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1 Structures

Definition 1.0.1. A subset U C X is termed open if ¢, (U NU,) C C is open V a.
Definition 1.0.2. A set F' C X is termed closed if X \ F is open.

Remark 1.0.3. The empty set is defined to be open.

Definition 1.0.4. A topological space is a set X together with a set S of subspaces of X such that
a. pes
b. XeS
c. If Uy,Uy, -+ € S then UjUj es
d. fU,VeSthenUNV €S

Definition 1.0.5. A homeomorphism is an injective function between topological spaces that conserves all
the topological properties of the given space.

Definition 1.0.6.A complex chart on a set X is a homeomorphism ¢ : U — V for open sets U C X, V C C.

Definition 1.0.7. A conformal mapping is a transformation that preserves local angles. A function is
conformal wherever it has nonzero derivative.

Definition 1.0.8. Given a topological space X and a point p (or a set S), a neighborhood of p (or 5) is
any open set ' C X containing p (or S).

Definition 1.0.9. For U open and ¢ : U — X a homeomorphism (a chart), the set
(U, ), abbreviated to just U, is termed a coordinate neighborhood.

Definition 1.0.10. A Riemann surface is a set X with the properties:
1. X =, U, where all U, are coordinate neighborhoods
2. For each U, there exists a bijection ¢, : U, — V,, for V, C C open
3. ppo .t is a bijection from ¢, (Us NUg) to ps(Us NUg) and
a conformal mapping for each (a, )

The function @z o ¢, ! above is termed a transition function.

Theorem 1.0.11. [IMPLICIT FUNCTION THEOREM|]
Let f: U — C for U C C be a function on two variables z1, z5. Suppose that 5% #0at p=(p1,p2) €U
P

and f(p) = 0. Then there exist open neighbourhoods Uy, Us C C and a holomorphic map ¢ : Uy — Us such
that {(z,o(2)) ‘ z e U} ={(z1,22) ‘ f(z1,22) =0} N (U UUS).

2 Framework of Riemann surfaces

2.1 Basic configuration

Definition 2.1.1. A topological space X is termed compact if X = Uj U; = there exist ji,...j; such
that X =U;, U---UUj, for U; open sets.

Definition 2.1.2. The Riemann sphere is C := C2 U {oo}. It is a compact Riemann surface.

Definition 2.1.3. A lattice is a set I' = {nywy + -+ + ngwy, | n1,...,np € Nand wy,...,wy, € C\ {0}}.

Theorem 2.1.4. [INVERSE FUNCTION THEOREM]
If a function f : X — X has a non-zero derivative at 0, then there exists a neighborhood U C X such that
f~1: f(U) — U is also smooth.



Definition 2.1.5. A Riemann surface X is not connected if X = UUV and UUV # ) for U,V open
nonempty sets.

Definition 2.1.6. Define the set I' = {njw+naz | n1,ny € Z} for some w,z € C\ {0} to be a lattice. Note
that I is a subgroup of C. Define X = C /T = {equivalence classes of 1 € X | z ~w <= z—w €I} to
be an elliptic curve.

2.2 Holomorphic functions

Definition 2.2.1. A function f: X — C is termed holomorphic if for each U, the following composition is
well-defined:

U.C X
4

I,

Vo ———————C

(fly, Joea’

Proposition 2.2.2. If X is a compact and connected Riemann surface, then any holomorphic function
f: X — C is constant.

Definition 2.2.3. A function f has a pole at p if there exists a coordinate neighborhood U, > p with
Ua 225 V,, such that f o ¢! has a pole at pq(p).

Definition 2.2.4. A meromorphic function on X is a function f: X \ S — C where S C X is a nonempty
set without cluster points and f has, at worst, poles at points of S.

Remark 2.2.5. Any meromorphic function on C is a rational function of z.

Theorem 2.2.6. If f is meromorphic on C, then (# of zeros of f) = (# of poles of f counting multiplicities).
The same holds if f is meromorphic on X an elliptic curve.
3 Complex projective planes

Definition 3.0.7. The complex projective plane is a 2-dimensional complex projective (and topological)
space described by 3 complex coordinates: CP? = {(zq : 21 : 22) | zo #0or z; # 0 or z5 # 0}

The coordinates (zo : 21 : z2) are termed homogeneous coordinates. They are uniquely defined up to scalar
multiplication, i.e. (1:2:5) = (4:8:20).

