
Contents

1	Definitions 1.1 Foundational	2 2 2
2	Basic homology 2.1 Homology groups 2.2 Homology of simplices 2.3 Chain homotopy	2 2 3 3
3	Cohomology 3.1 Structures 3.2 Universal coefficient formula	4 4 5
4	Duality 4.1 Cellular homology 4.2 Homotopy groups	6 6 7

<u>Note</u>: These notes are neither coherent nor orderly; they have not been properly systematized to at least somewhat accurately reflect the content of this course. Refer to the following AMS GSM books for a complete exposition:

 \cdot Elements of Combinatorial and Differential Geometry, V.V. Prasolov

 \cdot Elements of Homology Theory, V.V. Prasolov

1 Definitions

1.1 Foundational

Definition 1.1.1. Let R be a ring with an identity element. A <u>left module</u> M over R is a set with two binary operations, $+: M \times M \to M$ and $\cdot: R \times M \to M$, such that

- **1.** (u+v) + w = u + (v+w) for all $u, v, w \in M$
- **2.** u + v = v + u for all $u, v \in M$
- **3.** There exists an element $0 \in M$ such that u + 0 = u for all $u \in M$
- 4. For any $u \in M$, there exists an element $v \in M$ such that u + v = 0
- **5.** $a \cdot (b \cdot u) = (a \cdot b) \cdot u$ for all $a, b \in R$ and $u \in M$
- **6.** $a \cdot (u+v) = (a \cdot u) + (a \cdot v)$ for all $a \in R$ and $u, v \in M$
- 7. $(a+b) \cdot u = (a \cdot u) + (b \cdot u)$ for all $a, b \in R$ and $u \in M$

A right module is defined analogously, except that the function \cdot goes from $M \times R$ to M and the scalar multiplication operations act on the right.

Definition 1.1.2. Let M_1, M_2 be *R*-modules. The tensor product of M_1 and M_2 is a set of elements $M_1 \bigotimes_R M_2 = \{\sum m_i \otimes m_j \mid m_i \in M_1, m_j \in M_2\}$ so every element in $M_1 \bigotimes_R M_2$ can be expressed as a sum.

If R is not commutative, M_1 must be a right R-module and M_2 must be a left R-module.

Definition 1.1.3. An Abelian group G is <u>free</u> if there exists $\{f_{\alpha}\}$ such that for all $g \in G$, $g = n_{\alpha_1} f_{\alpha_1} + \cdots + n_{\alpha_k} f_{\alpha_k}$ is a unique representation. Then $\{f_{\alpha}\}$ is a <u>basis</u> of G. If all C_k in a chain complex are fee then the chain complex is free.

Definition 1.1.4. The fundamental group of a topological space X is the group representing topological objects homotopic to X, and is denoted $\pi_1(X)$.

Definition 1.1.5. In category theory, a <u>variety</u> of algebras is a class of algebraic structures satisfying a given set of identities.

A subvariety is a variety and a subclass of a variety sharing the same properties as its parent variety.

Theorem 1.1.6. [FIXED POINT THEOREM - BROUWER]

Every continuous function $f: X \to X$ from a closed ball X of a topological space to itself has a fixed point $p \in X$, such that f(p) = p.

1.2 Homological

Definition 1.2.1. [HOMOTOPY]

Two maps $f, g: X \to Y$ for topological spaces X, Y are termed homotopic if there exists a continuous map $F: X \times [0,1] \to Y$ such that F(x,0) = f(x) and F(x,1) = g(x).

Two spaces X, Y are termed homotopic if there exist maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g = \operatorname{Id}_Y$ and $g \circ f = \operatorname{Id}_X$. This relation is expressed $X \sim Y$.

Definition 1.2.2. A loop is a continuous map $f : [0,1] \to X$ with $f(0) = f(1) = p \in X$. The trivial loop is the continuous map $\overline{f : [0,1]} \to X$ with f(x) = p for all $x \in [0,1]$.

