Compact course notes COMBINATORICS AND OPTIMIZATION 331,

WINTER 2011

Coding Theory

Professor: D.Jao transcribed by: J. Lazovskis University of Waterloo April 6, 2011

Contents

1	Intr	Introduction													
	1.1	Fundamentals													
	1.2	Channels	2												
	1.3	Decoding	3												
	1.4	Error detection & correction	3												
2	Finite fields														
	2.1	Ite fields Basics	3												
	2.2	Polynomial rings	4												
3	Line	ear codes	5												
	3.1	Fundamentals	5												
	3.2	Dual codes and parity-check matrices	6												
4	Cyc	Cyclic codes													
	4.1	Fundamentals	7												
	4.2	Encoding with cyclic codes													
	4.3	Burst errors													
	4.4		9												

1 Introduction

It is always assumed that the source and the receiver are separated by space and/or time.

1.1 Fundamentals

Definition 1.1.1. An alphabet is a finite set of symbols.

Definition 1.1.2. A word is a finite sequence of symbols from a given alphabet.

Definition 1.1.3. The length of a word is the number of symbols in the word.

Definition 1.1.4. A <u>code</u> is a subset of the set of words in a given alphabet.

Definition 1.1.5. A <u>code word</u> is a word in a particular code.

Definition 1.1.6. A <u>block code</u> is a code where every code word has the same length.

Definition 1.1.7. The length of a block code is the length of any code word in the block code.

Definition 1.1.8. An [n, M]-code is a block code C of length n with |C| = M.

1.2 Channels

Definition 1.2.1. A <u>channel</u> is a medium over which a symbol is sent.

Definition 1.2.2. A symmetric channel is a channel satisfying the following properties:

- 1. Only symbols from a set alphabet A are received.
- 2. No symbols are deleted, inserted, or translated.
- **3.** Random independent probability p of error for each symbol.

Definition 1.2.3. Given an alphabet $A = \{a_1, a_2, \ldots, a_q\}$, let X_i be the *i*th symbol sent, and let Y_i be the *i*th symbol received. Then a *q*-symmetric channel with symbol error probability *p* has the property that

for all
$$1 \leq j, k \leq q$$
, $P(Y_i = a_k | X_i = a_j) = \begin{cases} 1-p & j=k \\ \frac{p}{q-1} & j \neq k \end{cases}$

Definition 1.2.4. A binary symmetric channel is a symmetric channel using only the binary alphabet.

Definition 1.2.5. The information rate of an [n, M]-code defined over an alphabet A of size q is $r = \frac{\log_q(M)}{n}$

Definition 1.2.6. Let A be an alphabet with words $x, y \in A^n$. Then the Hamming distance of x and y is defined to be the number of positions in which x and y differ in symbols. It is denoted by d(x, y).

Theorem 1.2.7. [PROPERTIES OF HAMMING DISTANCE]

- **1.** $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- **2.** d(x,y) = d(y,x)
- **3.** $d(x,y) + d(y,z) \ge d(x,z)$

Remark 1.2.8. The main goals of coding theory are:

- 1. High error correction capability
- 2. High information rate
- 3. Efficient encoding and decoding algorithms

1.3 Decoding

Algorithm 1.3.1. [INCOMPLETE MAXIMUM LIKELIHOOD DECODING (IMLD)]

Suppose $r \in A^n$ is received. If $r \in C$, accept r. If $r \notin C$, then: If there exists a unique $c_o \in C$ such that $d(r, c_o) < d(r, c)$ for all $c \in C, c \neq c_o$, return c_o . Else reject r.

Algorithm 1.3.2. [COMPLETE MAXIMUM LIKELIHOOD DECODING (CMLD)] Identical to IMLD, except in last step choose a c_o arbitrarily from $\{c_o \in C | d(r, c_o) \leq d(r, c) \forall c \in C, c \neq c_o\}$

Theorem 1.3.3. For $r \in A^n$, IMLD outputs the code word $c \in C$ with the property that it maximizes P(r|c) := P(r is received | c is sent).

