
Compact course notes

Combinatorics and Optimization 351,

Fall 2012
Network Flow Theory

Professor: B. Richter
transcribed by: J. Lazovskis

University of Waterloo
October 21, 2012

Contents

1 Paths and walks 2
1.1 Definitions . 2
1.2 Deconstruction of walks . 2

2 Shortest path algorithms 3
2.1 Dantzig’s algorithm . 3
2.2 Dijkstra’s algorithm . 4
2.3 Bellman-Ford algorithm . 6

3 Flows 6

1 Paths and walks

1.1 Definitions

Definition 1.1.1. A directed graph (or digraph) is a pair (N,A) of finite sets such that for each a ∈ A
there exist distinct t(a), h(a) ∈ N .

The elements of N are termed nodes and the elements of A are termed arcs.
The element t(a) for a ∈ A is the tail of a, and h(a) is the head of a.

Definition 1.1.2. A directed walk (or diwalk) in a digraph (N,A) is a sequence {a1, . . . , ak} of arcs of
(N,A) such that for all i = 1, . . . , k − 1 we have h(i) = ti+1. The length of a diwalk is the number of
elements in the sequence. A directed walk {a1, . . . , ak} is termed closed if t(a1) = h(ak).

Definition 1.1.3. A directed walk {a1, . . . , ak} is su-directed if s = t(a1) and u = h(ak).

Definition 1.1.4. A directed walk {a1, . . . , ak} is termed a directed path (or dipath) if h(a1), . . . , h(ak) are
all unique.

Theorem 1.1.5. If there is an su-directed walk, then there is an su-directed path.

Definition 1.1.6. A closed directed walk {a1, . . . , ak} is termed a directed cycle (or dicycle) if h(a1), . . . , h(ak)
are all unique.

Example 1.1.7. Consider the following digraph:

1 2 3

a b

cd

Here we have that {a, b, c, d} is a diwalk (a closed one), and both {a, d} and {b, c} are dicycles.

1.2 Deconstruction of walks

Theorem 1.2.1. If {a1, . . . , ak} for k > 1 is a closed diwalk, then there exist indexes 1 6 i < j 6 k such
that {ai, ai+1, . . . , aj−1, aj} is a dicycle.

Theorem 1.2.2. Let W be a closed diwalk in a digraph D. Then there exists a collection C of directed
cycles of D such that each edge of D occurs in precisely the same number of cycles in C as it has occurrences
in W .

Proof: Let W = a1, . . . , ak be the closed diwalk.
By above theorem, there exist indices i, j such that ai, . . . , aj is a dicycle.
Now we have that t(ai) = h(aj).
Let W ′ = a1, . . . , ai−1, aj+1, ak.
It is clear that W1 is still a closed diwalk, as from construction t(ai) = h(ai−1) and h(aj) = t(aj+1) and

these expressions are equal as well.
Now we add {ai, . . . , aj} to C and by induction, every dicycle of W will be in C eventually. �

Example 1.2.3. Consider the following closed diwalk:

2

1

2

34

5

ba

c

d

e

f

g

W = acfebcgacfebcg
W ′ = acfebcfebcg
W ′′ = acfebcg
W ′′′ = acg

C = {cga, cfeb, febc, acg}

Theorem 1.2.4. If W is an su-diwalk in a digraph D, then there is an su-dipath P and a collection C of
dicycles so that the number of occurrences of each arc a in W is equal to the number of elements of P ∪ C
containing a.

Proof: Let W ′ = W ∪ {a} such that t(a) = u and h(a) = s, which then reduces to the previous theorem. �

2 Shortest path algorithms

2.1 Dantzig’s algorithm

Remark 2.1.1. If a digraph D has an su-directed walk that has length less than the shortest su-directed
path, then d contains a negative cycle. We already showed that every su-directed walk W decomposes into
an su-directed path P and a collection C of dicycles with the property that

`(W) = `(P) +
∑
c∈C

`(c)

So if we have that `(W) < `(P), then there must be some c ∈ C with `(c) < 0.

Definition 2.1.2. Let D = (N,A) be a digraph with ab, bc ∈ A. Then a is termed an in-neighbor of b and
c is an out-neighbor of b. This is illustrated with an example below:

a

b

c

d

−10

7

2

8

4

Proposition 2.1.3. Let u, v be nodes of a digraph D, and let vt be an arc of D. Then a shortest uv-dipath
that contains t contracts to a shortest ut-dipath iff the tv-dipath does not contain a negative cycle.

Theorem 2.1.4. Dantzig’s algorithm terminates either with a negative cycle (this will always happen if
such a cyclele exists), or a tree with all paths from u being shortest to the nodes on them in the digraph.

Proof: Let T be an out-tree from u containing all the nodes of D.
For each node a of T , let ya denote the length of the ua-dipath.
Let ab ∈ A.

Case 1: ab ∈ T .
Then yb = ya + `(ab).

Case 2: ab /∈ T .
�

3

Definition 2.1.5. Given a digraph D = (N,A), for all ab ∈ A define values ya and yb such that

yb − ya 6 `(ab)

If such values for all arcs ab ∈ A may be found, then they are termed feasible potentials.

