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reflect the content of this course. Refer to the following AMS GSM books for a complete exposition:
- Elements of Combinatorial and Differential Geometry, V.V. Prasolov

- Elements of Homology Theory, V.V. Prasolov



1 Definitions

1.1 Foundational

Definition 1.1.1. Let R be a ring with an identity element. A left module M over R is a set with two
binary operations, +: M x M — M and - : R X M — M, such that
1. (u+v)+w=u+ (v+w) for all u,v,w € M
u+v=v+ufor all u,v € M
There exists an element 0 € M such that v+ 0 = u for all u € M
For any u € M, there exists an element v € M such that u+v =0
a-(b-u)=(a-b)-uforalla,be Rand ue M
a - (u+v)=(a-u)+ (a-v) foralla € R and u,v € M
(a+b)-u=(a-u)+ (b-u)forall a,b € Rand u e M

A right module is defined analogously, except that the function - goes from M x R to M and the scalar
multiplication operations act on the right.

NPk

Definition 1.1.2. Let M, M> be R-modules. The tensor product of M; and Ms is a set of elements

M, ®M2 ={>"m; ®@m, | m; € My, mj € My} so every element in M; ®M2 can be expressed as a sum.
R R

If R is not commutative, M7 must be a right R-module and Ms must be a left R-module.

Definition 1.1.3. An Abelian group G is free if there exists {f,} such that for all g € G, g = n4, fo, +

-+ + Nq, fa, 18 a unique representation. Then {f,} is a basis of G. If all C}, in a chain complex are fee then
the chain complex is free.

Definition 1.1.4. The fundamental group of a topological space X is the group representing topological
objects homotopic to X, and is denoted 1 (X).

Definition 1.1.5. In category theory, a variety of algebras is a class of algebraic structures satisfying a
given set of identities.

A subvariety is a variety and a subclass of a variety sharing the same properties as its parent variety.

Theorem 1.1.6. [FIXED POINT THEOREM - BROUWER]
Every continuous function f: X — X from a closed ball X of a topological space to itself has a fixed point
p € X, such that f(p) = p.

1.2 Homological

Definition 1.2.1. [HOMOTOPY]

Two maps f,g: X — Y for topological spaces X,Y are termed homotopic if there exists a continuous map
F: X x[0,1] =Y such that F(z,0) = f(x) and F(z,1) = g(z).

Two spaces X,Y are termed homotopic if there exist maps f: X — Y and g : Y — X such that fog = Idy
and g o f = Idyx. This relation is expressed X ~ Y.

Definition 1.2.2. A loop is a continuous map f : [0,1] = X with f(0) = f(1) = p € X. The trivial loop is
the continuous map f : [0,1] = X with f(z) = p for all x € [0,1].

2 Basic homology

2.1 Homology groups

Definition 2.1.1. A simplex is a generalization of a tetrahedral region of space to n dimensions. A k-

simplex has k + 1 vertices, k(k 4 1)/2 edges and (1;1—11) i-faces. A simplex with coordinates aq, ..., a, in that
order is denoted by [ag, ..., a,].



Definition 2.1.2. The boundary of a simplex is defined to be
0[0,1,...,n) = > (=1)'[0,...i,...,n] =Y (=1)'[0,...,i — Li+1,...,n]

with d[a] = 1 for a 1-cycle.
Theorem 2.1.3. For any simplex A, 00A = 0.

Definition 2.1.4. A simplical complex K is a set of simplices in R™ satisfying:

1. All faces of simplices from K belong to K

2. The intersection of any two simplices from K is a face for each of them

3. For any p € K belonging to a simplex of K has a neighborhood that intersects only finitely many
simplices from K

The dimension of a simplical complex K is the maximum dimension of all the simplices in K.

Definition 2.1.5. Let G be an Abelian group with a € G and A* be a simplex of dimension k. Define a
k-chain to be a finite sum
ot

The group of k-chains is denoted Cy(K; G) or Cy(K) or Cy.
A chain ¢ € Cf is termed a boundary if ¢ = dx1¢ for some chain ¢ € Cyy1.

Remark 2.1.6. The map 0 works by extension as 0, : C, — C—1. This is termed a boundary homomorphism.

The group of k-dimensional boundaries is denoted By.
Definition 2.1.7. A chain ¢ € C}, is termed a cycle if 9 (c) = 0.
The group of k-dimensional cycles is denoted Zj.

Definition 2.1.8. Since By C Zj, define the k-dimensional simplicial homology group to be the quotient
group Hy(K) = Zj,/By. Its elements are equivalence classes of cycles; cycles are equivalent (homologous) if
their difference is a boundary.