Algorithm 1.3.4. [MINIMUM ERROR DECODING (MED)] Suppose $r \in A^n$ is received. Return $c \in C$ such that $P(c|r) = P(r|c)\frac{P(c)}{P(r)}$ is maximized.

1.4 Error detection & correction

Definition 1.4.1. A code C can correct e errors if the decoder always returns the correct code word whenever e or fewer errors occur per received code word.

Theorem 1.4.2. If $d(C) = d_o$, then C can detect at most $d_o - 1$ errors per word.

Theorem 1.4.3. If $d(C) = d_o$, then C can correct at most $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.

Definition 1.4.4. The error probability of a code is the probability that an incorrect code word is output by IMLD for a received word.

Lemma 1.4.5. Suppose C is an [n, M]-code and each code word is sent with equal probability. Write for $c \in C$, w(c) = P(CMLD is wrong | c is sent). Then the error probability of C is given by $P(C) = \frac{1}{M} \sum_{c \in C} w(c)$.

Definition 1.4.6. Define $P^*(n, M, p) = \max\{P(C) | C \text{ is an } [n, M]\text{-code}\}.$

Definition 1.4.7. The channel capacity of a binary symmetric channel, for p the symbol error probability, is given by $c(p) = 1 + p \log(p) + (1-p) \log(1-p)$.

Theorem 1.4.8. Set $R = \frac{\log(M)}{n}$. Then for fixed R < c(p), $\lim_{n \to \infty} [P^*(n, M, p)] = 0$.

2 Finite fields

2.1 Basics

Definition 2.1.1. A field is a set \mathbb{F} closed under the operations $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ and $\cdot: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$.

1. (a+b)+c = a + (b+c)6. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ 2. a+b = b+17. $a \cdot b = b \cdot a$ 3. $\exists \ 0 \in \mathbb{F}$ such that a+0 = a for all $a \in \mathbb{F}$ 8. $\exists \ 1 \in \mathbb{F}$ such that $a \cdot 1 = a$ for all $a \in \mathbb{F}$ 4. $\exists \ -a \in \mathbb{F} \ \forall \ a \in \mathbb{F}$ such that a + (-a) = 09. $\exists \ a^{-1} \in \mathbb{F} \ \forall \ a \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$ 5. $a \cdot (b+c) = a \cdot b + a \cdot c$

Definition 2.1.2. The <u>order</u> of a field is defined to be its cardinality: $\operatorname{ord}(\mathbb{F}) = |\mathbb{F}|$

Definition 2.1.3. A field is <u>finite</u> is its order is finite. Else it is <u>infinite</u>.

Definition 2.1.4. \mathbb{Z}_n is a field $\iff n$ is prime.

Remark 2.1.5. A field can also be defined as a commutative ring with inverses and the identity element.

Definition 2.1.6. The <u>characteristic</u> of a finite field \mathbb{F} is defined to be the smallest positive integer n such that $\underbrace{1+1+\dots+1}_{n \text{ times}} = 0$ for 1 the multiplicative identity of \mathbb{F} . If no such n exists, then the characteristic of

 \mathbb{F} is defined to be 0. It is denoted char(\mathbb{F}).

Definition 2.1.7. For a field \mathbb{F} , char(\mathbb{F}) = 0 $\iff \mathbb{F}$ is not finite.

Definition 2.1.8. For a field \mathbb{F} , a subfield of \mathbb{F} is a subset of \mathbb{F} that is a field itself.

Definition 2.1.9. For \mathbb{F} a field with char(\mathbb{F}) = p prime, the set $\{0, 1 + 1, 1 + 1 + 1, ...\}$ is termed the prime subfield of \mathbb{F} .

Remark 2.1.10. The prime subfield is the smallest subfield of any field.