Lemma 2.1.6. A digraph D has a set of feasible potentials iff it has no negative cycle.

2.2 Dijkstra’s algorithm

Algorithm 2.2.1. [Dijkstra]
Let A be the set of arcs ab for which ya − yb = `(ab).
Let S be the set of nodes reachable from u using only arcs in A (S = {u} at inception).
Set all ya = 0.
While v /∈ S:

For each node a ∈ S, b /∈ S, ab ∈ A, let εab = ya − yb + `(ab) 6= 0.
Let ε = min{εab}.
Add to A all arcs ab with εab = ε.
Add to S all nodes in the digraph formed by A.
Add ε to all ya with a /∈ S.

Here we will do a complete application of Djikstra’s algorithm to a digraph.

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 0 A = {} S = {u}
ya = 0 yf = 0 εua = 1
yb = 0 yg = 0 εub = 6
yc = 0 yh = 0 εuc = 2
yd = 0 yv = 0

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 1 A = {ua} S = {u, a}
ya = 1 yf = 1 εub = 5 εad = 3
yb = 1 yg = 1 εuc = 1 εae = 2
yc = 1 yh = 1
yd = 1 yv = 1

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 2 A = {ua, uc} S = {u, a, c}
ya = 1 yf = 2 εub = 4 εad = 2
yb = 2 yg = 2 εcf = 4 εae = 1
yc = 2 yh = 2
yd = 2 yv = 2

4

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 3 A = {ua, uc, ae} S = {u, a, c, e}
ya = 1 yf = 3 εub = 3 εad = 1
yb = 3 yg = 3 εcf = 3 εeg = 5
yc = 2 yh = 3 εeh = 3
yd = 3 yv = 3

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 3 A = {ua, uc, ae, S = {u, a, c, e,
ya = 1 yf = 4 ad} d}
yb = 4 yg = 4 εub = 2 εdg = 4
yc = 2 yh = 4 εcf = 2 εdh = 3
yd = 4 yv = 4 εeh = 2 εeg = 4

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 3 A = {ua, uc, ae, S = {u, a, c, e,
ya = 1 yf = 6 ad, ub, cf, eh} d, b, f, h}
yb = 6 yg = 6 εfv = 3 εeg = 3
yc = 2 yh = 6 εhv = 4 εdg = 2
yd = 4 yv = 6

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 3 A = {ua, uc, ae, S = {u, a, c, e,
ya = 1 yf = 6 ad, ub, cf, eh, dg} d, b, f, h, g}
yb = 6 yg = 8 εfv = 1 εgv = 1
yc = 2 yh = 6 εhv = 2
yd = 4 yv = 8

5

u v

a

b

c

d

e

f

g

h

1

6

2

3

2 1

4

5 3

1

4

1
6

4

2

3

3

yu = 0 ye = 3 A = {ua, uc, ae, S = {u, a, c, e,
ya = 1 yf = 6 ad, ub, cf, eh, dg, d, b, f, h, g, v}
yb = 6 yg = 8 fv}
yc = 2 yh = 6
yd = 4 yv = 9

In the last iteration, we could have just as well added gv instead of fv. This means that there are two
shortest uv-dipaths.

Theorem 2.2.2. At each iteration, the current potentials ya are feasible. When an arc ab is added to A,
the new potential at B is the length of the shortest ub-dipath.

Proof: Since `(ab) > 0 for all arcs ab, and y1 = yb = 0, we have that 0 + `(ab) > 0.
Therefore the initial potentials are feasible.
At a given iteration, assume inductively that the current potentials are feasible.
We will prove that the updated potentials are also feasible.

Case 1: a, b ∈ N \ S
Then ya = yb.
Thus if ab is an arc with a, b ∈ N \ S, ya = yb both before and after the update.
Then ya + `(ab) > yb = ya both before and after the update.

Case 2: a, b ∈ S
Then ya, yb are not changed by the update.
As the arc ab was feasible before the update, it is feasible after the update.

Case 3: a ∈ S, b ∈ N \ S

2.3 Bellman-Ford algorithm

Algorithm 2.3.1. [Bellman, Ford]
Let yu = 0 and ya =∞ for all a ∈ N \ {u}. All pa are undefined for a ∈ N .
Repeat |N | − 1 times:

Check each arc ab for feasibility.
If yb − ya = `(ab), do nothing
If yb − ya > `(ab), let yb = ya + `(ab) and set pb to be the length of the path to b

The outcome will be that if all the yas are feasible, we have all shortest paths. If not all yas are feasible,
then we have a negative cycle.

3 Flows

3.1 Ford-Fullkerson algorithm

Algorithm 3.1.1. [Ford, Fullkerson]
Let x be an st-flow on a capacitated digraph D with arc ab having capacity xab.

6

	Paths and walks
	Definitions
	Deconstruction of walks

	Shortest path algorithms
	Dantzig's algorithm
	Dijkstra's algorithm
	Bellman-Ford algorithm

	Flows