2.2 Homology of simplices
Theorem 2.2.1. If K is a connected simplicial complex, then Hy(K;G) = G.

In general, Hy(K; G) denotes the number of connected components.
Theorem 2.2.2. If k > 1, then Hy(A"™) = 0. However, H,,_1(0A™) = OA™.

Corollary 2.2.3. Let 0A™ be the simplicial complex consisting of all simplices in A™ except A" itself.

w0 O0<k<n-1
Then Hy(0A ){ Ie. k=n—-1 (and k> 2)

Definition 2.2.4. A chain complex is a family of Abelian groups Cj and homomorphisms Jy satisfying
8k8k+1 =0.
2.3 Chain homotopy
Definition 2.3.1. A chain map is a map between chains that commutes with 9.
Definition 2.3.2. Suppose there is a simplicial map f: K — L. Then there are two maps related to f:
fet Hi(L) = Hi(K)
f# 2 Ce(K) — Ci(L)

Definition 2.3.3. Given objects A1, ..., A,, an exact sequence is a sequence of the objects



fl f2 fnfl

Ay A A,
such that im(f;) = ker(f;41) forall 1 <i<n—2.

Definition 2.3.4. Given objects K, L, M, a short exact sequence is an exact sequence of the form

0—K 2> 1% M —0
such that f is injective and g is surjective.

Definition 2.3.5. Suppose simplicial maps f, g : K — L and their related homology maps. Chain homotopy
is the exact sequence of homomorphic maps Dy, : Cx(K) — Ck11(L) such that

1¢) 0 O Ok — Ok
2 O (K) — = C(K) s Cp 1 (K) ——— Cp_a(K) —2> - -
Dy, Dy _o
I#(k+1) J#k I#(k—1) I#(k—2)
Fa#k+1) far Fa—1) fak—2)
1¢) Ok O Ok — Ok —
2 O (L) ———= C(L) b s O (L) ——— Cj_o(L) —2> - -

Thus gxr — fur = Okt1 Dk + Dir—10k, and for any [z] € Hy(K), (9u4x — f#1)[2] = 0, so they are chain maps.

Definition 2.3.6. A simplicial complex is acyclic if all its homology groups evaluate to zero.

Definition 2.3.7. Given a chain ¢, = Y apAF € Ci(K), a subcomplex K’ C K containing all the AF is
termed a support of cj.

Theorem 2.3.8. Suppose ¢, ¥y, : Cx(K) — Cr(L) are chain maps that preserve augmentation and whose
coefficient groups are rings. Suppose that for all A € K there exists L(A) C L such that

1. If AV C A, then L(A') C L(A)

2. L(A) is acyclic, or H;(L(A)) =01if i #0

3. L(AF) is in the support of both chains @i (AF) and 15, (AF)
Then ¢ and ¢ are chain homotopic, moreover, @, = 1.

The above shows that homology is a homotopic invariant, or that an object does not change homologies
under a homotopy.

Theorem 2.3.9. [MAYER-VIETORIS]
Given a simplicial complex K with subcomplexes K, K1 with KoUKy = K and KN K, =L,

2 B (L) 2> Hy(Ko) ® Hy(Ky) —2> Hy(K) —2> Hyy(L) —2— - -

is an exact sequence.

Theorem 2.3.10.

K1 ~ K2
U U =  H.(Ky;L1) = H.(Ko; L)
L1 ~ L2

3 Cohomology

3.1 Structures

Definition 3.1.1. Given a simplicial complex K and an Abelian group G, a homomorphism c* : Cy(K;Z) —
G is termed a k-dimensional cochain with coefficients in G.

The group of k-dimensional cochains is denoted C*(K; G) = Hom(Cy(K;7Z), G).



Remark 3.1.2. As above, we have more homological objects:
i. The group of k-dimensional cocyles is Z* = {z € C¥(K) | §z = 0}
ii. The group of k-dimensional boundaries is B¥ = {b € C*(K) | there exists ¢ € ¢*71(K) with dc = b}
iii. The cohomology group is H* = Z*/B*

Theorem 3.1.3. Let G be an additive group of a field F. Then H¢(K) is dual to H;(K).

Remark 3.1.4. The operator § : C*(K;G) — C*T1(K;G) is used as a dual to 9 : C(K;G) — Cp_1(K; GQ),
expressed by the relation
(6c*, errn) = (1), Dega)

Theorem 3.1.5. An exact sequence on objects U, V, W induces a dual exact sequence on the dual objects.