2 Basic homology

2.1 Homology groups

Definition 2.1.1. A simplex is a generalization of a tetrahedral region of space to n dimensions. A k-simplex has k+1 vertices, k(k+1)/2 edges and $\binom{k+1}{i+1}$ *i*-faces. A simplex with coordinates a_0, \ldots, a_n in that order is denoted by $[a_0, \ldots, a_n]$.

Definition 2.1.2. The boundary of a simplex is defined to be

$$\partial[0, 1, \dots, n] = \sum_{i} (-1)^{i}[0, \dots, \hat{i}, \dots, n] = \sum_{i} (-1)^{i}[0, \dots, i-1, i+1, \dots, n]$$

with $\partial[a] = 1$ for a 1-cycle.

Theorem 2.1.3. For any simplex \triangle , $\partial \partial \triangle = 0$.

Definition 2.1.4. A simplical complex K is a set of simplices in \mathbb{R}^n satisfying:

1. All faces of simplices from K belong to K

2. The intersection of any two simplices from K is a face for each of them

3. For any $p \in K$ belonging to a simplex of K has a neighborhood that intersects only finitely many simplices from K

The dimension of a simplical complex K is the maximum dimension of all the simplices in K.

Definition 2.1.5. Let G be an Abelian group with $a \in G$ and \triangle^k be a simplex of dimension k. Define a <u>k-chain</u> to be a finite sum

$$\sum a_i \triangle_i^k$$

The group of k-chains is denoted $C_k(K;G)$ or $C_k(K)$ or C_k .

A chain $c \in C_k$ is termed a boundary if $c = \partial_{k+1}c'$ for some chain $c' \in C_{k+1}$.

Remark 2.1.6. The map ∂ works by extension as $\partial_k : C_k \to C_{k-1}$. This is termed a boundary homomorphism.

The group of k-dimensional boundaries is denoted B_k .

Definition 2.1.7. A chain $c \in C_k$ is termed a cycle if $\partial_k(c) = 0$.

The group of k-dimensional cycles is denoted Z_k .

Definition 2.1.8. Since $B_k \subset Z_k$, define the k-dimensional simplicial homology group to be the quotient group $H_k(K) = Z_k/B_k$. Its elements are equivalence classes of cycles; cycles are equivalent (homologous) if their difference is a boundary.

2.2 Homology of simplices

Theorem 2.2.1. If K is a connected simplicial complex, then $H_0(K;G) = G$.

In general, $H_0(K; G)$ denotes the number of connected components.

Theorem 2.2.2. If $k \ge 1$, then $H_k(\triangle^n) = 0$. However, $H_{n-1}(\partial \triangle^n) = \partial \triangle^n$.

Corollary 2.2.3. Let $\partial \triangle^n$ be the simplicial complex consisting of all simplices in \triangle^n except \triangle^n itself. Then $H_k(\partial \triangle^n) = \begin{cases} 0 & 0 < k < n-1 \\ G & k = n-1 \end{cases}$ (and $k \ge 2$)

Definition 2.2.4. A chain complex is a family of Abelian groups C_k and homomorphisms ∂_k satisfying $\partial_k \partial_{k+1} = 0$.

2.3 Chain homotopy

Definition 2.3.1. A chain map is a map between chains that commutes with ∂ .

Definition 2.3.2. Suppose there is a simplicial map $f: K \to L$. Then there are two maps related to f:

$$f_*: H_k(L) \to H_k(K)$$
$$f_{\#}: C_k(K) \to C_k(L)$$

Definition 2.3.3. Given objects A_1, \ldots, A_n , an exact sequence is a sequence of the objects

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} A_n$$

such that $im(f_i) = ker(f_{i+1})$ for all $1 \leq i < n-2$.

Definition 2.3.4. Given objects K, L, M, a short exact sequence is an exact sequence of the form

$$0 \longrightarrow K \xrightarrow{f} L \xrightarrow{g} M \longrightarrow 0$$

such that f is injective and g is surjective.