Remark 3.0.8. The complex plane may be embedded in CP? three separate ways:

C: = {(1:z:w)}
C? = {(z:1:w)} p cCP?
C2 = {(z:w:1)}

Moreover, we have that C? ~ CP2.
Also, we may described this space as CP? = {lines in C? passing through the origin}.

Definition 3.0.9. The set {(zo, 21, 22) | Pozo + p121 + paze = 0} with at least one p; # 0 is a line in CP2.



3.1 Differential forms

Definition 3.1.1. Let F(z0, 21, 22) be a function in three variables, Then Euler’s identity is given as

IF oF n oF n oF
=z20— +t2z217— + 20—
0 0z ! 0z1 2 0z
Definition 3.1.2. Let U C C be open. A holomorphic 1-form on U is an expression w = f(z)dz for f a
holomorphic function on U.Then w is a holomorphic 1-form in the coordinate z.

Definition 3.1.3. Let X be a Riemann surface with X = |J U, and coordinate neighborhoods z, : U, — C.
Then a holomorphic 1- form on X is a collection of holomorphic 1-forms {w, }, one for each z,. If UyNUg # 0,

then fo(z4)dze = fa(za)%dzﬁ = fa(zg)dzg.

Remark 3.1.4. There are no non-zero holomorphic forms on C.

Definition 3.1.5. Let f : Y — X be a holomorphic function of Riemann surfaces. Let w be a meromorphic
form on X. Then the inverse image of w is p*w. In local coordinates, z = ¢(w) with ¢*(f(2)dz) =

fz(w))¢'(w).

Definition 3.1.6. Given two 1-forms w = fidz1+- - -+ fndz, and n = g1dz1+- - -+ g, dz, on an n-dimensional
manifold, define their distributive product by

W/\W = (f1d21 ++fndzn) A (gldzl +e +gndzn)

with the following properties:
i. dzp ANdz, =0
ii. dzp Ndzp = —dzp N dzy

3.2 Poincaré residue

Definition 3.2.1. Let X = {(z1,...,2) | f(21,...,20) = 0} be a Riemann surface with f : C* — C
holomorphic. Given a differential form w = g dz; A dzy A -+ A dz,, the residue of w on X is the second
expression in the product

df

w = F A (grdz + -+ + gndzy)

and is denoted resx (w).

Definition 3.2.2. Given a piecewise smooth path y([a : b]) C X for X = JU, a Riemann surface and w a

differential 1-form, the integral of w is
v [ao:a1] [an—1:an]

for a division a = ap < a1 < --- < a, = b of [a : b] such that [a;,a;4+1] C Ug for some f and for all j.

Theorem 3.2.3. [CAUCHY]
If 1 is homotopic to 7, then f“n w= fw w for any differential 1-form w.

Remark 3.2.4. Let X be a Riemann surface, w a meromorphic differential form on X, p € X a pole of w
and v € X a closed path in X that only encircles one pole of w, namely p. Then

1
res,(w) = vl
gl



Proposition 3.2.5. Let X be a Riemann surface, w a meromorphic differential form on X, p € X a pole of
w and z be a local coordinate at p such that z(p) = 0. Then

W= ( Z ckzk) dz = resp(w) =c_1

k=—N

Proposition 3.2.6. If w is a meromorphic form on a compact Riemann surface X, then Z resy(w) = 0.
peX

3.3 Triangulation

Theorem 3.3.1. Suppose that X is a compact Riemann surface. Then X may be presented as a disjoint
union of a finite number of sets of vertices, edges and faces, such that

1. Each vertex is a point

2. Each edge is homeomorphic to an open line segment

3. Each face is homeomorphic to the interior of a triangle

4. The closure of an edge includes the edge and both vertex endpoints

5. The closure of a face includes that face, all three bordering edges and all three bordering vertices

6. Each edge is a piecewise smooth curve
This is termed a triangulation of X.

Theorem 3.3.2. Each compact Riemann surface is homeomorphic to a ”sphere with handles.”

Definition 3.3.3. The sphere is a sphere with 0 handles. To attach a handle, remove the interior of two
disjoint disks on a surface and attach ends of a cylinder to the disks. The number of handles g of a surface
is termed the genus of the surface.