2.2 Polynomial rings

Definition 2.2.1. For any field \mathbb{F} , the polynomial ring $\mathbb{F}[x]$ is the set of all polynomials:

$$\mathbb{F}[x] = \left\{ \sum_{k=0}^{n} a + kx^{k} \mid a_{k} \in \mathbb{F}, n \in \mathbb{N} \right\}$$

Theorem 2.2.2. For any polynomials $a(x), b(x) \neq 0 \in \mathbb{F}[x]$, there exist unique polynomials q(x), r(x) such that a(x) = q(x)b(x) + r(x) such that $\deg(r(x)) < \deg(b(x))$.

Note that $deg(0) = -\infty$ by definition.

Definition 2.2.3. Fix $f(x) \in \mathbb{F}[x]$. The equivalence class of a(x) modulo f(x) is denoted [a(x)].

Definition 2.2.4. For any $f(x) \in \mathbb{F}[x]$, the set $\mathbb{F}[x]/f(x)$ is the set of all equivalence classes of polynomials in $\mathbb{F}[x]$ modulo f(x).

Remark 2.2.5. This set may be defined as $\mathbb{F}[x]/f(x) = \{r(x) | \deg(r) < \deg(f)\}$, with $\mathbb{F}[x]/f(x)$ is a field $\iff f(x)$ is irreducible in $\mathbb{F}[x]$.

Definition 2.2.6. The polynomial f(x) is termed <u>irreducible</u> over a field $\mathbb{F}[x]$ is there exists no factorization f(x) = p(x)q(x) with $\deg(p(x)) < \deg(f(x))$ and $\deg(q(x)) < \deg(f(x))$.

Corollary 2.2.7. If $f(x) \in \mathbb{Z}[x]/f(x)$ is irreducible, then $\mathbb{Z}[x]/f(x)$ is a field of order p^n for $p = \deg(f(x))$.

Theorem 2.2.8. For every prime p and every positive integer n, there exists an irreducible polynomial in $\mathbb{Z}_p[x]$ of degree n.

Corollary 2.2.9. For every prime p and every positive integer n, there exists a finite field of order p^n with $p \ge 2$ and n > 0.

Theorem 2.2.10. Any two fields of the same order are isomorphic to each other.

Definition 2.2.11. Denote by GF(q) or \mathbb{F}_q the unique (up to isomorphism) finite field of order q

Lemma 2.2.12. [ANTI-CALCULUS LEMMA] In a field \mathbb{F} with char(\mathbb{F}) = p prime, $(x + y)^{p^k} = x^{p^k} + y^{p^k}$ for all $x, y \in \mathbb{F}$.

Theorem 2.2.13. [FERMAT] In a finite field GF(q) for q prime, $\alpha^{q-1} = 1$ for all $\alpha \in \mathbb{F}$. **Corollary 2.2.14.** In GF(q), $\alpha^q = \alpha$ for all $\alpha \in \mathbb{F}$.

Definition 2.2.15. For any $\alpha \in GF(q)^*$, the <u>order</u> of α is the smallest positive integer $t = \operatorname{ord}(\alpha)$ such that $\alpha^t = 1$, where $GF(q)^* = GF(q) \setminus \{0\}$.

Theorem 2.2.16. Let $\alpha \in GF(q)^*$ with $\operatorname{ord}(\alpha) = t$. Then $\alpha^s = 1 \iff s|t$.

Definition 2.2.17. An element α of $GF(q)^*$ is termed a generator (or primitive element or primitive root) of $GF(q)^*$ if $\operatorname{ord}(\alpha) = q - 1$.

In this case, $GF(q)^* = \{\alpha^1, \alpha^2, \dots, \alpha^{q-1}\}.$

Theorem 2.2.18. Every $GF(q)^*$ contains a generator.

Theorem 2.2.19. Let $u_1, u_2 \in GF(q)$ with $ord(u_1) = t_1$ and $ord(u_2) = t_2$ and $gcd(t_1, t_2) = 1$. Then $\operatorname{ord}(u_1 u_2) = t_1 t_2.$

Theorem 2.2.20. Let $u_1, u_2 \in GF(q)$ with $\operatorname{ord}(u_1) = t_1$ and $\operatorname{ord}(u_2) = t_2$. Then there exists $u \in GF(q)^*$ with $\operatorname{ord}(u_1u_2) = \operatorname{lcm}(t_1t_2)$.

