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1 Definitions

1.1 Foundational

Definition 1.1.1. Let R be a ring with an identity element. A left module M over R is a set with two
binary operations, + : M ×M →M and · : R×M →M , such that

1. (u+ v) + w = u+ (v + w) for all u, v, w ∈M
2. u+ v = v + u for all u, v ∈M
3. There exists an element 0 ∈M such that u+ 0 = u for all u ∈M
4. For any u ∈M , there exists an element v ∈M such that u+ v = 0
5. a · (b · u) = (a · b) · u for all a, b ∈ R and u ∈M
6. a · (u+ v) = (a · u) + (a · v) for all a ∈ R and u, v ∈M
7. (a+ b) · u = (a · u) + (b · u) for all a, b ∈ R and u ∈M

A right module is defined analogously, except that the function · goes from M × R to M and the scalar
multiplication operations act on the right.

Definition 1.1.2. Let M1,M2 be R-modules. The tensor product of M1 and M2 is a set of elements

M1

⊗
R

M2 = {
∑
mi⊗mj

 mi ∈M1,mj ∈M2} so every element in M1

⊗
R

M2 can be expressed as a sum.

If R is not commutative, M1 must be a right R-module and M2 must be a left R-module.

Definition 1.1.3. An Abelian group G is free if there exists {fα} such that for all g ∈ G, g = nα1
fα1

+
· · ·+ nαk

fαk
is a unique representation. Then {fα} is a basis of G. If all Ck in a chain complex are fee then

the chain complex is free.

Definition 1.1.4. The fundamental group of a topological space X is the group representing topological
objects homotopic to X, and is denoted π1(X).

Definition 1.1.5. In category theory, a variety of algebras is a class of algebraic structures satisfying a
given set of identities.

A subvariety is a variety and a subclass of a variety sharing the same properties as its parent variety.

Theorem 1.1.6. [Fixed Point Theorem - Brouwer]
Every continuous function f : X → X from a closed ball X of a topological space to itself has a fixed point
p ∈ X, such that f(p) = p.

1.2 Homological

Definition 1.2.1. [Homotopy]
Two maps f, g : X → Y for topological spaces X,Y are termed homotopic if there exists a continuous map
F : X × [0, 1]→ Y such that F (x, 0) = f(x) and F (x, 1) = g(x).

Two spaces X,Y are termed homotopic if there exist maps f : X → Y and g : Y → X such that f ◦ g = IdY
and g ◦ f = IdX . This relation is expressed X ∼ Y .

Definition 1.2.2. A loop is a continuous map f : [0, 1]→ X with f(0) = f(1) = p ∈ X. The trivial loop is
the continuous map f : [0, 1]→ X with f(x) = p for all x ∈ [0, 1].

2 Basic homology

2.1 Homology groups

Definition 2.1.1. A simplex is a generalization of a tetrahedral region of space to n dimensions. A k-

simplex has k+ 1 vertices, k(k+ 1)/2 edges and
(
k+1
i+1

)
i-faces. A simplex with coordinates a0, . . . , an in that

order is denoted by [a0, . . . , an].
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Definition 2.1.2. The boundary of a simplex is defined to be

∂[0, 1, . . . , n] =
∑
i

(−1)i[0, . . . , î, . . . , n] =
∑
i

(−1)i[0, . . . , i− 1, i+ 1, . . . , n]

with ∂[a] = 1 for a 1-cycle.

Theorem 2.1.3. For any simplex 4, ∂∂4 = 0.

Definition 2.1.4. A simplical complex K is a set of simplices in Rn satisfying:
1. All faces of simplices from K belong to K
2. The intersection of any two simplices from K is a face for each of them
3. For any p ∈ K belonging to a simplex of K has a neighborhood that intersects only finitely many

simplices from K

The dimension of a simplical complex K is the maximum dimension of all the simplices in K.

Definition 2.1.5. Let G be an Abelian group with a ∈ G and 4k be a simplex of dimension k. Define a
k-chain to be a finite sum ∑

ai4ki
The group of k-chains is denoted Ck(K;G) or Ck(K) or Ck.

A chain c ∈ Ck is termed a boundary if c = ∂k+1c
′ for some chain c′ ∈ Ck+1.

Remark 2.1.6. The map ∂ works by extension as ∂k : Ck → Ck−1. This is termed a boundary homomorphism.

The group of k-dimensional boundaries is denoted Bk.

Definition 2.1.7. A chain c ∈ Ck is termed a cycle if ∂k(c) = 0.

The group of k-dimensional cycles is denoted Zk.

Definition 2.1.8. Since Bk ⊂ Zk, define the k-dimensional simplicial homology group to be the quotient
group Hk(K) = Zk/Bk. Its elements are equivalence classes of cycles; cycles are equivalent (homologous) if
their difference is a boundary.

2.2 Homology of simplices

Theorem 2.2.1. If K is a connected simplicial complex, then H0(K;G) = G.

In general, H0(K;G) denotes the number of connected components.