Theorem 3.3.4. If a surface X has genus g and is triangulated with e edges, v vertices and f faces, then
v—e+ f=2g-2

Proposition 3.3.5. Let f be a meromorphic function on CP™ in n variables. Then the zeros and poles of
f are (n — 1)-dimensional surfaces.

4 Ramification

4.1 Holomorphic functions

Definition 4.1.1. Let U C C be open and connected, and f : U — C a holomorphic and non-constant
function with a € U such that f'(a) = 0. Then f is said to ramified at a.

Further, if f around a is given by f(a) = b+ cp(z —a)* + cpy1(z — a)* T 4. for k the smallest index such
that ¢ # 0, then k is termed the ramification index of f at a.

Proposition 4.1.2. With respect to the above conditions, the ramification index of f at a is k if and only
if there exist punctured neighborhoods of @ where f is k-to-1.

Definition 4.1.3. Let f : X — Y be a non-constant, holomorphic map of Riemann surfaces with a € X.
Then f is ramified at a with index n if and only if it is ramified in some local coordinates at a with index n.

Denote the set of ramification points by R = {a € X ’ f is ramified on X at a}.

Proposition 4.1.4. Suppose X,Y are compact, connected Riemann surfaces with f : X — Y holomorphic
and non-constant. Then exactly one of the following hold:

i f(X)=Y

ii. there exist a finite number of ramification points of f



Proposition 4.1.5. Let B = f(R) CY. Then f|x\;-1(p): X \ f~1(B) = Y \ B is a covering.

That is, for each y € Y \ B, there exists a neighborhood U > y with U N B = () such that f~}(U) =
ViUVaU---UVy with V; € X\ f71(B) open and f|y, : V; — U an isomorphism for each i.

Theorem 4.1.6. Let X,Y be manifolds with f : X — Y a continuous function such that:
1. For each x € X, there exist open sets V' 5 x with f|y, : V — f(V) homomorphisms and f(V) CY
2. If K C Y is compact, then f~!(K) C X is also compact

Then R is a covering.

Corollary 4.1.7. If y € Y \ B, then #(f~!(y)) does not depend on y and is termed the degree of f.

Proposition 4.1.8. Let f : X — Y be a holomorphic, non-constant map of compact Riemann surfaces
with deg(f) =d. For y € Y, we have f~1(y) = {z1,..., 2} for 1 <m < d. Then

i( ramification ) — d = deg(f)
i=1

index of f at x;

Note that if f is not ramified at some x;, then its ramification index is 1.

Theorem 4.1.9. [RIEMANN-HURWITZ]
Let f: X — Y be a non-constant holomorphic mapping of compact Riemann surfaces X,Y. Suppose that
R ={z1,...,2,} with e; = (ramification index of f at x;) and deg(f) = d. Then

2-29(X)=d(2-29(Y)) - Z(ei - 1)
4.2 Divisors

Definition 4.2.1. Given a compact Riemann surface X, a divisor D is a finite formal linear combination of
points of X with integer coefficients

D= anpj for n; € Z,p; € X
J
Definition 4.2.2. Let f: X — Y be a meromorphic function. Then a principal divisor is denoted by
(f) =D ordy(f) - p
peX
Definition 4.2.3. The degree of a divisor D =}, n;p; is deg(D) = >, n; € Z.
Proposition 4.2.4. If D is a principal divisor, then deg(D) = 0.

Proposition 4.2.5. For functions f, g over identical spaces, (fg) = (f)+(g). Moreover, the sum of principal
divisors is a principal divisor.

Definition 4.2.6. Two divisors Dy, D, are termed equivalent if D, — D5 is principal, and is denoted Dy ~ Ds.
This is an equivalence relation.

Remark 4.2.7. If D; ~ Dy, then deg(D;) = deg(Ds).
Proposition 4.2.8. On the Riemann sphere, every divisor of degree 0 is principal.

Proposition 4.2.9. On the Riemann sphere, given a finite set {p1,...,p,} with principal parts at each p;
fixed, there exists a meromorphic function with poles at each p; and principal parts as given, and no other
poles.



4.3 Effective and canonical divisors
Definition 4.3.1. Let D be a divisor. Then L(D) = {f | f is meromorphic on X and (f) 4+ D > 0}.
We write D > 0 <= n; > 0 for all j where D = Zj n;p;. Such a divisor D is termed effective.

Proposition 4.3.2. If D > 0, then dim(L(D)) < deg(D) + 1.