3 Linear codes

Fundamentals 3.1

Remark 3.1.1. For $\mathbb{F} = GF(q)$, denote the set $\mathbb{F}^n = \underbrace{\mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F}}_{n \text{ times}}$ by $V_n(\mathbb{F})$.

Definition 3.1.2. A linear (n, k)-code C is defined to be a subspace $C \subset V_n(\mathbb{F})$ of dimension k.

Remark 3.1.3. A linear (n, k)-code C has the following properties:

- i. The number of code words in C is $|C| = q^k$.
- ii. The distance of C is $d(C) = \min\{d(x, y) | x, y \in C, x \neq y\}$. iii. The information rate of C is $R = \frac{\log_q(M)}{n} = \frac{k}{n}$

Definition 3.1.4. The Hamming weight of a code C is $w(C) = \min\{w(x) | x \in C, x \neq 0\}$.

Theorem 3.1.5. For a linear code C, w(C) = d(C).

Definition 3.1.6. Let C be an (n, k)-code. A generator matrix for C is $k \times n$ matrix G with coefficients in \mathbb{F} whose rows are a basis of C.

A generator matrix need not be unique.

Definition 3.1.7. A generator matrix of the form $G = [I_k|A]$ is said to be in standard form.

Definition 3.1.8. If C has at least 1 generator matrix in standard form, then C is a systematic code.

Remark 3.1.9. For any linear (n, k)-code C with generator matrix G, the encoding function is:

 $\mathbb{F}^k \to C$, given by $m = (m_1 \ m_2 \ \cdots \ m_k) \in \mathbb{F}^k \mapsto m_1c_1 + m_2c_2 + \cdots + m_kc_k = mG \in C$

Definition 3.1.10. Two linear codes C and C' are equivalent if there exists a permutation of the coordinates of $V_n(\mathbb{F})$ mapping C to C'.

Theorem 3.1.11. Every linear code is equivalent to a systematic code.

3.2 Dual codes and parity-check matrices

Definition 3.2.1. Let C be an (n, k)-code over \mathbb{F} . The <u>dual code</u> (or orthogonal code) of C is given by

$$C^{\perp} = \{ x \in V_n(\mathbb{F}) \mid x \cdot y = 0 \ \forall \ y \in \mathbb{C} \}$$

Note that $(C^{\perp})^{\perp} = C$.

Theorem 3.2.2. If C is an (n, k)-code, then C^{\perp} is an (n, n-k)-code.

Theorem 3.2.3. If C is a systematic code with generator matrix $G = [I_k|A] \in M_{k \times n}$, then a generator matrix for C^{\perp} is $H = [-A^T|I_{n-k}]$.

Definition 3.2.4. A parity-check matrix for C is a generator matrix for C^{\perp} .

Proposition 3.2.5. $x \in C \iff Hx^T = 0$ for H a parity-check matrix of C.

Theorem 3.2.6. For any $s \in \mathbb{N}$, $d(C) \ge s \iff$ every subset of s - 1 columns of the parity-check matrix H for C is linearly independent.

Remark 3.2.7. The following hold for a linear code C with parity-check matrix H:

1. $d(C) \ge 2 \iff$ no column of H is the zero vector

2. $d(C) \ge 3 \iff$ no column of H is a multiple of another column of H

Definition 3.2.8. A Hamming code of order r over GF(q) is an (n, k)-code where $n = \frac{q^r - 1}{q - 1}$ and k = n - r with a parity-check matrix $H \in M_{k \times n}(GF(q))$ such that no column of H is a zero column and no column is a multiple of another column.

Hamming codes are 1-error correcting codes.

Definition 3.2.9. Given a transmitted code word c and received code word r, the <u>error vector</u> is defined to be e = r - c.

