# Contents

\_

| 1 | Structures                                                                                                                         | 2                           |
|---|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2 | Framework of Riemann surfaces         2.1       Basic configuration         2.2       Holomorphic functions                        | <b>2</b><br>2<br>3          |
| 3 | Complex projective planes         3.1       Differential forms         3.2       Poincaré residue         3.3       Triangulation  | <b>3</b><br>4<br>5          |
| 4 | Ramification         4.1       Holomorphic functions         4.2       Divisors         4.3       Effective and canonical divisors | <b>5</b><br>5<br>6<br>7     |
| 5 | Linear systems5.1Separation of points5.2Separation of tangent vectors5.3Embeddings5.4Elliptic curves                               | 7<br>7<br>8<br>9<br>9       |
| 6 | Line bundles       5.1         6.1       Construction         6.2       Sections         6.3       On Riemann surfaces             | <b>LO</b><br>10<br>11<br>11 |

<u>Note</u>: For a more complete exposition, see the following textbooks, which were used in accompaniment with this course:  $\cdot$  Algebraic Curves and Riemann Surfaces, Rick Miranda

## 1 Structures

**Definition 1.0.1.** A subset  $U \subset X$  is termed open if  $\varphi_{\alpha}(U \cap U_{\alpha}) \subset \mathbb{C}$  is open  $\forall \alpha$ .

**Definition 1.0.2.** A set  $F \subset X$  is termed <u>closed</u> if  $X \setminus F$  is open.

Remark 1.0.3. The empty set is defined to be open.

**Definition 1.0.4.** A topological space is a set X together with a set S of subspaces of X such that

- **a.**  $\emptyset \in S$
- **b.**  $X \in S$

**c.** If  $U_0, U_1, \dots \in S$  then  $\bigcup_j U_j \in S$ 

**d.** If  $U, V \in S$  then  $U \cap V \in S$ 

**Definition 1.0.5.** A homeomorphism is an injective function between topological spaces that conserves all the topological properties of the given space.

**Definition 1.0.6.** A complex chart on a set X is a homeomorphism  $\varphi : U \to V$  for open sets  $U \subset X, V \subset \mathbb{C}$ .

**Definition 1.0.7.** A <u>conformal mapping</u> is a transformation that preserves local angles. A function is conformal wherever it has nonzero derivative.

**Definition 1.0.8.** Given a topological space X and a point p (or a set S), a <u>neighborhood</u> of p (or S) is any open set  $T \subset X$  containing p (or S).

**Definition 1.0.9.** For U open and  $\varphi : U \to X$  a homeomorphism (a chart), the set  $(U, \varphi)$ , abbreviated to just U, is termed a coordinate neighborhood.

**Definition 1.0.10.** A <u>Riemann surface</u> is a set X with the properties:

- **1.**  $X = \bigcup_{\alpha} U_{\alpha}$  where all  $U_{\alpha}$  are coordinate neighborhoods
- **2.** For each  $U_{\alpha}$  there exists a bijection  $\varphi_{\alpha}: U_{\alpha} \to V_{\alpha}$  for  $V_{\alpha} \subset \mathbb{C}$  open **3.**  $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$  is a bijection from  $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$  to  $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$  and
  - a conformal mapping for each  $(\alpha, \beta)$

The function  $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$  above is termed a <u>transition</u> function.

Theorem 1.0.11. [IMPLICIT FUNCTION THEOREM]

Let  $f: U \to \mathbb{C}$  for  $U \subset \mathbb{C}$  be a function on two variables  $z_1, z_2$ . Suppose that  $\frac{\partial f}{\partial z_1}\Big|_p \neq 0$  at  $p = (p_1, p_2) \in U$ and f(p) = 0. Then there exist open neighbourhoods  $U_1, U_2 \subset \mathbb{C}$  and a holomorphic map  $\varphi: U_1 \to U_2$  such that  $\{(z, \varphi(z)) \mid z \in U_1\} = \{(z_1, z_2) \mid f(z_1, z_2) = 0\} \cap (U_1 \cup U_2).$ 

# 2 Framework of Riemann surfaces

#### 2.1 Basic configuration

**Definition 2.1.1.** A topological space X is termed <u>compact</u> if  $X = \bigcup_j U_j \implies$  there exist  $j_1, \ldots, j_k$  such that  $X = U_{j_1} \cup \cdots \cup U_{j_k}$  for  $U_j$  open sets.

**Definition 2.1.2.** The Riemann sphere is  $\overline{\mathbb{C}} := \mathbb{C}^2 \cup \{\infty\}$ . It is a compact Riemann surface.

**Definition 2.1.3.** A <u>lattice</u> is a set  $\Gamma = \{n_1w_1 + \dots + n_kw_k \mid n_1, \dots, n_k \in \mathbb{N} \text{ and } w_1, \dots, w_k \in \mathbb{C} \setminus \{0\}\}.$ 

Theorem 2.1.4. [INVERSE FUNCTION THEOREM]

If a function  $f: X \to X$  has a non-zero derivative at 0, then there exists a neighborhood  $U \subset X$  such that  $f^{-1}: f(U) \to U$  is also smooth.



**Definition 2.1.5.** A Riemann surface X is <u>not connected</u> if  $X = U \cup V$  and  $U \cup V \neq \emptyset$  for U, V open nonempty sets.

