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1 Spaces and operations

1.1 Continuity and metric spaces

Definition 1.1.1. Let f : R — R. Then f is termed continuous at = € R if for set € > 0 there exists
d =4d(e) > 0 such that |y — x| <d = |f(y) — f(z)| <e.

The same analog can be made with f : R” — R*, with
Vi =22+ (o —22)2 <6 = V(W = f@))? + -+ (Fy)e — f@)i)? <e

Definition 1.1.2. A metric space (M,d) is a pair consisting of a set M and a function d : M x M — R,
termed a metric, such that d has the following properties, for x,y,z € M:

1. d(z,y) =d(y,z)

2. d(z,y) >0

3. d(z,y) =0 <= z=y
4. d(z,y) < d(z,2) +d(z,y)

Example 1.1.3. Here are some examples of metrics:
- the Euclidean metric:
(Rn7 de) for de<xay) = \/($1 - 91)2 +-F (xn - yn)2
- the Manhattan metric:
(R?,dy) for dp(x,y) = |21 — y1] + |22 — vo|
- the discrete metric:
1 z=y

(M, d) ford(a:,y)z{ 0 w4y

Note that any function is continuous on the discrete metric.

Definition 1.1.4. The limit lim [z,] = z exists if and only if given € > 0 there exists N = N(e) such that

n—oo

foralln > N, |z, —z| <e.
Remark 1.1.5. Let = denote uniform convergence. Then
fo— fin Cla,b] < f, = fin [a,}]

Definition 1.1.6. Let f : (M,dy) — (N,dn). Then f is continuous at x € M if for given € > 0 there exists
d = 6(€) > 0 such that dys(z,y) <6 = dn(f(z), f(y)) for y € M.

Definition 1.1.7. The function f is continuous on a set U if f is continuous at every = € U.

Remark 1.1.8.
(f cont. on U) /\ ( lim [z,] = ac) /\ (Xn,zelU) = ( lim [f(z,)] = f(ac))

n—oo n— oo
Definition 1.1.9. Define the open ball centred at p with radius r > 0 as O,(p) = {q | d(p,q) <r}.

Definition 1.1.10. Let (M,d) be a metric space. A subset U C M is termed open if for all p € U there
exists > 0 such that O,(p) C U. The set U is closed if M \ U is open.

Definition 1.1.11. Let (M, d) be a metric space with N C M. Then (N, d|y) is also a metric space, and
d|n is termed an induced metric.

Theorem 1.1.12. A function f : (M,dy) — (N,dy) is continuous <= f~%(U) C M is open, for all
U C N open.

Theorem 1.1.13. Let (M, dys) be a metric space with {z,} € M. Then lim [z,] = 2 € M if and only if
n—oo
for every open set U € M, there exists NV € N such that z,, € U for all n > N.



1.2 Topological spaces

Definition 1.2.1. A topological space is a pair (X, 7) consisting of a set X and a set 7 of subsets of X with
i. X,0er
ii. U,)Ver =UnNnVer
iii. UUVer = UUVer

X is termed a set of points, 7 is termed a topology on X, and U € T is termed an open subset of X.

A set U C X is termed a closed subset if X \ U is open.

Definition 1.2.2. Let (M, dys) be a metric space. Then a topology T may be defined by stating U € 7 <~
for all x € U, there exists r > 0 such that O,(z) € U. Then (M, 7) is a topological space, and 7 is termed
an induced topology, specifically a topology on M induced by a metric d.

Definition 1.2.3. Consider (R, dguyciidean) @ metric space and (X, 7)a topological space. Given some B C T,
if any U € 7 is such that U = |JU,, for all U, € B, then B is termed a base of topology.

Definition 1.2.4. Suppose (X, 7) is a topological space with Y C X. Consider 0 ={UNY | U € 7}. Then
(Y, 0) is a topological space, and o is termed a topology induced by inclusion.

Definition 1.2.5. A topological space (X, 1) is termed a Hausdorff space iff it has the following property:
For all z,y € X with x # vy, there exist open sets U > z and V 3 y in X such that U NV = 0.

Remark 1.2.6. Let F be a field and A™ an n-dimensional space over F. Then X C A" is closed if and only
if X is a zero set of polynomials, that is, the solution set to a set of polynomials such that the polynomials
evaluate to zero. This is termed the Zavisky topology, and it is not Hausdorff.

1.3 Compactness

Definition 1.3.1. Let (X, 7) be a topological space with X = JU,. Then X is termed compact if for
Ua, € {Us}, X =JU,, is a finite union.