Definition 3.2.10. For every $r \in V_n(\mathbb{F})$, the syndrome of r is Hr^T .

Proposition 3.2.11. For a Hamming code C, every $r \in V_n(\mathbb{F})$ is within distance 1 of a code word.

Definition 3.2.12. Let C be an [n, m]-code of distance d with $e = \lfloor \frac{d-1}{2} \rfloor$. Then C is termed a perfect code if every $r \in A^n$ is within distance e of some $r \in C$.

Definition 3.2.13. Let C be an (n, k)-code. An element c of a coset of C (in $V_n(\mathbb{F})$) is termed a <u>coset leader</u> if no other element of the coset has lesser weight than c.

Definition 3.2.14. Let C be an (n,k)-code over GF(q). A standard array of C is a $q^{n-k} \times q^k$ matrix with entries vectors over $V_n(GF(q))$ with:

- 1. Each code word appears exactly once in the first row
- **2.** Each row is a coset of C
- **3.** Every element of $V_n(GF(q))$ appears exactly once in the array
- 4. In each row, the entry in the first column is a coset leader for its respective row
- **5.** $A_{ij} = A_{i1} + A_{1j}$ for all i, j

Theorem 3.2.15. If c is a coset leader for C with d(C) = d and $w(c) = \lfloor \frac{d-1}{2} \rfloor$, then c is the unique coset leader in its coset.

Remark 3.2.16. Some properties of C_{24} , the code presented below:

1. $d(C_{24}) = 8$

2. C_{24} can correct 3 errors

[1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1]
0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1
0	0	0	0	1	0	0	0	0	0				1	1	1	0	0	0	1	0	1	1	0
0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	0	1	0	1	1	0	1
0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	1	0	1	1	0	1	1
0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	1	0	1	1	1
0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	1	0	1	1	1	0
0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	1	1	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	1	1	1	0	0	0	1

4 Cyclic codes

4.1 Fundamentals

Definition 4.1.1. A subspace S of $V_n(\mathbb{F})$ is termed a <u>cyclic subspace</u> if $(a_0, a_1, \ldots, a_{n-1}) \in S$ implies $(a_{n-1}, a_0, a_1, \ldots, a_{n-2}) \in S$.

Definition 4.1.2. A linear code is a cyclic code if it is a cyclic subspace of $V_n(\mathbb{F})$. Equivalently, it is a code that is invariant under cyclic shifts.

Definition 4.1.3. A commutative ring is a set R closed under the two operations $+ : R \times R \to R$ and $\cdot : R \times R \to R$ with the following properties:

- i. Addition is associative and commutative
- ii. The identity and inverses exist for addition
- iii. Multiplication is associative and commutative
- iv. The identity exists for multiplication
- **v.** The distributive law holds

Definition 4.1.4. Let R be a commutative ring. An <u>ideal</u> of R is a non-empty set $I \subset R$ with

- i. if $a, b \in I$, then $a + b \in I$
- ii. if $a \in I$, then $-a \in I$
- **iii.** for all $a \in I$ and $r \in R$, $ar \in I$

Theorem 4.1.5. A subset $S \subset V_n(\mathbb{F})$ is a cyclic subspace $\iff S \subset \mathbb{F}[x]/x^n - 1$ is an ideal of $\mathbb{F}[x]/x^n - 1$.

Theorem 4.1.6. Every ideal in $\mathbb{F}[x]$ is of the form $I = \langle g(x) \rangle$ for $g(x) \in \mathbb{F}[x]$.

Definition 4.1.7. An ideal I of R is termed a principal ideal if $I = \langle g \rangle$ for $g \in R$ and $\langle g \rangle = \{gr | r \in R\}$. Then I is said to be generated by g.

Definition 4.1.8. For any ideal $I \subset R = \mathbb{F}[x]/x^n - 1$, the generator polynomial of I is the unique monic polynomial g(x) such that $I = \langle g(x) \rangle$.

Remark 4.1.9. Let \mathbb{F} be a field. Then the only ideals of \mathbb{F} are $\langle 0 \rangle$ and $\langle 1 \rangle$.