**Definition 2.1.6.** Define the set  $\Gamma = \{n_1w + n_2z \mid n_1, n_2 \in \mathbb{Z}\}$  for some  $w, z \in \mathbb{C} \setminus \{0\}$  to be a <u>lattice</u>. Note that  $\Gamma$  is a subgroup of  $\mathbb{C}$ . Define  $X = \mathbb{C} / \Gamma = \{$ equivalence classes of  $x \in X \mid z \sim w \iff z - w \in \Gamma \}$  to be an elliptic curve.

#### 2.2 Holomorphic functions

**Definition 2.2.1.** A function  $f: X \to \mathbb{C}$  is termed <u>holomorphic</u> if for each  $U_{\alpha}$  the following composition is well-defined:



**Proposition 2.2.2.** If X is a compact and connected Riemann surface, then any holomorphic function  $f: X \to \mathbb{C}$  is constant.

**Definition 2.2.3.** A function f has a pole at p if there exists a coordinate neighborhood  $U_{\alpha} \ni p$  with  $U\alpha \xrightarrow{\varphi_{\alpha}} V_{\alpha}$  such that  $f \circ \varphi_{\alpha}^{-1}$  has a pole at  $\varphi_{\alpha}(p)$ .

**Definition 2.2.4.** A meromorphic function on X is a function  $f: X \setminus S \to \mathbb{C}$  where  $S \subset X$  is a nonempty set without cluster points and f has, at worst, poles at points of S.

**Remark 2.2.5.** Any meromorphic function on  $\overline{\mathbb{C}}$  is a rational function of z.

**Theorem 2.2.6.** If f is meromorphic on  $\overline{\mathbb{C}}$ , then (# of zeros of f) = (# of poles of f counting multiplicities). The same holds if f is meromorphic on X an elliptic curve.

# 3 Complex projective planes

**Definition 3.0.7.** The complex projective plane is a 2-dimensional complex projective (and topological) space described by 3 complex coordinates:  $\mathbb{C}P^2 = \{(z_0 : z_1 : z_2) \mid z_0 \neq 0 \text{ or } z_1 \neq 0 \text{ or } z_2 \neq 0\}$ 

The coordinates  $(z_0 : z_1 : z_2)$  are termed homogeneous coordinates. They are uniquely defined up to scalar multiplication, i.e. (1 : 2 : 5) = (4 : 8 : 20).

**Remark 3.0.8.** The complex plane may be embedded in  $\mathbb{C}P^2$  three separate ways:

$$\begin{array}{rcl} \mathbb{C}_{0}^{2} & = & \{(1:z:w)\} \\ \mathbb{C}_{1}^{2} & = & \{(z:1:w)\} \\ \mathbb{C}_{2}^{2} & = & \{(z:w:1)\} \end{array} \right\} \subset \mathbb{C}P^{2} \\ \end{array}$$

Moreover, we have that  $\mathbb{C}^2 \simeq \mathbb{C}P^2$ .

Also, we may described this space as  $\mathbb{C}P^2 = \{ \text{lines in } \mathbb{C}^3 \text{ passing through the origin} \}$ .

**Definition 3.0.9.** The set  $\{(z_0, z_1, z_2) \mid p_0 z_0 + p_1 z_1 + p_2 z_2 = 0\}$  with at least one  $p_i \neq 0$  is a line in  $\mathbb{C}P^2$ .

#### 3.1 Differential forms

**Definition 3.1.1.** Let  $F(z_0, z_1, z_2)$  be a function in three variables, Then Euler's identity is given as

$$dF = z_0 \frac{\partial F}{\partial z_0} + z_1 \frac{\partial F}{\partial z_1} + z_2 \frac{\partial F}{\partial z_2}$$

**Definition 3.1.2.** Let  $U \subset \mathbb{C}$  be open. A holomorphic 1-form on U is an expression  $\omega = f(z)dz$  for f a holomorphic function on U. Then  $\omega$  is a holomorphic 1-form in the coordinate z.

**Definition 3.1.3.** Let X be a Riemann surface with  $X = \bigcup U_{\alpha}$  and coordinate neighborhoods  $z_{\alpha} : U_{\alpha} \to \mathbb{C}$ . Then a holomorphic 1- form on X is a collection of holomorphic 1-forms  $\{\omega_{\alpha}\}$ , one for each  $z_{\alpha}$ . If  $U_{\alpha} \cap U_{\beta} \neq \emptyset$ , then  $f_{\alpha}(z_{\alpha})dz_{\alpha} = f_{\alpha}(z_{\alpha})\frac{dz_{\alpha}}{dz_{\beta}}dz_{\beta} = f_{\beta}(z_{\beta})dz_{\beta}$ .

**Remark 3.1.4.** There are no non-zero holomorphic forms on  $\overline{\mathbb{C}}$ .

**Definition 3.1.5.** Let  $f: Y \to X$  be a holomorphic function of Riemann surfaces. Let  $\omega$  be a meromorphic form on X. Then the inverse image of  $\omega$  is  $\varphi^*\omega$ . In local coordinates,  $z = \varphi(\omega)$  with  $\varphi^*(f(z)dz) = f(z(\omega))\varphi'(\omega)$ .

