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1 Spaces and operations

1.1 Continuity and metric spaces

Definition 1.1.1. Let f : R → R. Then f is termed continuous at x ∈ R if for set ε > 0 there exists
δ = δ(ε) > 0 such that |y − x| < δ =⇒ |f(y)− f(x)| < ε.

The same analog can be made with f : Rn → Rk, with√
(y1 − x1)2 + · · ·+ (yn − xn)2 < δ =⇒

√
(f(y)1 − f(x)1)2 + · · ·+ (f(y)k − f(x)k)2 < ε

Definition 1.1.2. A metric space (M,d) is a pair consisting of a set M and a function d : M ×M → R,
termed a metric, such that d has the following properties, for x, y, z ∈M :

1. d(x, y) = d(y, x)
2. d(x, y) > 0
3. d(x, y) = 0 ⇐⇒ x = y
4. d(x, y) 6 d(x, z) + d(z, y)

Example 1.1.3. Here are some examples of metrics:
· the Euclidean metric:

(Rn, de) for de(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

· the Manhattan metric:
(R2, dm) for dm(x, y) = |x1 − y1|+ |x2 − y2|

· the discrete metric:

(M,d) for d(x, y) =

{
1 x = y
0 x 6= y

Note that any function is continuous on the discrete metric.

Definition 1.1.4. The limit lim
n→∞

[xn] = x exists if and only if given ε > 0 there exists N = N(ε) such that

for all n > N , |xn − x| < ε.

Remark 1.1.5. Let ⇒ denote uniform convergence. Then

fn → f in C[a, b] ⇐⇒ fn ⇒ f in [a, b]

Definition 1.1.6. Let f : (M,dM )→ (N, dN ). Then f is continuous at x ∈M if for given ε > 0 there exists
δ = δ(ε) > 0 such that dM (x, y) < δ =⇒ dN (f(x), f(y)) for y ∈M .

Definition 1.1.7. The function f is continuous on a set U if f is continuous at every x ∈ U .

Remark 1.1.8.

(f cont. on U)
∧ (

lim
n→∞

[xn] = x
) ∧

(xn, x ∈ U) =⇒
(

lim
n→∞

[f(xn)] = f(x)
)

Definition 1.1.9. Define the open ball centred at p with radius r > 0 as Or(p) = {q
 d(p, q) < r}.

Definition 1.1.10. Let (M,d) be a metric space. A subset U ⊂ M is termed open if for all p ∈ U there
exists r > 0 such that Or(p) ⊂ U . The set U is closed if M \ U is open.

Definition 1.1.11. Let (M,d) be a metric space with N ⊂ M . Then (N, d|N ) is also a metric space, and
d|N is termed an induced metric.

Theorem 1.1.12. A function f : (M,dM ) → (N, dN ) is continuous ⇐⇒ f−1(U) ⊂ M is open, for all
U ⊂ N open.

Theorem 1.1.13. Let (M,dM ) be a metric space with {xn} ∈ M . Then lim
n→∞

[xn] = x ∈ M if and only if

for every open set U ∈M , there exists N ∈ N such that xn ∈ U for all n > N .
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1.2 Topological spaces

Definition 1.2.1. A topological space is a pair (X, τ) consisting of a set X and a set τ of subsets of X with
i. X, ∅ ∈ τ
ii. U, V ∈ τ =⇒ U ∩ V ∈ τ
iii. U, V ∈ τ =⇒ U ∪ V ∈ τ

X is termed a set of points, τ is termed a topology on X, and U ∈ τ is termed an open subset of X.
A set U ⊂ X is termed a closed subset if X \ U is open.

Definition 1.2.2. Let (M,dM ) be a metric space. Then a topology τ may be defined by stating U ∈ τ ⇐⇒
for all x ∈ U , there exists r > 0 such that Or(x) ∈ U . Then (M, τ) is a topological space, and τ is termed
an induced topology, specifically a topology on M induced by a metric d.

Definition 1.2.3. Consider (R, dEuclidean) a metric space and (X, τ)a topological space. Given some B ⊂ τ ,
if any U ∈ τ is such that U =

⋃
Uα for all Uα ∈ B, then B is termed a base of topology.

Definition 1.2.4. Suppose (X, τ) is a topological space with Y ⊂ X. Consider σ = {U ∩Y
 U ∈ τ}. Then

(Y, σ) is a topological space, and σ is termed a topology induced by inclusion.

Definition 1.2.5. A topological space (X, τ) is termed a Hausdorff space iff it has the following property:
For all x, y ∈ X with x 6= y, there exist open sets U 3 x and V 3 y in X such that U ∩ V = ∅.

Remark 1.2.6. Let F be a field and An an n-dimensional space over F. Then X ⊂ An is closed if and only
if X is a zero set of polynomials, that is, the solution set to a set of polynomials such that the polynomials
evaluate to zero. This is termed the Zavisky topology, and it is not Hausdorff.

1.3 Compactness

Definition 1.3.1. Let (X, τ) be a topological space with X =
⋃
Uα. Then X is termed compact if for

Uαi
∈ {Uα}, X =

⋃
Uαi

is a finite union.