4.2Encoding with cyclic codes

Proposition 4.2.1. Given a cyclic (n, k)-code C over F with generator polynomial $g(x)|x^n - 1$, a generator matrix for C is

$$G = \begin{bmatrix} g(x) & xg(x) & \cdots & x^{k-1}g(x) \end{bmatrix}^T \in M_{k \times n}$$

where the entries are the coefficients of unique powers of x.

Remark 4.2.2. For any message $m \in V_k(\mathbb{F})$, mG = m(x)q(x).

Proposition 4.2.3. For a cyclic (n,k)-code C over \mathbb{F} with generator polynomial $g(x)|x^n-1$, the parity check matrix of C is the generator matrix for C^{\perp} with generator polynomial $h(x) = x^n - 1/q(x)$. Note that C^{\perp} is also cyclic.

Definition 4.2.4. For any polynomial $h(x) = h_0 + h_1 x + h_2 x^2 + \dots + h_k x^k$, define $h_R(x) := \frac{x^k}{h_0} h\left(\frac{1}{x}\right)$. Then $h_R(x) = (h_k, h_{k-1}, \dots, h_1, h_0, h_{n-1}, h_{n-2}, \dots, h_{k+1})$ and a generator matrix for C^{\perp} is

 $H = \begin{bmatrix} h_R(x) & xh_R(x) & \cdots & x^{n-k-1}h_R(x) \end{bmatrix}^T \in M_{(n-k) \times n}$

Proposition 4.2.5. Let $C \subset V_n(\mathbb{F}) = \mathbb{F}[x]/x^n - 1$ be a cyclic code with generator polynomial g(x) = $g_0 + g_1 x + \dots + g_{n-k} x^{n-k}$ and $g(x)|x^n - 1$. Then

$$G = \begin{bmatrix} g_0 & g_1 & g_2 & \cdots & g_{n-k} & 0 & \cdots & 0\\ 0 & g_0 & g_1 & g_2 & \cdots & g_{n-k} & 0 & 0\\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ 0 & 0 & \cdots & g_0 & g_1 & g_2 & \cdots & g_{n-k} \end{bmatrix}$$
$$H = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0\\ 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & 0\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ 0 & 0 & \cdots & h_k & h_{k-1} & \cdots & h_0 \end{bmatrix}$$

are the generator and parity-check matrices for C.

Proposition 4.2.6. Consider a re-expression of the generator matrix G as described above by:

$$\begin{aligned} x^{n-k} &= q_0 g(x) + r_0(x) \\ x^{n-k+1} &= q_1(x) g(x) + r_1(x) \\ x^{n-k+2} &= q_2(x) g(x) + r_2(x) \\ \vdots & \vdots \\ x^{n-1} &= q_{k-1}(x) g(x) + r_{k-1}(x) \end{aligned} \qquad G = \begin{bmatrix} x^{n-k} - r_0(x) \\ x^{n-k+1} - r_1(x) \\ x^{n-k+2} - r_2(x) \\ \vdots \\ x^{n+1} - r_{k-1}(x) \end{bmatrix}$$

Then the parity-check matrix can be re-written as:

 $H = \begin{bmatrix} I_{n-k} & | & r_0(x) & r_1(x) & \cdots & r_k(x) \end{bmatrix} = \begin{bmatrix} x^0 \mod g & x^1 \mod g & \cdots & x^{n-1} \mod g \end{bmatrix} \in M_{(n-k) \times n}$

4.3**Burst** errors

Definition 4.3.1. A vector $e \in V_n(\mathbb{F})$ has cyclic burst length $\leq t$ if there exists a cyclic block of (at most) t contiguous positions such that every non-zero coordinate of e lies within the t positions.

Theorem 4.3.2. [RIEGER BOUND]

For C an (n, k)-code, C has burst error correction capability $t \leq \frac{n-k}{2}$.