Theorem 2.2.2. If k > 1, then Hk(4n) = 0. However, Hn−1(∂4n) = ∂4n.

Corollary 2.2.3. Let ∂4n be the simplicial complex consisting of all simplices in 4n except 4n itself.

Then Hk(∂4n) =

{
0 0 < k < n− 1
G k = n− 1 (and k > 2)

Definition 2.2.4. A chain complex is a family of Abelian groups Ck and homomorphisms ∂k satisfying
∂k∂k+1 = 0.

2.3 Chain homotopy

Definition 2.3.1. A chain map is a map between chains that commutes with ∂.

Definition 2.3.2. Suppose there is a simplicial map f : K → L. Then there are two maps related to f :

f∗ : Hk(L)→ Hk(K)

f# : Ck(K)→ Ck(L)

Definition 2.3.3. Given objects A1, . . . , An, an exact sequence is a sequence of the objects
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A1 A2 · · · An
f1 // f2 // fn−1 //

such that im(fi) = ker(fi+1) for all 1 6 i < n− 2.

Definition 2.3.4. Given objects K,L,M , a short exact sequence is an exact sequence of the form

0 K L M 0// f // g // //

such that f is injective and g is surjective.

Definition 2.3.5. Suppose simplicial maps f, g : K → L and their related homology maps. Chain homotopy
is the exact sequence of homomorphic maps Dk : Ck(K)→ Ck+1(L) such that

· · · Ck+1(K) Ck(K) Ck−1(K) Ck−2(K) · · ·

· · · Ck+1(L) Ck(L) Ck−1(L) Ck−2(L) · · ·

∂k+2 // ∂k+1 // ∂k // ∂k−1 // ∂k−2 //

∂k+2 // ∂k+1 // ∂k // ∂k−1 // ∂k−2 //

f#(k+1)

��

g#(k+1)

��
f#k

��

g#k

��
f#(k−1)

��

g#(k−1)

��
f#(k−2)

��

g#(k−2)

��

Dk

zz

Dk−1

zz

Dk−2

zz

Thus g#k − f#k = ∂k+1Dk +Dk−1∂k, and for any [z] ∈ Hk(K), (g#k − f#k)[z] = 0, so they are chain maps.

Definition 2.3.6. A simplicial complex is acyclic if all its homology groups evaluate to zero.

Definition 2.3.7. Given a chain ck =
∑
ak4ki ∈ Ck(K), a subcomplex K ′ ⊂ K containing all the 4ki is

termed a support of ck.

Theorem 2.3.8. Suppose ϕk, ψk : Ck(K)→ Ck(L) are chain maps that preserve augmentation and whose
coefficient groups are rings. Suppose that for all 4 ∈ K there exists L(4) ⊂ L such that

1. If 4′ ⊂ 4, then L(4′) ⊂ L(4)
2. L(4) is acyclic, or Hi(L(4)) = 0 if i 6= 0
3. L(4k) is in the support of both chains ϕk(4k) and ψk(4k)

Then ϕk and ψk are chain homotopic, moreover, ϕ∗ = ψ∗.

The above shows that homology is a homotopic invariant, or that an object does not change homologies
under a homotopy.

Theorem 2.3.9. [Mayer-Vietoris]
Given a simplicial complex K with subcomplexes K0,K1 with K0 ∪K1 = K and K0 ∩K1 = L,

· · · Hk(L) Hk(K0)⊕Hk(K1) Hk(K) Hk−1(L) · · ·∂ // ∂ // ∂ // ∂ // ∂ //

is an exact sequence.

Theorem 2.3.10.
K1 ∼ K2

∪ ∪
L1 ∼ L2

=⇒ H∗(K1;L1) = H∗(K2;L2)

3 Cohomology

3.1 Structures

Definition 3.1.1. Given a simplicial complex K and an Abelian group G, a homomorphism ck : Ck(K;Z)→
G is termed a k-dimensional cochain with coefficients in G.

The group of k-dimensional cochains is denoted Ck(K;G) = Hom(Ck(K;Z), G).
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Remark 3.1.2. As above, we have more homological objects:
i. The group of k-dimensional cocyles is Zk = {z ∈ Ck(K)

 δz = 0}
ii. The group of k-dimensional boundaries is Bk = {b ∈ Ck(K)

 there exists c ∈ ck−1(K) with δc = b}
iii. The cohomology group is Hk = Zk/Bk

Theorem 3.1.3. Let G be an additive group of a field F. Then Hi(K) is dual to Hi(K).

Remark 3.1.4. The operator δ : Ck(K;G)→ Ck+1(K;G) is used as a dual to ∂ : Ck(K;G)→ Ck−1(K;G),
expressed by the relation

〈δck, ck+1〉 = (−1)k+1〈ck, ∂ck+1〉

Theorem 3.1.5. An exact sequence on objects U, V,W induces a dual exact sequence on the dual objects.