Theorem 1.3.2. [Completeness axiom]
Let X,Y ⊂ R. Then for all x ∈ X, y ∈ Y with x > y, there exists c ∈ R such that x 6 c 6 y. In this case, c
is said to separate X and Y .

Theorem 1.3.3. Let I = [a, b] and I ⊃ I1 ⊃ · · · for Ii = [ai, bi]. Then

∞⋂
i=1

Ii 6= ∅.

Definition 1.3.4. Any open X 3 x is a neighborhood of x.

Definition 1.3.5. A topological space (X, τ) is connected if for all x, y ∈ X, there exists a path in X joining
them.

2 Geometry

2.1 Construction

For all the definitions below, we assume that (X, τ) is a topological space.

Definition 2.1.1. The cone over X is denoted C(X) = (X× [0, 1])/ ∼ where the equivalence relation brings
one end of the interval together to a point.

Definition 2.1.2. The suspension over X is denoted Σ(X) = X× [−1, 1]/ ∼ and consists of a cone on either
side of X.

Definition 2.1.3. A map f : X → Y is termed a homeomorphism if it is continuous and has a continuous

inverse map, f−1 : Y → X with f−1 ◦ f = id.
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Definition 2.1.4. An n-cell in X is Dn, the n-dimensional disk.

Definition 2.1.5. There are several classical surfaces, with labeled planarization diagrams presented below.

· ·

· ·OO

��
· ·

· ·

// //

OO // // OO

· ·

· ·

// //

OO // //

��
· ·  ``

Left to right, they are the Mobius strip, the torus, the Klein bottle, and the projective plane RP 2.

Definition 2.1.6. Given a topological object X and its defined construction with cells, the construction
only of k-cells is termed the k-skeleton of X, and denoted by Skk(X).

2.2 Triangulation

Definition 2.2.1. Let Σ be a surface and4 ⊂ R2. Then a triangulation T of Σ is the image of homeomorphic
maps ϕi : 4→ Σ such that for any vertex v of 4, ϕi(v) = ϕj(v) for i 6= j and for any edge e, ϕi(e) = ϕj(e)
for i 6= j.

Definition 2.2.2. Given a triangulation T of Σ, a subtriangulation T ′ is a triangulation of Σ such that T ′

has all the same (possibly more) vertices than T , and either the same edges as T , or subdivisions of those
edges.

Remark 2.2.3. Some facts about triangulations:
1. Any compact surface has a triangulation
2. Any two triangulations have a common subtriangulation

Definition 2.2.4. Let Σ be a surface and T a triangulation of Σ. For T , let
V − # of vertices
E − # of edges
F − # of faces

 Then the Euler characteristic of Σ is χ(Σ) = V − E + F .

Proposition 2.2.5. For a surface Σ, χ(Σ) does not depend on the choice of triangulation.

Proposition 2.2.6. The formula for the Euler characteristic holds for any polygons.

Remark 2.2.7. A surface Σ with g holes has χ(Σ) = 2− 2g.

Definition 2.2.8. On a given triangulation T , assign a choice of orientation to every triangle of T as follows.
The triangles on the left are compatible, whereas on the right they are incompatible.
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Definition 2.2.9. A surface Σ is termed orientable if there exists a triangulation of Σ of only compatible
triangles.

Definition 2.2.10. Given a surface X and its labeled planarization diagram, define the ordered sequence
of letters ω1ω2 · · ·ω2n with ωi ∈ {a, a−1, b, b−1, . . . , n, n−1} to be a development of X.

Theorem 2.2.11. Any compact surface without boundary has a development of one of the possible two
forms:

1. a1b1a
−1
1 b−11 · · · agbga−1g b−1g a sphere with g handles

2. a1a1b1b1 · · · anan a sphere with n Mobius bands

Definition 2.2.12. A connected sum of topologicl objects X,Y is created by removing a disk from each of
X,Y and identifying the resulting boundaries. This operation is denoted X#Y .

Theorem 2.2.13. For topological objects X,Y , χ(X#Y ) = χ(x) + χ(Y )− 2.
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2.3 Algebraic topology

Definition 2.3.1. Consider two topological spaces X,Y and maps f0, f1 : X → Y . Then equivalently:
1. f0 is homotopy equivalent to f1
2. there exists a homotopy between f0 and f1
3. there exists a continuous map g : X × [0, 1]→ Y such that g(x, 0) = f0(x) and g(x, 1) = f1(x)

Proposition 2.3.2. Homotopy equivalence is an equivalence relation and is denoted ∼.

Remark 2.3.3. Since ∼ is an equivalence relation, we may consider the quotient group

{f
 f : X → Y is continuous}

/
∼ = [X,Y ]

Then [X,Y ] is termed the set of homotopy equivalence classes of continuous maps from X to Y .

Definition 2.3.4. Define the homotopy groups by πk(Y ) = [Sk, Y ].

Theorem 2.3.5. [Fixed Point Theorem - Brouwer]
Any continuous map f : D2 → D2 has a fixed point. That is, there exists x ∈ D2 such that f(x) = x.

Definition 2.3.6. A continuous map r : X → A ⊂ X is termed a retract if r

A

= idA.