Definition 2.3.5. Suppose simplicial maps $f, g: K \to L$ and their related homology maps. Chain homotopy is the exact sequence of homomorphic maps $D_k: C_k(K) \to C_{k+1}(L)$ such that

$$\cdots \xrightarrow{\partial_{k+2}} C_{k+1}(K) \xrightarrow{\partial_{k+1}} C_k(K) \xrightarrow{\partial_k} C_{k-1}(K) \xrightarrow{\partial_{k-1}} C_{k-2}(K) \xrightarrow{\partial_{k-2}} \cdots$$

$$f_{\#(k+1)} \downarrow \downarrow f_{\#(k+1)} \xrightarrow{f_{\#(k+1)}} f_{\#(k)} \downarrow \downarrow f_{\#(k-1)} \xrightarrow{f_{\#(k-1)}} f_{\#(k-2)} \downarrow \downarrow g_{\#(k-2)} \xrightarrow{f_{\#(k-2)}} f_{\#(k-2)} \xrightarrow{\partial_{k+2}} C_{k+1}(L) \xrightarrow{\partial_{k+1}} C_k(L) \xrightarrow{\partial_k} C_{k-1}(L) \xrightarrow{\partial_{k-1}} C_{k-2}(L) \xrightarrow{\partial_{k-2}} \cdots$$

Thus $g_{\#k} - f_{\#k} = \partial_{k+1}D_k + D_{k-1}\partial_k$, and for any $[z] \in H_k(K)$, $(g_{\#k} - f_{\#k})[z] = 0$, so they are chain maps.

Definition 2.3.6. A simplicial complex is acyclic if all its homology groups evaluate to zero.

Definition 2.3.7. Given a chain $c_k = \sum a_k \triangle_i^k \in C_k(K)$, a subcomplex $K' \subset K$ containing all the \triangle_i^k is termed a support of c_k .

Theorem 2.3.8. Suppose $\varphi_k, \psi_k : C_k(K) \to C_k(L)$ are chain maps that preserve augmentation and whose coefficient groups are rings. Suppose that for all $\Delta \in K$ there exists $L(\Delta) \subset L$ such that

- **1.** If $\triangle' \subset \triangle$, then $L(\triangle') \subset L(\triangle)$
- **2.** $L(\triangle)$ is acyclic, or $H_i(L(\triangle)) = 0$ if $i \neq 0$

3. $L(\triangle^k)$ is in the support of both chains $\varphi_k(\triangle^k)$ and $\psi_k(\triangle^k)$

Then φ_k and ψ_k are chain homotopic, moreover, $\varphi_* = \psi_*$.

The above shows that homology is a homotopic invariant, or that an object does not change homologies under a homotopy.

Theorem 2.3.9. [MAYER-VIETORIS]

Given a simplicial complex K with subcomplexes K_0, K_1 with $K_0 \cup K_1 = K$ and $K_0 \cap K_1 = L$,

$$\cdots \xrightarrow{\partial} H_k(L) \xrightarrow{\partial} H_k(K_0) \oplus H_k(K_1) \xrightarrow{\partial} H_k(K) \xrightarrow{\partial} H_{k-1}(L) \xrightarrow{\partial} \cdots$$

is an exact sequence.

Theorem 2.3.10.

$$\begin{array}{rccc} K_1 & \sim & K_2 \\ \cup & & \cup \\ L_1 & \sim & L_2 \end{array} \longrightarrow H_*(K_1; L_1) = H_*(K_2; L_2)$$

3 Cohomology

3.1 Structures

Definition 3.1.1. Given a simplicial complex K and an Abelian group G, a homomorphism $c^k : C_k(K; \mathbb{Z}) \to G$ is termed a k-dimensional <u>cochain</u> with coefficients in G.