**Definition 3.1.6.** Given two 1-forms  $\omega = f_1 dz_1 + \cdots + f_n dz_n$  and  $\eta = g_1 dz_1 + \cdots + g_n dz_n$  on an *n*-dimensional manifold, define their distributive product by

$$\omega \wedge \eta = (f_1 dz_1 + \dots + f_n dz_n) \wedge (g_1 dz_1 + \dots + g_n dz_n)$$

with the following properties:

i.  $dz_k \wedge dz_k = 0$ ii.  $dz_k \wedge dz_\ell = -dz_\ell \wedge dz_k$ 

#### 3.2 Poincaré residue

**Definition 3.2.1.** Let  $X = \{(z_1, \ldots, z_n) \mid f(z_1, \ldots, z_n) = 0\}$  be a Riemann surface with  $f : \mathbb{C}^n \to \mathbb{C}$  holomorphic. Given a differential form  $\omega = g \, dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n$ , the residue of  $\omega$  on X is the second expression in the product

$$\omega = \frac{df}{f} \wedge (g_1 dz_1 + \dots + g_n dz_n)$$

and is denoted  $\operatorname{res}_X(\omega)$ .

**Definition 3.2.2.** Given a piecewise smooth path  $\gamma([a:b]) \subset X$  for  $X = \bigcup U_{\alpha}$  a Riemann surface and  $\omega$  a differential 1-form, the integral of  $\omega$  is

$$\int_{\gamma} \omega = \int_{[a_0:a_1]} \omega + \dots + \int_{[a_{n-1}:a_n]} \omega$$

for a division  $a = a_0 < a_1 < \cdots < a_n = b$  of [a:b] such that  $[a_j, a_{j+1}] \subset U_\beta$  for some  $\beta$  and for all j.

Theorem 3.2.3. [CAUCHY]

If  $\gamma_1$  is homotopic to  $\gamma_2$ , then  $\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$  for any differential 1-form  $\omega$ .

**Remark 3.2.4.** Let X be a Riemann surface,  $\omega$  a meromorphic differential form on X,  $p \in X$  a pole of  $\omega$  and  $\gamma \in X$  a closed path in X that only encircles one pole of  $\omega$ , namely p. Then

$$\operatorname{res}_p(\omega) = \frac{1}{2\pi i} \int_{\gamma} \omega$$

**Proposition 3.2.5.** Let X be a Riemann surface,  $\omega$  a meromorphic differential form on X,  $p \in X$  a pole of  $\omega$  and z be a local coordinate at p such that z(p) = 0. Then

$$\omega = \left(\sum_{k=-N}^{\infty} c_k z^k\right) dz \quad \Longrightarrow \quad \operatorname{res}_p(\omega) = c_{-1}$$

**Proposition 3.2.6.** If  $\omega$  is a meromorphic form on a compact Riemann surface X, then  $\sum_{p \in X} \operatorname{res}_p(\omega) = 0$ .

### 3.3 Triangulation

**Theorem 3.3.1.** Suppose that X is a compact Riemann surface. Then X may be presented as a disjoint union of a finite number of sets of vertices, edges and faces, such that

- **1.** Each vertex is a point
- 2. Each edge is homeomorphic to an open line segment
- 3. Each face is homeomorphic to the interior of a triangle
- 4. The closure of an edge includes the edge and both vertex endpoints
- 5. The closure of a face includes that face, all three bordering edges and all three bordering vertices
- 6. Each edge is a piecewise smooth curve

This is termed a triangulation of X.

Theorem 3.3.2. Each compact Riemann surface is homeomorphic to a "sphere with handles."

**Definition 3.3.3.** The sphere is a sphere with 0 handles. To attach a handle, remove the interior of two disjoint disks on a surface and attach ends of a cylinder to the disks. The number of handles g of a surface is termed the genus of the surface.

**Theorem 3.3.4.** If a surface X has genus g and is triangulated with e edges, v vertices and f faces, then

$$v - e + f = 2g - 2$$

**Proposition 3.3.5.** Let f be a meromorphic function on  $\mathbb{C}P^n$  in n variables. Then the zeros and poles of f are (n-1)-dimensional surfaces.

# 4 Ramification

### 4.1 Holomorphic functions

**Definition 4.1.1.** Let  $U \subset \mathbb{C}$  be open and connected, and  $f : U \to \mathbb{C}$  a holomorphic and non-constant function with  $a \in U$  such that f'(a) = 0. Then f is said to <u>ramified</u> at a.

Further, if f around a is given by  $f(a) = b + c_k(z-a)^k + c_{k+1}(z-a)^{k+1} + \cdots$  for k the smallest index such that  $c_k \neq 0$ , then k is termed the <u>ramification index</u> of f at a.

**Proposition 4.1.2.** With respect to the above conditions, the ramification index of f at a is k if and only if there exist punctured neighborhoods of a where f is k-to-1.

**Definition 4.1.3.** Let  $f: X \to Y$  be a non-constant, holomorphic map of Riemann surfaces with  $a \in X$ . Then f is <u>ramified</u> at a with index n if and only if it is ramified in some local coordinates at a with index n.

Denote the set of ramification points by  $R = \{a \in X \mid f \text{ is ramified on } X \text{ at } a\}$ .

**Proposition 4.1.4.** Suppose X, Y are compact, connected Riemann surfaces with  $f : X \to Y$  holomorphic and non-constant. Then exactly one of the following hold:

**i.** f(X) = Y

ii. there exist a finite number of ramification points of f

**Proposition 4.1.5.** Let  $B = f(R) \subset Y$ . Then  $f|_{X \setminus f^{-1}(B)} : X \setminus f^{-1}(B) \to Y \setminus B$  is a covering.