U A=0 Vv B=0 W

e < A= e (BT

with homology H; = ker(B)/Im(A) and cohomology H® = ker(A*)/Im(B*).

3.2 Universal coefficient formula

Definition 3.2.1. Let A, B be Abelian groups defined by generators and relations, and F, R free Abelian
groups with F' defined by generators and R by relations. Then a free resolution of the group A is an exact
sequence

0—R—F—>A—0

with induced exact sequence

0 ker(¢) R®B—>F®B—>A®B—>0
and induced exact homology sequence
0 <— Coker(p) <— Hom(R, B) <— Hom(F, B) <— Hom(A, B) <— 0
Then we also define the torsion group Tor(A, B) = ker(y) and the extension group Ext(A, B) = Coker(¢p).

Definition 3.2.2. Given an exact sequence 0 — A —— B BNV N 0, the sequence is split if any one of
the following equivalent conditions is satisfied.

i. the sequence is of the form 0 - A — A@® C - C — 0 for i1/p the natural embedding/projection
ii. there exists a homomorphism a: B — A with a0 =1dy
iii. there exists a homomorphism g : C' — B with ¥ o § = Id¢

Theorem 3.2.3. Homologies are related to coefficients in G by the following exact sequence:
0— Hy(K;Z) — Hy(K;G) — Tor(Hy_1(K;Z); G) —= 0
0 <— Hom(Hy(K;Z);G)) <— H*(K;G) <— Ext(Hy—1(K;Z); G) <—0

Moreover, both exact sequences are split.

Remark 3.2.4. For the Tor group as above, note that Tor(A, B) = Tor(B, A).



4 Duality

4.1 Cellular homology

Definition 4.1.1. A topological space X is termed a CW-complex if X = |JX? for X" a discrete space
and X®T! generated by attaching a disjoint union |_|D;le of (i + 1)-disks to X! via a continuous map
p: |_|8D;+1 — X

Definition 4.1.2. For X a CW-complex as above, the space X’ is termed the i-dimensional skeleton of X.

Definition 4.1.3. Let A be an n-dimensional simplex. Then A* is termed the dual simplex of /A generated
by barycentric division. Then A and A* are termed transversal. Moreover, we have that

((Ai, A])) = by

Theorem 4.1.4. [POINCARE DUALITY]
Classifying surfaces with barycentric triangulation and other methods, we find that, for p prime

Hy(K;7Z) ~ H"*(K;Z)
Hy(K,Z,) ~ H" *(K;7Z,)
Hy, ~ (H*)*

Proposition 4.1.5. Let A;,; A; be triangles of dimension k,k — 1. Then
(00, 7)) = (=1)"((Ai, (A7)
Definition 4.1.6. Let M be manifold then the Euler characteristic of M is defined as

X(M) = (=1)*|Cr(K)]
k
= (~=1)* dim(H,)
k

Note that x is homotopy invariant, or X ~Y = x(X) = x(Y).
Proposition 4.1.7. Given a short exact sequence 0 -+ A — B — C — 0 for A, B, C simplicial complexes,
X(B) = x(4) +x(C)

Definition 4.1.8. Let K be a finite simplicial complex and f : K — K a continuous map. Consider the
induced map f. : Hp(K) — Hi(K). As Hy(K) is a finite-dimensional vector space, consider the trace
tr(fs«)r. Define the Lefschetz number to be

A(f) =Y (=Dk(f)w

Theorem 4.1.9. [FIXED POINT THEOREM - LEFSCHETZ]
Let K be a simplicial complex. If A(f) # 0, then the map f : K — K has a fixed point.

Proposition 4.1.10. Let fx : Ci(K; R) — Ci(K; R), and then

S (DR (fae)e = Y (1) tr(fu)



4.2 Homotopy groups

Every loop on the sphere S? is contractible to a point, so its fundamental group, 7 (S?), is trivial.
Let H,,(S?,Z) denote the n-th homology group of S?.We can compute all of these groups using the basic
results from algebraic topology:

e S? is a compact orientable smooth manifold, so Ho(S?,7Z) = 7Z;
e 52 is connected, so Hy(S?,Z) = Z;

e H,(S?,Z) is the abelianization of w1 (S5?), so it is also trivial;

e S? is two-dimensional, so for k > 2, we have Hy(S?,Z) = 0

In fact, this pattern generalizes nicely to higher-dimensional spheres:

Z k=0,n
0 else

Hy(S™,Z) _{

This also provides the proof that the hyperspheres S™ and S™ are non-homotopic for n # m, for this
would imply an isomorphism between their homologies.