Theorem 1.3.2. [COMPLETENESS AXIOM]
Let X, Y C R. Then for all z € X,y € Y with x > y, there exists ¢ € R such that z < ¢ < y. In this case, ¢
is said to separate X and Y.

Theorem 1.3.3. Let [ =[a,bl and I D Iy D --- for I; = [a;, b;]. Then n I; # 0.
i=1

Definition 1.3.4. Any open X 3 z is a neighborhood of z.

Definition 1.3.5. A topological space (X, 7) is connected if for all z,y € X, there exists a path in X joining
them.

2 Geometry

2.1 Construction
For all the definitions below, we assume that (X, 7) is a topological space.

Definition 2.1.1. The cone over X is denoted C'(X) = (X x[0,1])/ ~ where the equivalence relation brings
one end of the interval together to a point.

Definition 2.1.2. The suspension over X is denoted X(X) = X x[—1,1]/ ~ and consists of a cone on either
side of X.

Definition 2.1.3. A map f: X — Y is termed a homeomorphism if it is continuous and has a continuous
inverse map, f~!:Y — X with f~'o f =id.



Definition 2.1.4. An n-cell in X is D", the n-dimensional disk.
Definition 2.1.5. There are several classical surfaces, with labeled planarization diagrams presented below.
- —_— . —_—— . /—\

Left to right, they are the Mobius strip, the torus, the Klein bottle, and the projective plane RP2.

Definition 2.1.6. Given a topological object X and its defined construction with cells, the construction
only of k-cells is termed the k-skeleton of X, and denoted by Sk (X).

2.2 Triangulation

Definition 2.2.1. Let ¥ be a surface and A C R2. Then a triangulation T of ¥ is the image of homeomorphic
maps ¢; : A — X such that for any vertex v of A, ¢;(v) = ¢;(v) for ¢ # j and for any edge e, ;(e) = @;(e)
for i # j.

Definition 2.2.2. Given a triangulation T of ¥, a subtriangulation 7" is a triangulation of ¥ such that 7’
has all the same (possibly more) vertices than T', and either the same edges as T, or subdivisions of those
edges.

Remark 2.2.3. Some facts about triangulations:
1. Any compact surface has a triangulation
2. Any two triangulations have a common subtriangulation

Definition 2.2.4. Let ¥ be a surface and T a triangulation of ¥. For T, let
V — # of vertices
E — # of edges Then the Euler characteristic of ¥ is x(X) =V — E+ F.
F — # of faces

Proposition 2.2.5. For a surface X, x(X) does not depend on the choice of triangulation.

Proposition 2.2.6. The formula for the Euler characteristic holds for any polygons.
Remark 2.2.7. A surface ¥ with g holes has x(X) =2 — 2g.

Definition 2.2.8. On a given triangulation 7', assign a choice of orientation to every triangle of T" as follows.
The triangles on the left are compatible, whereas on the right they are incompatible.

Definition 2.2.9. A surface X is termed orientable if there exists a triangulation of ¥ of only compatible
triangles.

Definition 2.2.10. Given a surface X and its labeled planarization diagram, define the ordered sequence
of letters wyws - - - woy, with w; € {a,a™1,b,b7%, ..., n,n"1} to be a development of X.
Theorem 2.2.11. Any compact surface without boundary has a development of one of the possible two
forms:

1. aybay byt agbga, byt a sphere with g handles

2. a1a1b1by - - - anay, a sphere with n Mobius bands

Definition 2.2.12. A connected sum of topologicl objects X,Y is created by removing a disk from each of
X,Y and identifying the resulting boundaries. This operation is denoted X#Y .

Theorem 2.2.13. For topological objects X, Y, x(X#Y) = x(z) + x(Y) — 2.



2.3 Algebraic topology

Definition 2.3.1. Consider two topological spaces X,Y and maps fy, f1 : X — Y. Then equivalently:
1. fy is homotopy equivalent to f;
2. there exists a homotopy between fy and f;
3. there exists a continuous map ¢ : X x [0,1] — Y such that g(x,0) = fo(z) and g(x,1) = f1(z)

Proposition 2.3.2. Homotopy equivalence is an equivalence relation and is denoted ~.
Remark 2.3.3. Since ~ is an equivalence relation, we may consider the quotient group

{f | f:X =Y is continuous}/ ~ = [X,Y]
Then [X,Y] is termed the set of homotopy equivalence classes of continuous maps from X to Y.

Definition 2.3.4. Define the homotopy groups by 74(Y) = [S¥,Y].

Theorem 2.3.5. [FIXED POINT THEOREM - BROUWER]
Any continuous map f : D? — D? has a fixed point. That is, there exists € D? such that f(x) = z.