That is, for each  $y \in Y \setminus B$ , there exists a neighborhood  $U \ni y$  with  $U \cap B = \emptyset$  such that  $f^{-1}(U) = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_d$  with  $V_i \subset X \setminus f^{-1}(B)$  open and  $f|_{V_i} : V_i \to U$  an isomorphism for each *i*.

**Theorem 4.1.6.** Let X, Y be manifolds with  $f: X \to Y$  a continuous function such that:

**1.** For each  $x \in X$ , there exist open sets  $V \ni x$  with  $f|_V : V \to f(V)$  homomorphisms and  $f(V) \subset Y$ 

**2.** If  $K \subset Y$  is compact, then  $f^{-1}(K) \subset X$  is also compact

Then R is a covering.

**Corollary 4.1.7.** If  $y \in Y \setminus B$ , then  $\#(f^{-1}(y))$  does not depend on y and is termed the degree of f.

**Proposition 4.1.8.** Let  $f: X \to Y$  be a holomorphic, non-constant map of compact Riemann surfaces with deg(f) = d. For  $y \in Y$ , we have  $f^{-1}(y) = \{x_1, \ldots, x_m\}$  for  $1 \leq m \leq d$ . Then

$$\sum_{i=1}^{m} \left( \begin{array}{c} \text{ramification} \\ \text{index of } f \text{ at } x_i \end{array} \right) = d = \deg(f)$$

Note that if f is not ramified at some  $x_i$ , then its ramification index is 1.

Theorem 4.1.9. [RIEMANN-HURWITZ]

Let  $f: X \to Y$  be a non-constant holomorphic mapping of compact Riemann surfaces X, Y. Suppose that  $R = \{x_1, \ldots, x_n\}$  with  $e_i = (\text{ramification index of } f \text{ at } x_i)$  and  $\deg(f) = d$ . Then

$$2 - 2g(X) = d(2 - 2g(Y)) - \sum_{i=1}^{r} (e_i - 1)$$

### 4.2 Divisors

**Definition 4.2.1.** Given a compact Riemann surface X, a <u>divisor</u>  $\mathcal{D}$  is a finite formal linear combination of points of X with integer coefficients

$$\mathcal{D} = \sum_{j} n_j p_j \quad \text{for } n_j \in \mathbb{Z}, p_j \in X$$

**Definition 4.2.2.** Let  $f: X \to Y$  be a meromorphic function. Then a principal divisor is denoted by

$$(f) = \sum_{p \in X} \operatorname{ord}_p(f) \cdot p$$

**Definition 4.2.3.** The degree of a divisor  $\mathcal{D} = \sum_{j} n_j p_j$  is deg $(\mathcal{D}) = \sum_{j} n_j \in \mathbb{Z}$ .

**Proposition 4.2.4.** If  $\mathcal{D}$  is a principal divisor, then deg $(\mathcal{D}) = 0$ .

**Proposition 4.2.5.** For functions f, g over identical spaces, (fg) = (f) + (g). Moreover, the sum of principal divisors is a principal divisor.

**Definition 4.2.6.** Two divisors  $\mathcal{D}_1, \mathcal{D}_2$  are termed equivalent if  $\mathcal{D}_1 - \mathcal{D}_2$  is principal, and is denoted  $\mathcal{D}_1 \sim \mathcal{D}_2$ . This is an equivalence relation.

**Remark 4.2.7.** If  $\mathcal{D}_1 \sim \mathcal{D}_2$ , then deg $(\mathcal{D}_1) = deg(\mathcal{D}_2)$ .

Proposition 4.2.8. On the Riemann sphere, every divisor of degree 0 is principal.

**Proposition 4.2.9.** On the Riemann sphere, given a finite set  $\{p_1, \ldots, p_n\}$  with principal parts at each  $p_i$  fixed, there exists a meromorphic function with poles at each  $p_i$  and principal parts as given, and no other poles.

#### 4.3 Effective and canonical divisors

**Definition 4.3.1.** Let  $\mathcal{D}$  be a divisor. Then  $L(\mathcal{D}) = \{f \mid f \text{ is meromorphic on } X \text{ and } (f) + \mathcal{D} \ge 0\}$ . We write  $\mathcal{D} \ge 0 \iff n_j \ge 0$  for all j where  $\mathcal{D} = \sum_j n_j p_j$ . Such a divisor  $\mathcal{D}$  is termed <u>effective</u>.

**Proposition 4.3.2.** If  $\mathcal{D} \ge 0$ , then  $\dim(L(\mathcal{D})) \le \deg(\mathcal{D}) + 1$ .

**Definition 4.3.3.** If  $\omega$  is a meromorphic form on X, then the following divisor is termed <u>canonical</u>.

$$(\omega) = \sum_{p \in X} \operatorname{ord}_p(\omega) \cdot p$$

**Proposition 4.3.4.** Given a compact Riemann surface X, any two canonical divisors are equivalent. They then belong to a common <u>canonical class</u>.