U V W

U∗ V ∗ W ∗

A=∂ // B=∂ //

A∗=δoo B∗=δoo

with homology Hi = ker(B)/Im(A) and cohomology Hi = ker(A∗)/Im(B∗).

3.2 Universal coefficient formula

Definition 3.2.1. Let A,B be Abelian groups defined by generators and relations, and F,R free Abelian
groups with F defined by generators and R by relations. Then a free resolution of the group A is an exact
sequence

0 R F A 0// // // //

with induced exact sequence

0 ker(ϕ) R⊗B F ⊗B A⊗B 0// // ϕ // // //

and induced exact homology sequence

0 Coker(ϕ) Hom(R,B) Hom(F,B) Hom(A,B) 0oo oo ϕoo oo oo

Then we also define the torsion group Tor(A,B) = ker(ϕ) and the extension group Ext(A,B) = Coker(ϕ).

Definition 3.2.2. Given an exact sequence 0 → A
ϕ−−→ B

ψ−−→ C → 0, the sequence is split if any one of
the following equivalent conditions is satisfied.

i. the sequence is of the form 0→ A
i−→ A⊕ C p−−→ C → 0 for i/p the natural embedding/projection

ii. there exists a homomorphism α : B → A with α ◦ ϕ = IdA
iii. there exists a homomorphism β : C → B with ψ ◦ β = IdC

Theorem 3.2.3. Homologies are related to coefficients in G by the following exact sequence:

0 Hk(K;Z) Hk(K;G) Tor(Hk−1(K;Z);G) 0// // // //

0 Hom(Hk(K;Z);G)) Hk(K;G) Ext(Hk−1(K;Z);G) 0oo oo oo oo

Moreover, both exact sequences are split.

Remark 3.2.4. For the Tor group as above, note that Tor(A,B) = Tor(B,A).
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4 Duality

4.1 Cellular homology

Definition 4.1.1. A topological space X is termed a CW -complex if X =
⋃
Xi for X0 a discrete space

and Xi+1 generated by attaching a disjoint union
⊔
Di+1
j of (i + 1)-disks to Xi via a continuous map

ϕ :
⊔
∂Di+1

j → Xi.

Definition 4.1.2. For X a CW -complex as above, the space Xi is termed the i-dimensional skeleton of X.

Definition 4.1.3. Let 4 be an n-dimensional simplex. Then 4∗ is termed the dual simplex of 4 generated
by barycentric division. Then 4 and 4∗ are termed transversal. Moreover, we have that

〈〈4i,4∗j 〉〉 = δij

Theorem 4.1.4. [Poincare duality]
Classifying surfaces with barycentric triangulation and other methods, we find that, for p prime

Hk(K;Z) ' Hn−k(K;Z)

Hk(K,Zp) ' Hn−k(K;Zp)
Hk ' (Hk)∗

Proposition 4.1.5. Let 4i,4j be triangles of dimension k, k − 1. Then

〈〈∂4i,4∗j 〉〉 = (−1)k〈〈4i, ∂(4∗j )〉〉

Definition 4.1.6. Let M be manifold then the Euler characteristic of M is defined as

χ(M) =
∑
k

(−1)k|Ck(K)|

=
∑
k

(−1)k dim(Hk)

Note that χ is homotopy invariant, or X ' Y =⇒ χ(X) = χ(Y ).

Proposition 4.1.7. Given a short exact sequence 0→ A→ B → C → 0 for A,B,C simplicial complexes,

χ(B) = χ(A) + χ(C)

Definition 4.1.8. Let K be a finite simplicial complex and f : K → K a continuous map. Consider the
induced map f∗ : Hk(K) → Hk(K). As Hk(K) is a finite-dimensional vector space, consider the trace
tr(f∗)k. Define the Lefschetz number to be

Λ(f) =
∑

(−1)ktr(f∗)k

Theorem 4.1.9. [Fixed Point Theorem - Lefschetz]
Let K be a simplicial complex. If Λ(f) 6= 0, then the map f : K → K has a fixed point.

Proposition 4.1.10. Let f# : Ck(K;R)→ Ck(K;R), and then∑
(−1)ktr(f#)k =

∑
(−1)ktr(f∗)k
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4.2 Homotopy groups

Every loop on the sphere S2 is contractible to a point, so its fundamental group, π1(S2), is trivial.
Let Hn(S2,Z) denote the n-th homology group of S2.We can compute all of these groups using the basic

results from algebraic topology:

• S2 is a compact orientable smooth manifold, so H2(S2,Z) = Z;

• S2 is connected, so H0(S2,Z) = Z;

• H1(S2,Z) is the abelianization of π1(S2), so it is also trivial;

• S2 is two-dimensional, so for k > 2, we have Hk(S2,Z) = 0

In fact, this pattern generalizes nicely to higher-dimensional spheres:

Hk(Sn,Z) =

{
Z k = 0, n

0 else

This also provides the proof that the hyperspheres Sn and Sm are non-homotopic for n 6= m, for this
would imply an isomorphism between their homologies.
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