e2e3 = −15G2

e1e2e3 = 20G3

Definition 5.4.6. Let C ⊂ CPn be a smooth curve of degree d, and L a line in CPn. If L ∩ C = {q} and
the divisor L ∩ C = d · q, then q is termed an inflection point of C.

Proposition 5.4.7. Let C be as above, and q1, q2 two inflection points of C. Then the line that passes
through q1 and q2 also passes through a distinct third inflection point of C.

Proposition 5.4.8. Let Γ be a lattice on C and f : X → X ⊂ C a holomorphic map with a fixed point
f(0) = 0. Then there exists λ ∈ C such that f(z) = λz (mod Γ).

Proposition 5.4.9. Let X1 = C/Γ1 and X2 = C/Γ2 be two elliptic curves. Then X1 ' X2 ⇐⇒ there
exists non-zero λ ∈ C such that λΓ1 = Γ2.

6 Line bundles

6.1 Construction

Definition 6.1.1. Suppose that X is a complex manifold with U ⊂ X open. A line bundle on X is both:
1. A complex manifold T , the “total space” of the bundle
2. A holomorphic mapping π : T → X, the “projection”

that satisfies the following conditions:
a. Φ is an isomorphism such that π′ ◦ Φ = π̃
b. For each y ∈ U , Φ(π−1(y)) = (π′)−1(y)
c. For each x ∈ X, π−1(x) ' C and 0 ∈ π−1(x)

This may be envisioned as the following graph that commutes:

X U

T π−1(U)

U × Cπ

��

i
oo

ioo

π̃

��

Φ

''

π′ww

where: π̃ = π|π−1(U)

π′ : (x, λ) 7→ x is also a projection
i : U ↪→ X is an inclusion

Moreover, the function Φ is termed the local trivialization.

Definition 6.1.2. Consider two domains U, V ⊂ X with local trivializations over them:

ΦU : π−1(U)→ U × C
ΦV : π−1(V )→ V × C

Then for all x ∈ U ∩ V , both functions are defined, and they differ by a linear automorphism given by

Φ|π−1(x) = g
UV

ΦV (x)

The functions of the type g
UV

are termed transition functions of the line bundle.
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Proposition 6.1.3. [the Cocycle condition]
Let U, V,W ⊂ X and x ∈ U ∩ V ∩W . Then g

UW
(x) = g

UV
(x)g

VW
(x).

Proposition 6.1.4. Suppose that X is a complex manifold and
⋃
Uj = X is an open covering with, for

each i 6= j a holomorphic function gij : Ui ∩ Uj → C \ {0} such that on Ui ∩ Uj ∩ Uk with k /∈ {i, j}

gijgjk = gik

gijgji = 1

Then there exists a line bundle T
π−−→ X such that T has trivializations over each Uj for which the gij are

transition functions.

Remark 6.1.5. The line bundle as constructe.d above is usually denoted OX(−1).

6.2 Sections

Definition 6.2.1. A section of a line bundle OX(−1) is a holomorphic mapping s : X → T such that
π ◦ s = idX . Note that if x ∈ X, then s(x) ∈ π−1(x).

If s1, s2 are sections, then we may define addition of sections by (s1 + s2) : x 7→ s1(x) + s2(x).

Definition 6.2.2. Let s : X → T be a section with x ∈ U ⊂ X and ΦU : π−1(U) → U × C the local
trivialization. Then there exists a holomorphic function sU : U → C such that

ΦU (s(x)) = (x, s
U

(x))

Moreover, if x ∈ U ∩ V for V ⊂ X, then

s
U

(x) = g
UV

(x)s
V

(x)

Proposition 6.2.3. There is a 1-1 correspondence between sections of a given line bundle and collections
of the holomorphic s

U
: U → C with s

U
= g

UV
s
V

.

Remark 6.2.4. Every section of OCPn(−1) is identically zero.

Definition 6.2.5. Suppose that L,M are line bundles on X with transition functions on
⋃
Uj

gij : Ui ∩ Uj → C \ {0} for L

hij : Ui ∩ Uj → C \ {0} for M

Then the tensor product L⊗M is the line bundle with transition functions gijhij over Ui ∩ Uj

Definition 6.2.6. Using the same notation as above, (OCPn(−1))∗ = OCPn(1).

6.3 On Riemann surfaces

Proposition 6.3.1. (Sections of OX(D)) ' L(D).

Proposition 6.3.2. Any line bundle on a compact Riemann surface X is of the form OX(D) for some
divisor D.

Definition 6.3.3. (The space of sections of a line bundle L on X) = H0(X,L).
Here H0 denotes the 0th cohomology group.

Proposition 6.3.4. Suppose that S1, S2 ∈ H0(X,OX(D)). Then (S1) ∼ (S2).

Remark 6.3.5. Let L1 = OX(D1) and L2 = OX(D2). Then L1 ⊗ L2 = OX(D1 +D2).
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Proposition 6.3.6. Let D be a divisor on a Riemann surface X. Then OX(D) is trivial ⇐⇒ D is principal.

Proposition 6.3.7. Let D1,D2 be divisors on a Riemann surface X. Then the following are equivalent:
i. D1 ∼ D2

ii. OX(D1) ' OX(D2)
iii. OX(D1)⊗OX(D2)−1 = OX(D1 −D2) is trivial

Corollary 6.3.8. Line bundles are equivalence classes of divisors, with the canonical line bundle having
sections of holomorphic forms.
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