**Proposition 4.3.5.** If X is a compact Riemann surface of genus g, then deg(canonical class) = 2g - 2.

**Proposition 4.3.6.** If  $\mathcal{D}_1 \sim \mathcal{D}_2$ , then  $L(\mathcal{D}_1) = L(\mathcal{D}_2)$ .

**Proposition 4.3.7.** If K is a canonical divisor, then  $L(K) \simeq \begin{pmatrix} \text{space of holomorphic} \\ \text{forms on } X \end{pmatrix}$ .

Corollary 4.3.8. The space of holomorphic forms on X is always finite-dimensional.

Further on, for any divisor  $\mathcal{D}$ , denote dim $(L(\mathcal{D})) = \ell(\mathcal{D})$ .

**Theorem 4.3.9.** For K a canonical divisor,  $\ell(K) = g$ .

**Theorem 4.3.10.** [RIEMANN, ROCH] For K a canonical divisor,

$$\ell(\mathcal{D}) = \deg(\mathcal{D}) + 1 - g + \ell(K - \mathcal{D})$$

**Proposition 4.3.11.** Suppose that f is a meromorphic function on a Riemann surface X. If  $a \in X$  is a zero or pole of f, then df/f has a simple pole at a and  $\operatorname{res}_a(df/f) = \operatorname{ord}_a(f)$ .

**Proposition 4.3.12.** Let  $\Omega(X) = \{\omega \mid \omega \text{ is a holomorphic form on } X\}$ . Then dim $(\Omega(X)) = g(X)$ .

**Proposition 4.3.13.** If g(X) = 0, then  $X \simeq \overline{\mathbb{C}}$ .

**Definition 4.3.14.** Let X be a Riemann surface defined by  $X = \{(z, w) \mid w^2 = (z-a_1)(z-a_2)\cdots(z-a_n)\}$ . For  $n \ge 4$ , X is termed a hyperelliptic curve.

**Proposition 4.3.15.** For X a Riemann surface, if g(X) > 0 and  $p \in X$ , then  $\ell(p) = 1$ .

Moreover,  $\ell((n+1) \cdot p) \ge \ell(n \cdot p)$  for  $n \in \mathbb{Z}_{\ge 0}$ .

**Proposition 4.3.16.** If X is a compact Riemann surface of genus g with  $\deg(\mathcal{D}) > 2g - 2$ , then  $\ell(\mathcal{D}) = \deg(\mathcal{D}) + 1 - g$ .

# 5 Linear systems

### 5.1 Separation of points

**Definition 5.1.1.** For  $\mathcal{D}$  a divisor on X with  $\ell(\mathcal{D}) > 0$ , the complete linear system defined by  $\mathcal{D}$  is

$$|\mathcal{D}| = \{ \mathcal{D}' \mid \mathcal{D}' \ge 0, \mathcal{D}' \sim \mathcal{D} \}$$

**Definition 5.1.2.**  $|\mathcal{D}| = P(L(\mathcal{D})) = \left(L(\mathcal{D}) \setminus \{0\}\right) / \mathbb{C}^*$ 

Remark 5.1.3.

1.  $\mathcal{D}_1 \sim \mathcal{D}_2 \implies |\mathcal{D}_1| = |\mathcal{D}_2|$ 2. If  $\mathcal{D}$  is effective, then  $\mathcal{D} \in |\mathcal{D}|$ 

**Corollary 5.1.4.** The space of ordered *n*-tuples of points of  $\mathbb{S}^2$  is homeomorphic to  $\mathbb{C}P^n$ .

**Definition 5.1.5.** Let  $|\mathcal{D}|$  be a complete linear system. A point  $p \in X$  is termed a <u>basepoint</u> of  $|\mathcal{D}|$  if  $\mathcal{D}' \ge p$  for all  $\mathcal{D}' \in |\mathcal{D}|$ .

**Definition 5.1.6.** If X is a Riemann Surface with genus > 1 and  $K_X$  is its canonical class, then  $|K_X|$  is termed a canonical linear system.

**Proposition 5.1.7.** If  $g \ge 1$  for a Riemann surface X, then  $|K_X|$  has no basepoints.

**Theorem 5.1.8.** A divisor  $\mathcal{D}$  has no basepoints  $\iff \ell(\mathcal{D}-p) = \ell(\mathcal{D}) - 1$  for all  $p \in X$ .

**Definition 5.1.9.** Define the following mapping for a Riemann surface X and a divisor  $\mathcal{D}$ :

 $\varphi_{|\mathcal{D}|}: X \to \mathbb{C}P^n = |\mathcal{D}|^* \quad \text{by} \quad x \mapsto \{\mathcal{D}' \mid \mathcal{D}' \in |\mathcal{D}|, \mathcal{D} \geqslant x\}$ 

We note that if  $\mathcal{D}$  has no basepoints, then this mapping is well-defined. Moreover, if  $\mathcal{D}$  has no basepoints, then it defines a holomorphic mapping into projective space.

**Proposition 5.1.10.** If  $L(\mathcal{D}) = \langle f_0, \ldots, f_n \rangle$ , then  $\varphi_{|\mathcal{D}|} : x \mapsto (f_0(x) : \cdots : f_n(x))$ 

**Proposition 5.1.11.** If  $\mathcal{D}$  has no basepoints, then  $\varphi_{|\mathcal{D}|}$  is injective  $\iff$  for all  $p \neq q$ ,  $\ell(\mathcal{D}-p-q) = \ell(\mathcal{D})-2$ .