Definition 4.3.3. If w is a meromorphic form on X, then the following divisor is termed canonical.

@) =Y ordy(w) - p

peX

Proposition 4.3.4. Given a compact Riemann surface X, any two canonical divisors are equivalent. They
then belong to a common canonical class.

Proposition 4.3.5. If X is a compact Riemann surface of genus g, then deg(canonical class) = 2g — 2.
Proposition 4.3.6. If D; ~ Dy, then L(D;) = L(Ds,).

Proposition 4.3.7. If K is a canonical divisor, then L(K) ~ ( space of holomorphic )

forms on X
Corollary 4.3.8. The space of holomorphic forms on X is always finite-dimensional.
Further on, for any divisor D, denote dim(L(D)) = £(D).

Theorem 4.3.9. For K a canonical divisor, ¢/(K) = g.

Theorem 4.3.10. [RIEMANN, ROCH]
For K a canonical divisor,
UD) =deg(D)+1—g+{(K —D)

Proposition 4.3.11. Suppose that f is a meromorphic function on a Riemann surface X. If a € X is a
zero or pole of f, then df /f has a simple pole at a and res, (df /f) = ordg(f).

Proposition 4.3.12. Let Q(X) = {w | w is a holomorphic form on X}. Then dim(Q(X)) = g(X).
Proposition 4.3.13. If g(X) = 0, then X ~ C.

Definition 4.3.14. Let X be a Riemann surface defined by X = {(z,w) | w? = (z—a1)(z—az2) -+ (z—an)}.
For n > 4, X is termed a hyperelliptic curve.

Proposition 4.3.15. For X a Riemann surface, if g(X) > 0 and p € X, then ¢(p) = 1.
Moreover, £((n+ 1) -p) = £(n - p) for n € Zxo.

Proposition 4.3.16. If X is a compact Riemann surface of genus g with deg(D) > 2g — 2, then ¢(D) =
deg(D)+1—g.

5 Linear systems

5.1 Separation of points

Definition 5.1.1. For D a divisor on X with ¢(D) > 0, the complete linear system defined by D is

D] ={D' | D' >0,D' ~ D}

Definition 5.1.2. |D| = P(L(D)) = (L(D) \ {0}> / ok



Remark 5.1.3.
1. Dy ~ Dy = |D1| = |D2|
2. If D is effective, then D € |D|

Corollary 5.1.4. The space of ordered n-tuples of points of S? is homeomorphic to CP".

Definition 5.1.5. Let |D| be a complete linear system. A point p € X is termed a basepoint of |D| if D' > p
for all D’ € |D].

Definition 5.1.6. If X is a Riemann Surface with genus > 1 and Kx is its canonical class, then |Kx| is
termed a canonical linear system.

Proposition 5.1.7. If g > 1 for a Riemann surface X, then |K x| has no basepoints.

Theorem 5.1.8. A divisor D has no basepoints <= {(D —p) =¢(D) —1for allp € X.

Definition 5.1.9. Define the following mapping for a Riemann surface X and a divisor D:
op: X =CP*"=|D|* by az—{D' | D €|D,D>uz}

We note that if D has no basepoints, then this mapping is well-defined. Moreover, if D has no basepoints,
then it defines a holomorphic mapping into projective space.

Proposition 5.1.10. If L(D) = (fo,..., fn), then @p| : @ = (fo(z) : -+ : fu(z))
Proposition 5.1.11. If D has no basepoints, then ¢p| is injective <= for all p # ¢, {(D—p—q) = {(D)—2.

Definition 5.1.12. Let X = C and D be a divisor of X with deg(D) = n > 1. Note that D does not have
basepoints, and ¢|p| : X — CP? is injective. Then @ip|(X) = X, is termed a rational normal curve, or
Veronese curve.

5.2 Separation of tangent vectors

Definition 5.2.1. Let ¢ : X — C" be a map of a Riemann surface X C C with ¢ : z — (¢1(2),...,pn(2)).
Then ¢'(z) = (¢} (2),..., ¢, (2)) is termed degenerate at p € X if pj(p) =--- = ¢, (p) = 0.

Proposition 5.2.2. The derivative of p| is non-degenerate at p € X <= (D — 2p) = {(D) — 2.

Theorem 5.2.3. If |D| is a complete linear system without basepoints and ¢(D — p — q) = (D) — 2 for all
p,q € X, then pp| : X — Paim(IPD) g an embedding, and <p‘p|(X) is a smooth curve.