The group of k-dimensional cochains is denoted $C^k(K;G) = \text{Hom}(C_k(K;\mathbb{Z}),G).$

Remark 3.1.2. As above, we have more homological objects:

i. The group of k-dimensional cocyles is $Z^k = \{z \in C^k(K) \mid \delta z = 0\}$

ii. The group of k-dimensional boundaries is $B^k = \{b \in C^k(K) \mid \text{ there exists } c \in c^{k-1}(K) \text{ with } \delta c = b\}$ iii. The cohomology group is $H^k = Z^k/B^k$

Theorem 3.1.3. Let G be an additive group of a field \mathbb{F} . Then $H^i(K)$ is dual to $H_i(K)$.

Remark 3.1.4. The operator $\delta : C^k(K;G) \to C^{k+1}(K;G)$ is used as a dual to $\partial : C_k(K;G) \to C_{k-1}(K;G)$, expressed by the relation

$$\langle \delta c^k, c_{k+1} \rangle = (-1)^{k+1} \langle c^k, \partial c_{k+1} \rangle$$

Theorem 3.1.5. An exact sequence on objects U, V, W induces a dual exact sequence on the dual objects.

$$U \xrightarrow{A=\partial} V \xrightarrow{B=\partial} W$$
$$U^* \xleftarrow{A^*=\delta} V^* \xleftarrow{B^*=\delta} W^*$$

with homology $H_i = \ker(B)/\operatorname{Im}(A)$ and cohomology $H^i = \ker(A^*)/\operatorname{Im}(B^*)$.

3.2 Universal coefficient formula

Definition 3.2.1. Let A, B be Abelian groups defined by generators and relations, and F, R free Abelian groups with F defined by generators and R by relations. Then a <u>free resolution</u> of the group A is an exact sequence

$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

with induced exact sequence

$$0 \longrightarrow \ker(\varphi) \longrightarrow R \otimes B \xrightarrow{\varphi} F \otimes B \longrightarrow A \otimes B \longrightarrow 0$$

and induced exact homology sequence

$$0 \longleftarrow \operatorname{Coker}(\varphi) \longleftarrow \operatorname{Hom}(R,B) \xleftarrow{\varphi} \operatorname{Hom}(F,B) \xleftarrow{\varphi} \operatorname{Hom}(A,B) \xleftarrow{\varphi} 0$$

Then we also define the torsion group $Tor(A, B) = ker(\varphi)$ and the extension group $Ext(A, B) = Coker(\varphi)$.

Definition 3.2.2. Given an exact sequence $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$, the sequence is <u>split</u> if any one of the following equivalent conditions is satisfied.

i. the sequence is of the form $0 \to A \xrightarrow{i} A \oplus C \xrightarrow{p} C \to 0$ for i/p the natural embedding/projection

- **ii.** there exists a homomorphism $\alpha: B \to A$ with $\alpha \circ \varphi = \mathrm{Id}_A$
- iii. there exists a homomorphism $\beta: C \to B$ with $\psi \circ \beta = \mathrm{Id}_C$

Theorem 3.2.3. Homologies are related to coefficients in G by the following exact sequence:

$$0 \longrightarrow H_k(K; \mathbb{Z}) \longrightarrow H_k(K; G) \longrightarrow \operatorname{Tor}(H_{k-1}(K; \mathbb{Z}); G) \longrightarrow 0$$

$$0 \longleftarrow \operatorname{Hom}(H_k(K;\mathbb{Z});G)) \longleftarrow H^k(K;G) \longleftarrow \operatorname{Ext}(H_{k-1}(K;\mathbb{Z});G) \longleftarrow 0$$

Moreover, both exact sequences are split.

Remark 3.2.4. For the Tor group as above, note that Tor(A, B) = Tor(B, A).

4 Duality

4.1 Cellular homology

Definition 4.1.1. A topological space X is termed a <u>CW-complex</u> if $X = \bigcup X^i$ for X^0 a discrete space and X^{i+1} generated by attaching a disjoint union $\bigsqcup \overline{D_j^{i+1}}$ of (i+1)-disks to X^i via a continuous map $\varphi : \bigsqcup \partial D_i^{i+1} \to X^i$.