**Definition 5.1.12.** Let  $X = \overline{\mathbb{C}}$  and  $\mathcal{D}$  be a divisor of X with  $\deg(\mathcal{D}) = n > 1$ . Note that  $\mathcal{D}$  does not have basepoints, and  $\varphi_{|\mathcal{D}|} : X \to \mathbb{C}P^2$  is injective. Then  $\varphi_{|\mathcal{D}|}(X) = X_n$  is termed a <u>rational normal curve</u>, or <u>Veronese curve</u>.

#### 5.2 Separation of tangent vectors

**Definition 5.2.1.** Let  $\varphi : X \to \mathbb{C}^n$  be a map of a Riemann surface  $X \subset \mathbb{C}$  with  $\varphi : z \mapsto (\varphi_1(z), \dots, \varphi_n(z))$ . Then  $\varphi'(z) = (\varphi'_1(z), \dots, \varphi'_n(z))$  is termed degenerate at  $p \in X$  if  $\varphi'_1(p) = \dots = \varphi'_n(p) = 0$ .

**Proposition 5.2.2.** The derivative of  $\varphi_{|\mathcal{D}|}$  is non-degenerate at  $p \in X \iff \ell(\mathcal{D} - 2p) = \ell(\mathcal{D}) - 2$ .

**Theorem 5.2.3.** If  $|\mathcal{D}|$  is a complete linear system without basepoints and  $\ell(\mathcal{D} - p - q) = \ell(\mathcal{D}) - 2$  for all  $p, q \in X$ , then  $\varphi_{|\mathcal{D}|} : X \to P^{\dim(|\mathcal{D}|)}$  is an embedding, and  $\varphi_{|\mathcal{D}|}(X)$  is a smooth curve.

**Proposition 5.2.4.** Suppose that X is a compact Riemann surface,  $\mathcal{D}$  is a divisor of X with deg $(\mathcal{D}) \gg 0$ . Then  $\mathcal{D}$  has no basepoints and  $\varphi_{|\mathcal{D}|}$  embeds X as a smooth curve.

**Proposition 5.2.5.**  $\varphi_{|\mathcal{D}|}$  is not an embedding  $\iff$  there exists a  $\mathcal{D}$  such that  $\deg(\mathcal{D}) = 2$  and  $\ell(\mathcal{D}) = 2$ . In this case X is a hyperelliptic curve.

**Corollary 5.2.6.**  $|K_X|$  does not define an embedding  $\iff X$  is a hyperelliptic curve.

**Remark 5.2.7.** If g > 2, then a Riemann surface of genus g is not hyperelliptic. Moreover, if X is not hyperelliptic, then  $\varphi_{|K_X|} : X \hookrightarrow \mathbb{C}P^{g-1}$  is an embedding, and  $\deg(\varphi_{|K_X|}(X)) = 2g - 2$ . Here  $\varphi_{|K_x|}$  is termed a <u>canonical curve</u>.

**Proposition 5.2.8.** A Riemann surface of genus 1 is isomorphic to an elliptic curve.

**Definition 5.2.9.** Define the Weierstrass p-function to be  $\wp : X \to \mathbb{R}$ , given by

$$\wp(z) = \frac{1}{z^2} + \sum_{\gamma \in \Gamma \setminus \{0\}} \left( \frac{1}{(z-\gamma)^2} - \frac{1}{\gamma^2} \right)$$

Note that this function converges on  $X = \mathbb{C}/\Gamma$  an elliptic curve.

**Theorem 5.2.10.** [PROPERTIES OF THE *p*-FUNCTION]

1. 
$$\wp(z) = \wp(-z)$$
  
2.  $\wp'(z) = -\wp'(-z)$   
3.  $\wp'(z) = -2\sum_{\gamma \in \Gamma} \frac{1}{(z - \gamma)^3}$   
4.  $\wp'(z + \alpha) = \wp'(\alpha)$  for all  $\alpha \in \Gamma$   
5.  $\wp(z + \alpha) = \wp(\alpha)$  for all  $\alpha \in \Gamma$ 

**Theorem 5.2.11.** Let  $X = \mathbb{C}/\Gamma$  for  $\Gamma = \langle \omega_1, \omega_2 \rangle$  a lattice. Then  $\wp'(z)$  has three distinct zeros on X.

The value of  $\wp$  at these points is denoted:

$$e_1 = \wp\left(\frac{\omega_1}{2}\right)$$
  $e_2 = \wp\left(\frac{\omega_2}{2}\right)$   $e_3 = \wp\left(\frac{\omega_1 + \omega_2}{2}\right)$ 

Moreover,

$$(\wp'(z))^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3)$$

### 5.3 Embeddings

**Remark 5.3.1.** Let X be the space of homogeneous polynomials of degree d in m variables. Then  $\dim(X) = \begin{pmatrix} d+m-1 \\ d \end{pmatrix}$ .

**Proposition 5.3.2.** Let X be a compact Riemann surface. For n > 3, X may be embedded in  $\mathbb{C}P^{n-1}$ .

**Proposition 5.3.3.** Let  $X = \mathbb{C}/\Gamma$  be an elliptic curve for  $\Gamma$  a lattice. Then X is isomorphic to the Riemann surface  $Y = \{(x, y) \mid y^2 = 4(x - e_1)(x - e_2)(x - e_3)\}$  for  $e_i$  as above.

