Compact course notes COMBINATORICS AND OPTIMIZATION 250,

Winter 2011

 $Introduction\ to\ optimization$

Professor: B. Guenin transcribed by: J. Lazovskis University of Waterloo April 5, 2011

Contents

		ear Programs Fundamentals	2 2
2	Gra	raph theory	
	2.1	Matching problem	2
	2.2	Probabilistic solving	3

1 Linear Programs

Problem 1.0.1. [PRODUCTION PROBLEM]

A firm produces products $1, \ldots, n$ for the production of which certain amounts of input $1, \ldots, m$ are necessary. Find how many units of each product should be produced to maximize profit and not exceed available inputs.

1.1 Fundamentals

Definition 1.1.1. Optimization is the maximization of a function subject to given constraints.

Definition 1.1.2. Given $\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$ constant, $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $\beta \in \mathbb{R}$, the expression $\alpha^T x + \beta$ is a linear function. $\alpha^T x \leq \beta$ **Definition 1.1.3.** A linear constraint is an equation in one of the forms: $\alpha^T x \geq \beta$

Definition 1.1.4. A linear program is a linear function coupled with a finite set of linear constraints.

Definition 1.1.5. An integer program is a linear program with the added condition that at least one variable must have an integer value.

Problem 1.1.6. [FACILITY LOCATION PROBLEM]

Given potential facility locations $1, \ldots$, and involved parties situated at locations $1, \ldots, m$, find how many and where facilities should be built to minimize cost and satisfy reachability.

Problem 1.1.7. [INVENTORY PROBLEM]

Given time periods $1, \ldots, n$ and demand and price for a certain product for the periods, find how much of the product should be bought each time period, with possibility of storage.

Problem 1.1.8. [Assignment problem]

Given assignments $1, \ldots, n$ and interested parties $1, \ldots, m$, find which party should get which assignment to maximize profits and not exceed a 1:1 ratio of assignments: parties for each party.

2 Graph theory

2.1 Matching problem

Definition 2.1.1. A set G = (V, E) is a graph, where V is a finite set of points, termed vertices, and E is a finite set of unordered pairs of points of \overline{V} , termed edges.

Definition 2.1.2. A graph G = (V, E) is termed bipartite if there exists a partition $V_1, V_2 \subset V$ with $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$ and such that for all $e = \{x, y\} \in E$, $x \in V_1$ and $y \in V_2$.

Theorem 2.1.3. A graph G = (V, E) is bipartite if and only if it has no cycles with an odd number of vertices.

Definition 2.1.4. For G = (V, E) a graph, $M \subseteq E$ is a matching of G if every $v \in M$ is at most 1-regular.

Problem 2.1.5. [MATCHING PROBLEM]

Given a graph G = (V, E) and a weight function $f(e) = w_e$ for all $e \in E$, find a matching $M \subseteq E$ that maximizes weight.

Problem 2.1.6. [SCHEDULING PROBLEM]

Given a list of tasks $1, \ldots n$ with associated profits and start/end times, find a collection of tasks to be done that maximize profits and are constrained by no multitasking.

2.2 Probabilistic solving

Problem 2.2.1. [PORTFOLIO OPTIMIZATION]

Given an amount a and potential returns $1, \ldots, n$ with associated probabilities, find the expected rate of return and volatility.

Definition 2.2.2. A solution x is a <u>feasible solution</u> to an LP if x satisfies all the constraints of the program.

Definition 2.2.3. An LP is termed infeasible if it has no feasible solutions.

Definition 2.2.4. A solution x is an optimal solution to an LP given:

1. x is feasible

2. If y is also feasible, then $y \leq x$ (if max) or $y \geq x$ (if min)

Definition 2.2.5. An LP is termed <u>unbounded</u> if feasible solutions exist, but optimal solutions do not.