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1 Paths and walks

1.1 Definitions

Definition 1.1.1. A directed graph (or digraph) is a pair (IV, A) of finite sets such that for each a € A
there exist distinct ¢(a), h(a) € N.

The elements of N are termed nodes and the elements of A are termed arcs.
The element t(a) for a € A is the tail of a, and h(a) is the head of a.

Definition 1.1.2. A directed walk (or diwalk) in a digraph (N, A) is a sequence {aj,...,a;} of arcs of
(N, A) such that for all ¢ = 1,...,k — 1 we have h(i) = t;y1. The length of a diwalk is the number of
elements in the sequence. A directed walk {aq,...,ax} is termed closed if t(ay) = h(ag).

Definition 1.1.3. A directed walk {a1,...,a} is su-directed if s = t(ay) and u = h(ay).

Definition 1.1.4. A directed walk {a1,...,ax} is termed a directed path (or dipath) if h(ay),..., h(ax) are
all unique.

Theorem 1.1.5. If there is an su-directed walk, then there is an su-directed path.

Definition 1.1.6. A closed directed walk {aq, ..., ax} is termed a directed cycle (or dicycle) if h(ay),. .., h(ax)
are all unique.

Example 1.1.7. Consider the following digraph:
a b

d Cc

Here we have that {a,b,c,d} is a diwalk (a closed one), and both {a,d} and {b, ¢} are dicycles.

1.2 Deconstruction of walks

Theorem 1.2.1. If {ay,...,ax} for £ > 1 is a closed diwalk, then there exist indexes 1 < i < j < k such
that {a;,a;11,...,a;-1,a;} is a dicycle.

Theorem 1.2.2. Let W be a closed diwalk in a digraph D. Then there exists a collection C' of directed
cycles of D such that each edge of D occurs in precisely the same number of cycles in C' as it has occurrences
in W.

Proof: Let W = aq, . ..,a be the closed diwalk.

By above theorem, there exist indices 7, j such that a,,...,a; is a dicycle.

Now we have that t(a;) = h(a;).

Let W/ =ar,.--,A;—1,0541, k-

It is clear that TW1 is still a closed diwalk, as from construction t(a;) = h(a;—1) and h(a;) = t(aj4+1) and
these expressions are equal as well.

Now we add {a;,...,a;} to C and by induction, every dicycle of W will be in C' eventually. Bl

Example 1.2.3. Consider the following closed diwalk:



W = acfebcgacfebcg

W' = acfebcfebcg
W" = acfebcg
W = acg

C = {cga,cfed, febe,acg}

Theorem 1.2.4. If W is an su-diwalk in a digraph D, then there is an su-dipath P and a collection C' of
dicycles so that the number of occurrences of each arc a in W is equal to the number of elements of P U ('
containing a.

Proof: Let W/ = W U {a} such that t(a) = v and h(a) = s, which then reduces to the previous theorem. W

2 Shortest path algorithms

2.1 Dantzig’s algorithm

Remark 2.1.1. If a digraph D has an su-directed walk that has length less than the shortest su-directed
path, then d contains a negative cycle. We already showed that every su-directed walk W decomposes into
an su-directed path P and a collection C of dicycles with the property that

W) =L(P)+ Y Uc)
ceC

So if we have that ¢(W) < £(P), then there must be some ¢ € C with ¢(c) < 0.

Definition 2.1.2. Let D = (N, A) be a digraph with ab,bc € A. Then a is termed an in-neighbor of b and
c is an out-neighbor of b. This is illustrated with an example below:

Proposition 2.1.3. Let u,v be nodes of a digraph D, and let vt be an arc of D. Then a shortest uv-dipath
that contains ¢ contracts to a shortest ut-dipath iff the tv-dipath does not contain a negative cycle.

Theorem 2.1.4. Dantzig’s algorithm terminates either with a negative cycle (this will always happen if
such a cyclele exists), or a tree with all paths from u being shortest to the nodes on them in the digraph.

Proof: Let T be an out-tree from u containing all the nodes of D.
For each node a of T, let y, denote the length of the ua-dipath.
Let ab € A.

Case 1: abe T.
Then y, = y, + £(ab).

Case 2: ab ¢ T.
|




Definition 2.1.5. Given a digraph D = (N, A), for all ab € A define values y, and y; such that
Yo — Ya < é(ab)

If such values for all arcs ab € A may be found, then they are termed feasible potentials.

Lemma 2.1.6. A digraph D has a set of feasible potentials iff it has no negative cycle.

2.2 Dijkstra’s algorithm

Algorithm 2.2.1. [DIJKSTRA]
Let A be the set of arcs ab for which y, — y» = £(abd).
Let S be the set of nodes reachable from u using only arcs in A (S = {u} at inception).
Set all y, = 0.
While v ¢ S:
For each node a € S, b ¢ S, ab € A, let €, = yo — yp + £(ab) # 0.
Let € = min{egp}-
Add to A all arcs ab with €4, = €.
Add to S all nodes in the digraph formed by A.
Add € to all y, with a ¢ S.

Here we will do a complete application of Djikstra’s algorithm to a digraph.

yu=0 yo=0 A={} S={u}
Ya =0 Yr = €ua = 1

yp =0 ngO €up = 6

Ye=0 yn=0 €uc = 2

Ya =0 y, =0
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Yu = Yo = 3 A ={ua,uc,ae, S ={u,a,ce,
Ya=1 y;r=6 ad,ub,cf,eh,dg, d,b,f h,g,v}
w=6 y,=8  fu}

Ye=2 yp=2=6

yd:4 yv:9

In the last iteration, we could have just as well added gv instead of fv. This means that there are two
shortest uv-dipaths.

Theorem 2.2.2. At each iteration, the current potentials y, are feasible. When an arc ab is added to A,
the new potential at B is the length of the shortest ub-dipath.

Proof: Since £(ab) > 0 for all arcs ab, and y; = yp = 0, we have that 0+ £(ab) > 0.
Therefore the initial potentials are feasible.
At a given iteration, assume inductively that the current potentials are feasible.
We will prove that the updated potentials are also feasible.

Case 1: a,be N\ S

Then yq, = yp.

Thus if ab is an arc with a,b € N \ S, y, = y» both before and after the update.
Then y, + ¢(ab) > y» = y, both before and after the update.

Case 2: a,be S
Then y,, yp» are not changed by the update.
As the arc ab was feasible before the update, it is feasible after the update.

Case3: a € S,be N\ S

2.3 Bellman-Ford algorithm

Algorithm 2.3.1. [BELLMAN, FORD]
Let y, = 0 and y, = oo for all a € N\ {u}. All p, are undefined for a € N.
Repeat |N| — 1 times:
Check each arc ab for feasibility.
If yp — yo = £(ad), do nothing
If yp — yo > £(ad), let yp = y, + £(ad) and set py, to be the length of the path to b

The outcome will be that if all the y,s are feasible, we have all shortest paths. If not all y,s are feasible,
then we have a negative cycle.

3 Flows
3.1 Ford-Fullkerson algorithm

Algorithm 3.1.1. [FORD, FULLKERSON]
Let = be an st-flow on a capacitated digraph D with arc ab having capacity p-
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