**Remark 5.3.4.** A Riemann surface of genus 1 is isomorphic to a cubic curve. Any Riemann surface of genus 2 is a hyperelliptic curve.

**Proposition 5.3.5.** If  $\mathcal{D} \ge 0$ , then  $\ell(\mathcal{D}) = \deg(\mathcal{D})$ .

Note the following new notation on divisors of a Riemann surface X. The sets below are groups with the group operation of addition.

- $\cdot \operatorname{Div}(X) = \{ \text{all divisors on } X \}$
- $\cdot \operatorname{Div}^{0}(X) = \{ \mathcal{D} \in \operatorname{Div}(X) \mid \operatorname{deg}(\mathcal{D}) = 0 \}$
- · Principal $(X) = \{ \mathcal{D} \in \text{Div}(X) \mid \mathcal{D} \text{ is principal} \}$
- $\cdot \operatorname{Pic}^{0}(X) = \operatorname{Div}^{0}(X)/\operatorname{Principal}(X)$ , the Picard group

#### 5.4 Elliptic curves

Theorem 5.4.1. [ABEL, JACOBI]

Let +, - denote operations for points of a divisor. Let  $\oplus, \ominus$  denote operations on group elements in  $\mathbb{C}/\Gamma$ .

Suppose that  $\mathcal{D} = m_1 a_1 + \cdots + m_k a_k$  is a divisor on  $X = \mathbb{C}/\Gamma$  with  $m_j \in \mathbb{Z}, a_j \in X$ , and  $\deg(\mathcal{D}) = m_1 + \cdots + m_k = 0$ . Then  $\mathcal{D}$  is principal  $\iff m_1 a_1 \oplus \cdots \oplus m_k a_k = 0$ .

**Corollary 5.4.2.** If  $X = \mathbb{C}/\Gamma$ , then  $\operatorname{Pic}^0(X) \simeq X$ .

**Theorem 5.4.3.**  $\operatorname{Pic}^{0}(X) = \mathbb{C}^{g}/\Gamma$  for  $\Gamma \subset \mathbb{C}^{g}$  a lattice of rank 2g.

**Definition 5.4.4.** Let  $k \in \mathbb{Z}_{\geq 2}$  and  $\Gamma \subset \mathbb{C}$  a lattice. Then  $G_k := \sum_{\gamma \in \Gamma \setminus \{0\}} \frac{1}{\gamma^{2k}}$  is termed an <u>Eisenstein series</u>.

**Remark 5.4.5.** By rewriting  $\wp$  in terms of Eisenstein series, the following conclusions are reached:

$$(\wp'(z))^2 = 4\wp^3(z) - 60G_2\wp(z) + 140G_3$$
$$e_1 + e_2 + e_3 = 0$$
$$e_1e_2 + e_1e_3 + e_2e_3 = -15G_2$$
$$e_1e_2e_3 = 20G_3$$

**Definition 5.4.6.** Let  $C \subset \mathbb{C}P^n$  be a smooth curve of degree d, and L a line in  $\mathbb{C}P^n$ . If  $L \cap C = \{q\}$  and the divisor  $L \cap C = d \cdot q$ , then q is termed an inflection point of C.

**Proposition 5.4.7.** Let C be as above, and  $q_1, q_2$  two inflection points of C. Then the line that passes through  $q_1$  and  $q_2$  also passes through a distinct third inflection point of C.

**Proposition 5.4.8.** Let  $\Gamma$  be a lattice on  $\mathbb{C}$  and  $f : X \to X \subset \mathbb{C}$  a holomorphic map with a fixed point f(0) = 0. Then there exists  $\lambda \in \mathbb{C}$  such that  $f(z) = \lambda z \pmod{\Gamma}$ .

**Proposition 5.4.9.** Let  $X_1 = \mathbb{C}/\Gamma_1$  and  $X_2 = \mathbb{C}/\Gamma_2$  be two elliptic curves. Then  $X_1 \simeq X_2 \iff$  there exists non-zero  $\lambda \in \mathbb{C}$  such that  $\lambda \Gamma_1 = \Gamma_2$ .

# 6 Line bundles

### 6.1 Construction

**Definition 6.1.1.** Suppose that X is a complex manifold with  $U \subset X$  open. A <u>line bundle</u> on X is both: **1.** A complex manifold T, the "total space" of the bundle

**2.** A holomorphic mapping  $\pi: T \to X$ , the "projection"

that satisfies the following conditions:

- **a.**  $\Phi$  is an isomorphism such that  $\pi' \circ \Phi = \tilde{\pi}$
- **b.** For each  $y \in U$ ,  $\Phi(\pi^{-1}(y)) = (\pi')^{-1}(y)$
- **c.** For each  $x \in X$ ,  $\pi^{-1}(x) \simeq \mathbb{C}$  and  $0 \in \pi^{-1}(x)$

This may be envisioned as the following graph that commutes:



Moreover, the function  $\Phi$  is termed the <u>local trivialization</u>.

**Definition 6.1.2.** Consider two domains  $U, V \subset X$  with local trivializations over them:

$$\Phi_U : \pi^{-1}(U) \to U \times \mathbb{C}$$
$$\Phi_V : \pi^{-1}(V) \to V \times \mathbb{C}$$

Then for all  $x \in U \cap V$ , both functions are defined, and they differ by a linear automorphism given by

$$\Phi|_{\pi^{-1}(x)} = g_{UV} \Phi_V(x)$$

The functions of the type  $g_{_{UV}}$  are termed <u>transition functions</u> of the line bundle.