3 Structure classification

3.1 Fundamental group

Definition 3.1.1. For X a topological space, a continuous map γ : [0, 1]→ X is termed a curve or path.

Definition 3.1.2. A path γ : [0, 1]→ X is termed a loop if γ(0) = γ(1).

Definition 3.1.3. Let γ1, γ2 : [0, 1] → X be paths for X a topological space, with γ1(1) = γ2(0). Then
define the product of γ1 and γ2 to be the curve

γ1γ2 : [0, 1]→ X given by x 7→
{
γ1(2x) x ∈ [0, 12 ]
γ2(2x− 1) x ∈ ( 1

2 , 1]

If γ1 and γ2 are such that γ1(1) = γ2(0), then the two curves may be multiplied, or connected.

Remark 3.1.4. Any two loops may be connected.

Definition 3.1.5. Two curves γ1 and γ2 are termed equivalent if there exists a homotopy F : [0, 1]× [0, 1]→
X with F (0, x) = γ1(x) and F (1, x) = γ2(x). This relationship is denoted γ1 ∼ γ2.

An extra condition is required, that F (t, 0) = F (t, 1), or that the homotopy has fixed endpoints.

Definition 3.1.6. The set of equivalence classes generated by∼ is termed a fundamental group, or π1(X,x0).
Moreover, πn(X,x0) is the set of equivalence classes of maps γ : Sn → X with basepoint x0.

Theorem 3.1.7. Multiplication extends to equivalence classes, i.e. [γ1][γ2] = [γ1γ2].

Definition 3.1.8. Denote the curve γe : [0, 1]→ X, given by γe(x) = x0, to be the identity curve.

Definition 3.1.9. Given a curve γ : [0, 1] → X, denote the inverse of γ to be γ−1 : [0, 1] → X with
γ−1(x) = γ(1− x), so that γγ−1 = γ−1γ = γe.

Proposition 3.1.10. For X,Y topological spaces, X ∼ Y =⇒ π1(X,x0) ' π1(Y, y0).

Theorem 3.1.11. [Algorithm for computing fundamental group]
1. Find a cellular strucutre on X with one 0-cell, by combining path connected 0-cells.
2. In Sk1(X), attach a letter with orientation to each 1-cell; these letters are generators of π1.
3. Go along this path of 1-cells, get a sequence of letters which is the relation of π1.
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3.2 Covering spaces

Definition 3.2.1. A map f : Y → X is termed a covering if for all x ∈ X there exists an open neighborhood

U 3 x such that f−1(U) = U ×D for D the discrete space.

Here, X is the base, Y is the covering space, and f is the projection.

If D consists of n points for any x ∈ X, then f is termed an n-fold covering.

Remark 3.2.2. A covering map f : Y → X induces a homomorphism f∗ : π1(Y, x̃0)→ π1(X,x0) such that
x̃0 ∈ f−1(x0).

Definition 3.2.3. If γ is a path in X, then γ̂ ∈ f−1(γ) ⊂ Y is termed a lift of γ.

Proposition 3.2.4. As above, f∗ is surjective ⇐⇒ for all loops γ with basepoint x0, their lifts γ̂ are loops.
However, f∗ is always injective.

Definition 3.2.5. A covering map f : Y → X is termed regular if for any loop γ̂ ∈ Y , all lifts of its
projection f(γ̂) are loops.

Theorem 3.2.6. For any subgroup H ⊂ π1(X,x0), there exists a unique covering space Y such that
π1(Y, y0) ' H.

Definition 3.2.7. Given a covering p : Ỹ → Y and a continuous map f : X → Y , a map f̃ : X → Ỹ is
termed a lifting of f if p ◦ f̃ = f . This is described by:

X Y

Ỹ

f
//

f̃

??

p

��

Theorem 3.2.8. Let p : Ỹ → Y be a covering space. Let f : X → Y be a continuous map. Let X be
path connected and locally path connected. If f∗(π1(X,x0)) ⊂ p∗(π1(Ỹ , ỹ0)) where p(ỹ0) = y0 = f(x0), then
there exists a lift f̃ : X → Ỹ of f such that f̃(x0) = ỹ0.

Definition 3.2.9. Suppose we have a covering as above such that π1(Ỹ , ỹ0) = 0. Then Ỹ is termed a
universal covering.

Note that the universal cover covers any cover of the space.

3.3 Cellular approximation

Definition 3.3.1. Suppose we have a map f : X → Y of cellular space. Then, wrt to the maps f, f̃ as
above, f ∼ f̃ such that f̃(Skk(X)) ⊂ Skk(Y ).

Theorem 3.3.2. If we have a connected cell space X, then there exists a cell space X̃ such that X ∼ X̃,
but X̃ only has one 0-cell.

Corollary 3.3.3. Therefore for any connected X, Sk1(X) = S1 ∨ · · · ∨ S1.
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4 Handy tables

Complex X χ(X) π1(X)
S1 2 0
T 2 0 〈a, b〉
RP 1 1 〈a

 a2 = 1〉
Mb 0 〈a〉
Kl 0 〈a, b

 a2 = 1〉
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