Definition 2.3.6. A continuous map r : X — A C X is termed a retract if r | 4= id4.

3 Structure classification

3.1 Fundamental group
Definition 3.1.1. For X a topological space, a continuous map 7 : [0,1] — X is termed a curve or path.
Definition 3.1.2. A path «: [0,1] — X is termed a loop if 4(0) = ~(1).

Definition 3.1.3. Let 71,72 : [0,1] — X be paths for X a topological space, with v;(1) = 42(0). Then
define the product of v; and 5 to be the curve

) . ~v1(2x) z€[0,1]
vz :[0,1] = X given by x»—){ y2(22—1) ze(L1]
If 41 and 9 are such that v;(1) = 72(0), then the two curves may be multiplied, or connected.
Remark 3.1.4. Any two loops may be connected.

Definition 3.1.5. Two curves 71 and 72 are termed equivalent if there exists a homotopy F : [0,1] x [0, 1] —
X with F(0,z) = v1(z) and F(1,z) = y2(x). This relationship is denoted v; ~ 2.

An extra condition is required, that F'(¢,0) = F(¢,1), or that the homotopy has fixed endpoints.

Definition 3.1.6. The set of equivalence classes generated by ~ is termed a fundamental group, or 71 (X, zg).
Moreover, m, (X, z¢) is the set of equivalence classes of maps 7 : S" — X with basepoint x.

Theorem 3.1.7. Multiplication extends to equivalence classes, i.e. [y1][v2] = [y172]-

Definition 3.1.8. Denote the curve 7, : [0,1] — X, given by ~.(z) = xo, to be the identity curve.
Definition 3.1.9. Given a curve 7 : [0,1] — X, denote the inverse of v to be y~* : [0,1] — X with
v (@) =7y(1 — ), so that 7! =771y =,

Proposition 3.1.10. For X, Y topological spaces, X ~Y = m1(X,z0) ~ 71 (Y, y0).

Theorem 3.1.11. [ALGORITHM FOR COMPUTING FUNDAMENTAL GROUP]
1. Find a cellular strucutre on X with one 0-cell, by combining path connected 0-cells.
2. In Sk (X), attach a letter with orientation to each 1-cell; these letters are generators of ;.
3. Go along this path of 1-cells, get a sequence of letters which is the relation of 7.



3.2 Covering spaces

Definition 3.2.1. Amap f:Y — X is termed a covering if for all z € X there exists an open neighborhood
U > z such that f~1(U) = U x D for D the discrete space.

Here, X is the base, Y is the covering space, and f is the projection.

If D consists of n points for any z € X, then f is termed an n-fold covering.

Remark 3.2.2. A covering map f : Y — X induces a homomorphism f, : m1 (Y, Zo) — m1(X, zp) such that
Zo € f (o).

Definition 3.2.3. If v is a path in X, then 4 € f~1(y) C Y is termed a lift of .

Proposition 3.2.4. As above, f, is surjective <= for all loops 7y with basepoint xg, their lifts 4 are loops.
However, f, is always injective.

Definition 3.2.5. A covering map f : ¥ — X is termed regular if for any loop 4 € Y, all lifts of its
projection f(¥) are loops.

Theorem 3.2.6. For any subgroup H C (X, xzg), there exists a unique covering space Y such that
m1(Y,90) ~ H.

Definition 3.2.7. Given a covering p : Y — Y and a continuous map f : X — Y, a map f X 5 Yis
termed a lifting of f if po f = f. This is described by:

Y
p
X?‘Y

Theorem 3.2.8. Let p : Y - Y be a covering space. Let f : X — Y be a continuous map. Let X be
path connected and locally path connected. If f. (71 (X, z0)) C p«(m1(Y, %)) where p(o) = yo = f(z0), then
there exists a lift f : X — Y of f such that f(xg) = go-

Definition 3.2.9. Suppose we have a covering as above such that m (f’,ﬂo) = 0. Then Y is termed a
universal covering.

Note that the universal cover covers any cover of the space.

3.3 Cellular approximation

Definition 3.3.1. Suppose we have a map f : X — Y of cellular space. Then, wrt to the maps f, f as
above, f ~ f such that f(Skg(X)) C Sk (Y).

Theorem 3.3.2. If we have a connected cell space X, then there exists a cell space X such that X ~ X,
but X only has one 0-cell.

Corollary 3.3.3. Therefore for any connected X, Sky(X) =St v ... vShL



4 Handy tables

Complex X | x(X) | m1(X)
St 2 0
T2 0 (a,b)
RP? 1 (a|a?=1)
Mb 0 (a)
Kl 0 (a,b | a* =