Definition 4.1.2. For X a CW-complex as above, the space X^i is termed the <u>*i*-dimensional skeleton</u> of X.

Definition 4.1.3. Let \triangle be an *n*-dimensional simplex. Then \triangle^* is termed the <u>dual</u> simplex of \triangle generated by barycentric division. Then \triangle and \triangle^* are termed <u>transversal</u>. Moreover, we have that

$$\langle \langle \triangle_i, \triangle_i^* \rangle \rangle = \delta_{ij}$$

Theorem 4.1.4. [POINCARE DUALITY]

Classifying surfaces with barycentric triangulation and other methods, we find that, for p prime

$$H_k(K;\mathbb{Z}) \simeq H^{n-k}(K;\mathbb{Z})$$
$$H_k(K,\mathbb{Z}_p) \simeq H^{n-k}(K;\mathbb{Z}_p)$$
$$H_k \simeq (H^k)^*$$

Proposition 4.1.5. Let \triangle_i, \triangle_j be triangles of dimension k, k-1. Then

$$\langle \langle \partial \Delta_i, \Delta_i^* \rangle \rangle = (-1)^k \langle \langle \Delta_i, \partial (\Delta_i^*) \rangle \rangle$$

Definition 4.1.6. Let M be manifold then the <u>Euler characteristic</u> of M is defined as

$$\chi(M) = \sum_{k} (-1)^{k} |C_{k}(K)|$$
$$= \sum_{k} (-1)^{k} \dim(H_{k})$$

Note that χ is homotopy invariant, or $X \simeq Y \implies \chi(X) = \chi(Y)$.

Proposition 4.1.7. Given a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ for A, B, C simplicial complexes,

$$\chi(B) = \chi(A) + \chi(C)$$

Definition 4.1.8. Let K be a finite simplicial complex and $f: K \to K$ a continuous map. Consider the induced map $f_*: H_k(K) \to H_k(K)$. As $H_k(K)$ is a finite-dimensional vector space, consider the trace $\operatorname{tr}(f_*)_k$. Define the Lefschetz number to be

$$\Lambda(f) = \sum (-1)^k \operatorname{tr}(f_*)_k$$

Theorem 4.1.9. [FIXED POINT THEOREM - LEFSCHETZ] Let K be a simplicial complex. If $\Lambda(f) \neq 0$, then the map $f: K \to K$ has a fixed point.

Proposition 4.1.10. Let $f_{\#}: C_k(K; R) \to C_k(K; R)$, and then

$$\sum (-1)^k \mathrm{tr}(f_{\#})_k = \sum (-1)^k \mathrm{tr}(f_{*})_k$$

4.2 Homotopy groups

Every loop on the sphere S^2 is contractible to a point, so its fundamental group, $\pi_1(S^2)$, is trivial.

Let $H_n(S^2, \mathbb{Z})$ denote the *n*-th homology group of S^2 . We can compute all of these groups using the basic results from algebraic topology:

- S^2 is a compact orientable smooth manifold, so $H_2(S^2, \mathbb{Z}) = \mathbb{Z}$;
- S^2 is connected, so $H_0(S^2, \mathbb{Z}) = \mathbb{Z}$;
- $H_1(S^2, \mathbb{Z})$ is the abelianization of $\pi_1(S^2)$, so it is also trivial;
- S^2 is two-dimensional, so for k > 2, we have $H_k(S^2, \mathbb{Z}) = 0$

In fact, this pattern generalizes nicely to higher-dimensional spheres:

$$H_k(S^n, \mathbb{Z}) = \begin{cases} \mathbb{Z} & k = 0, n \\ 0 & \text{else} \end{cases}$$

This also provides the proof that the hyperspheres S^n and S^m are non-homotopic for $n \neq m$, for this would imply an isomorphism between their homologies.