Proposition 5.2.4. Suppose that X is a compact Riemann surface, D is a divisor of X with deg(D) > 0.
Then D has no basepoints and ¢|p| embeds X as a smooth curve.

Proposition 5.2.5. ¢|p| is not an embedding <= there exists a D such that deg(D) = 2 and /(D) = 2.
In this case X is a hyperelliptic curve.

Corollary 5.2.6. |K x| does not define an embedding <= X is a hyperelliptic curve.

Remark 5.2.7. If ¢ > 2, then a Riemann surface of genus g is not hyperelliptic. Moreover, if X is not
hyperelliptic, then ¢k : X < CP?~! is an embedding, and deg(pir (X)) =29 —2. Here ¢, is termed
a canonical curve.

Proposition 5.2.8. A Riemann surface of genus 1 is isomorphic to an elliptic curve.
Definition 5.2.9. Define the Weierstrass p-function to be p : X — R, given by

=g+ 3 (=)

yer\{o}

Note that this function converges on X = C/I" an elliptic curve.



Theorem 5.2.10. [PROPERTIES OF THE gp-FUNCTION]
L. p(z) = p(—2)
2. ¢'(2) = —¢'(=2) ,
/ —
3. ¢(2) 2%(2*7)3
4. p'(z+a)=¢'(a) foralla eT
5. p(z+a) =p(a) forala e T

Theorem 5.2.11. Let X = C/T for I' = (w;,ws) a lattice. Then ¢’(z) has three distinct zeros on X.

The value of p at these points is denoted:

w1 w2 w1 + w2
a=o(3)  e=e(3)  a=e(T5

Moreover,

5.3 Embeddings

Remark 5.3.1. Let X be the space of homogeneous polynomials of degree d in m variables.

Then dim(X) = (d+ 12; B 1).

Proposition 5.3.2. Let X be a compact Riemann surface. For n > 3, X may be embedded in CP"~ 1.

Proposition 5.3.3. Let X = C/T be an elliptic curve for I' a lattice. Then X is isomorphic to the Riemann
surface Y = {(z,y) | y> = 4(z —e1)(z — e2)(z — e3)} for e; as above.

Remark 5.3.4. A Riemann surface of genus 1 is isomorphic to a cubic curve. Any Riemann surface of
genus 2 is a hyperelliptic curve.

Proposition 5.3.5. If D > 0, then ¢(D) = deg(D).

Note the following new notation on divisors of a Riemann surface X. The sets below are groups with the
group operation of addition.

- Div(X) = {all divisors on X}

- Div'(X) = {D € Div(X) | deg(D) = 0}

- Principal(X) = {D € Div(X) | D is principal}

- Pic®(X) = Div?(X)/Principal(X), the Picard group

5.4 Elliptic curves

Theorem 5.4.1. [ABEL, JACOBI]
Let +, — denote operations for points of a divisor. Let @, © denote operations on group elements in C/T.

Suppose that D = mya; + -+ + mgay is a divisor on X = C/I' with m; € Z,a; € X, and deg(D) =
mq + -+ mg = 0. Then D is principal <= mia; @ --- ® mrar = 0.

Corollary 5.4.2. If X = C/T, then Pic’(X) ~ X.
Theorem 5.4.3. Pic®(X) = C9/T for I C CY a lattice of rank 2g.

1
Definition 5.4.4. Let k € Z>, and I' C C a lattice. Then Gy, := Z — 18 termed an Eisenstein series.
v€r\{0}



Remark 5.4.5. By rewriting p in terms of Eisenstein series, the following conclusions are reached:

(¢'(2))? = 4p%(2) — 60G2p(2) + 140G
e1+e+e3=0
eres + ejes + eseg = —15Go
ereses = 20Gs

Definition 5.4.6. Let C C CP"™ be a smooth curve of degree d, and L a line in CP™. If LN C = {¢} and
the divisor LN C = d - q, then ¢ is termed an inflection point of C.

Proposition 5.4.7. Let C be as above, and g1, g2 two inflection points of C. Then the line that passes
through ¢; and g9 also passes through a distinct third inflection point of C.

Proposition 5.4.8. Let I' be a lattice on C and f : X — X C C a holomorphic map with a fixed point
f(0) = 0. Then there exists A € C such that f(z) = Az (mod I).