Proposition 6.1.3. [THE COCYCLE CONDITION]

Let  $U, V, W \subset X$  and  $x \in U \cap V \cap W$ . Then  $g_{UW}(x) = g_{UV}(x)g_{VW}(x)$ .

**Proposition 6.1.4.** Suppose that X is a complex manifold and  $\bigcup U_j = X$  is an open covering with, for each  $i \neq j$  a holomorphic function  $g_{ij}: U_i \cap U_j \to \mathbb{C} \setminus \{0\}$  such that on  $U_i \cap U_j \cap U_k$  with  $k \notin \{i, j\}$ 

$$g_{ij}g_{jk} = g_{ik}$$
$$g_{ij}g_{ji} = 1$$

Then there exists a line bundle  $T \xrightarrow{\pi} X$  such that T has trivializations over each  $U_j$  for which the  $g_{ij}$  are transition functions.

**Remark 6.1.5.** The line bundle as constructed above is usually denoted  $\mathcal{O}_X(-1)$ .

### 6.2 Sections

**Definition 6.2.1.** A <u>section</u> of a line bundle  $\mathcal{O}_X(-1)$  is a holomorphic mapping  $s : X \to T$  such that  $\pi \circ s = \operatorname{id}_X$ . Note that if  $x \in X$ , then  $s(x) \in \pi^{-1}(x)$ .

If  $s_1, s_2$  are sections, then we may define addition of sections by  $(s_1 + s_2) : x \mapsto s_1(x) + s_2(x)$ .

**Definition 6.2.2.** Let  $s : X \to T$  be a section with  $x \in U \subset X$  and  $\Phi_U : \pi^{-1}(U) \to U \times \mathbb{C}$  the local trivialization. Then there exists a holomorphic function  $s_U : U \to \mathbb{C}$  such that

$$\Phi_U(s(x)) = (x, s_U(x))$$

Moreover, if  $x \in U \cap V$  for  $V \subset X$ , then

$$s_{U}(x) = g_{UV}(x)s_{V}(x)$$

**Proposition 6.2.3.** There is a 1-1 correspondence between sections of a given line bundle and collections of the holomorphic  $s_U : U \to \mathbb{C}$  with  $s_U = g_{UV} s_V$ .

**Remark 6.2.4.** Every section of  $\mathcal{O}_{\mathbb{C}P^n}(-1)$  is identically zero.

**Definition 6.2.5.** Suppose that L, M are line bundles on X with transition functions on  $\bigcup U_i$ 

$$g_{ij}: U_i \cap U_j \to \mathbb{C} \setminus \{0\} \quad \text{for } L$$
$$h_{ij}: U_i \cap U_j \to \mathbb{C} \setminus \{0\} \quad \text{for } M$$

Then the tensor product  $L \otimes M$  is the line bundle with transition functions  $g_{ij}h_{ij}$  over  $U_i \cap U_j$ 

**Definition 6.2.6.** Using the same notation as above,  $(\mathcal{O}_{\mathbb{C}P^n}(-1))^* = \mathcal{O}_{\mathbb{C}P^n}(1)$ .

#### 6.3 On Riemann surfaces

**Proposition 6.3.1.** (Sections of  $\mathcal{O}_X(\mathcal{D})$ )  $\simeq L(\mathcal{D})$ .

**Proposition 6.3.2.** Any line bundle on a compact Riemann surface X is of the form  $\mathcal{O}_X(\mathcal{D})$  for some divisor  $\mathcal{D}$ .

**Definition 6.3.3.** (The space of sections of a line bundle L on X) =  $H^0(X, L)$ . Here  $H^0$  denotes the 0th cohomology group.

**Proposition 6.3.4.** Suppose that  $S_1, S_2 \in H^0(X, \mathcal{O}_X(\mathcal{D}))$ . Then  $(S_1) \sim (S_2)$ .

**Remark 6.3.5.** Let  $L_1 = \mathcal{O}_X(\mathcal{D}_1)$  and  $L_2 = \mathcal{O}_X(\mathcal{D}_2)$ . Then  $L_1 \otimes L_2 = \mathcal{O}_X(\mathcal{D}_1 + \mathcal{D}_2)$ .

**Proposition 6.3.6.** Let  $\mathcal{D}$  be a divisor on a Riemann surface X. Then  $\mathcal{O}_X(\mathcal{D})$  is trivial  $\iff \mathcal{D}$  is principal.

**Proposition 6.3.7.** Let  $\mathcal{D}_1, \mathcal{D}_2$  be divisors on a Riemann surface X. Then the following are equivalent:

i. 
$$\mathcal{D}_1 \sim \mathcal{D}_2$$
  
ii.  $\mathcal{O}_X(\mathcal{D}_1) \simeq \mathcal{O}_X(\mathcal{D}_2)$   
iii.  $\mathcal{O}_X(\mathcal{D}_1) \otimes \mathcal{O}_X(\mathcal{D}_2)^{-1} = \mathcal{O}_X(\mathcal{D}_1 - \mathcal{D}_2)$  is trivial

**Corollary 6.3.8.** Line bundles are equivalence classes of divisors, with the canonical line bundle having sections of holomorphic forms.