Theorem 4.3.3. Given a cyclic (n, k)-code C with burst error correction capability t and a received vector r(x), the syndrome of the sent code word is

 $s(x) = x^i r(x)$ such that $i = \min\{i \mid x^i r(x) \pmod{g(x)}\}$ has every error in the first t positions

This is termed the error trapping method. Further, the error vector is

$$e(x) = x^{n-i}s(x) \pmod{x^n - 1}$$

Definition 4.3.4. A cyclotomic coset of q modulo n is a set of unique elements,

 $C_k = \{k \pmod{n}, qk \pmod{n}, q^2k \pmod{n}, \dots, q^{m_k}k \pmod{n}\} \quad \text{with} \quad 0 \leq k \leq q-1$

Proposition 4.3.5. With respect to the above, the irreducible monic polynomials of $x^n - 1$ over GF(q) are

4.4 BCH codes

Definition 4.4.1. Suppose $\mathbb{F} = \operatorname{GF}(q)$ and $K = \operatorname{GF}(q^m)$, with $\mathbb{F} \subset K$. For any $\alpha \in K$, the minimal polynomial of α over \mathbb{F} is the non-zero monic polynomial of smallest degree in $\mathbb{F}[x]$ such that it has α as a root.

The minimal polynomial is denoted $m_{\alpha}(x)$.

Theorem 4.4.2.

- **1.** $m_{\alpha}(x)$ is unique
- **2.** $m_{\alpha}(x)$ is irreducible
- **3.** deg $(m_{\alpha}(x)) \leq m$
- **4.** if $f(x) \in \mathbb{F}[x]$ and $f(\alpha) = 0$, then $m_{\alpha}|f(\alpha)| = 0$

Corollary 4.4.3. If f(x) is monic irreducible and $f(\alpha) = 0$, then $f(x) = m_{\alpha}(x)$.

Lemma 4.4.4. For any $\alpha \in GF(q^m)$, $\alpha \in GF(q) \iff \alpha^q = \alpha$.

Definition 4.4.5. For $\alpha \in GF(q^m)$, the set of conjugates of α over GF(q) is $C(\alpha) = \{\alpha^{q^n} | n \in \mathbb{N} \cup \{0\}\}$.

Remark 4.4.6. Suppose t is the smallest positive integer such that $\alpha^{q^t} = \alpha$. Note $t \leq m$. Then the elements of $C(\alpha) = \{\alpha, \alpha^{q^1}, \ldots, \alpha^{q^t}\}$ are all pairwise distinct.

Theorem 4.4.7. Let $\alpha \in GF(q^m)$. Then the minimal polynomial of α over GF(q) is

$$\prod_{\beta \in C(\alpha)} (x - \beta) = (x - \alpha)(x - \alpha^{q^1}) \cdots (x - \alpha^{q^t})$$

Theorem 4.4.8. Given the following conditions:

 $p \text{ prime, } k \in \mathbb{N}, q = p^{k}$ $n \text{ block length with } \gcd(n, q) = 1$ $m \text{ such that } o(q) = m \text{ in } \mathbb{Z}_{n}$ $\alpha \in \operatorname{GF}(q^{m})^{*} \text{ a generator}$ $\beta \in \operatorname{GF}(q^{m}) \text{ of order } n \text{ with } \beta = \alpha^{(q^{m}-1)/n}$ $a, \delta \in \mathbb{Z}_{n}$ $g(x) = \operatorname{lcm}\{m_{\beta^{i}}(x) \in \operatorname{GF}(q^{m})\}$

Then the code C generated by g(x) is a BCH code over GF(q) of block length n and designed distance δ .

$$q(x) = \operatorname{lcm}\{m_{\beta^{i}}(x) \in \operatorname{GF}(q) \mid a \leqslant i \leqslant a + \delta - 2\}$$

Theorem 4.4.9. A BCH code of designed distance δ has distance at least δ .

References

Vanstone, Scott A. and Paul C. van Oorschot. An introduction to Error Correcting Codes with Applications. Kluwer Academic Publishers: 1989