Proposition 5.4.9. Let X; = C/T'; and Xy = C/T'2 be two elliptic curves. Then X; ~ Xy <= there
exists non-zero \ € C such that A\I'y = T's.

6 Line bundles

6.1 Construction

Definition 6.1.1. Suppose that X is a complex manifold with U C X open. A line bundle on X is both:
1. A complex manifold T, the “total space” of the bundle
2. A holomorphic mapping 7 : T' — X, the “projection”
that satisfies the following conditions:
a. ® is an isomorphism such that 7’ o ® = 7
b. For each y € U, ®(r~1(y)) = (')~ (y)
c. Foreach z € X, 77 1(2) ~C and 0 € 7~ 1(x)

This may be envisioned as the following graph that commutes:

T<7i7r’1(U)

T = 71—‘7.{.—1([])
™ T UxC ' i (x,\) — z is also a projection
i

/ , : U — X is an inclusion
s

Moreover, the function ® is termed the local trivialization.

Definition 6.1.2. Consider two domains U,V C X with local trivializations over them:

by (U)—»UxC
by 7 (V) =V xC

Then for all x € U NV, both functions are defined, and they differ by a linear automorphism given by
Plr-1(z) = Guv Pv (2)

The functions of the type ¢, are termed transition functions of the line bundle.

10



Proposition 6.1.3. [THE COCYCLE CONDITION]
Let U,V,W C X and . e UNV NW. Then g, () = gy () gy (2).

Proposition 6.1.4. Suppose that X is a complex manifold and |JU; = X is an open covering with, for
each ¢ # j a holomorphic function g;; : U; N U; — C\ {0} such that on U; N U; N Uy, with k ¢ {3, j}

9ij9jk = Gik
9ij95i = 1

Then there exists a line bundle 77— X such that T has trivializations over each U; for which the g;; are
transition functions.

Remark 6.1.5. The line bundle as constructe.d above is usually denoted Ox(—1).

6.2 Sections

Definition 6.2.1. A section of a line bundle Ox(—1) is a holomorphic mapping s : X — T such that
7mos =idy. Note that if x € X, then s(z) € 7~ 1(z).

If s1, so are sections, then we may define addition of sections by (s1 + s2) :  — s1(x) + sa(x).

Definition 6.2.2. Let s : X — T be a section with # € U C X and ®y : 7~ *(U) — U x C the local
trivialization. Then there exists a holomorphic function sy : U — C such that

Py (s(z)) = (2,5, (2))

Moreover, if t e UNV for V C X, then

Sy ($> =G9uv ('T)Sv (CC)

Proposition 6.2.3. There is a 1-1 correspondence between sections of a given line bundle and collections
of the holomorphic s, : U — C with s, = g, s, -

Remark 6.2.4. Every section of Ocpr(—1) is identically zero.

Definition 6.2.5. Suppose that L, M are line bundles on X with transition functions on (JU;
gij - UiNU; - C\ {0} for L
hij : U;nU; = C\ {0} for M

Then the tensor product L ® M is the line bundle with transition functions g;;h;; over U; N U;

Definition 6.2.6. Using the same notation as above, (Ocpn(—1))* = Ocpn(1).

6.3 On Riemann surfaces

Proposition 6.3.1. (Sections of Ox (D)) ~ L(D).

Proposition 6.3.2. Any line bundle on a compact Riemann surface X is of the form Ox (D) for some
divisor D.

Definition 6.3.3. (The space of sections of a line bundle L on X) = H(X, L).
Here H° denotes the Oth cohomology group.

Proposition 6.3.4. Suppose that S1,S; € H*(X,Ox(D)). Then (5;) ~ (S2).
Remark 6.3.5. Let L1 = Ox(Dl) and L2 = Ox(Dg) Then L1 X LQ = Ox(Dl —|—D2)
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Proposition 6.3.6. Let D be a divisor on a Riemann surface X. Then Ox (D) is trivial <= D is principal.

Proposition 6.3.7. Let D1, Ds be divisors on a Riemann surface X. Then the following are equivalent:
i. Dy ~ Do
ii. OX (Dl) >~ OX (Dg)
iii. Ox(Dl) & Ox(D2)71 = Ox(Dl - Dg) is trivial

Corollary 6.3.8. Line bundles are equivalence classes of divisors, with the canonical line bundle having
sections of holomorphic forms.
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