Compact course notes

COMBINATORICS AND OPTIMIZATION 367

Lecturer: N. Gillis

\/ -\/ INTER 20 1 2 transcribed by: J. Lazovskis
) o ) University of Waterloo
Non-linear optimization April 10, 2012
Contents
DI Defnitions . - - - - o o o o 2
I—Situations 2
[L.1 Uncontsrained problems| . . . . . . . . . . . L 2
[1.2  Constrained problems| . . . . . . . ... 3
............................................... 3

2 Strategies
2.1 Unconstrained nonlinear optimization| . . . . . . . . . .. ... ... Lo oL

2.3 Perturbation and sensitivity analyisis|. . . . . . . . . . .. ... o

[ I BTN




0.1 Definitions

Definition 0.1.1. A matrix A € M, x, is termed positive semi-definite iff for all z € R*, z7 Az > 0.
Moreover, A is positive definite if strict equality holds.

- Also note that such a matrix has nonnegative (or strictly positive) eigenvalues.

1 Situations

1.1 Uncontsrained problems

Theorem 1.1.1. Let f € C? with 2* a local minimum of f. Then Vf(z*) = 0.

Proof: Suppose that V f(z*) # 0.
Let d = =V f(z*).
Then the directional derivative is Vf(z*)Td = —||V f(z*)||* < 0, so

fla* +td) = f(=*) + tVf (") d+ O(t)
< f(z")

Theorem 1.1.2. Let f € C? with z* a local minimum of f. Then VZf(z*) > 0.

Proof: Since z* is a local minimum, from above V f(2*) = 0.

Suppose that V2 f(x*) % 0.
Then there exists a vector d such that d” V2 f(z*)d < 0, so

fla* +td) = f(z*) +tV f(z*) d+ 32dTV2 f(2*)d + O(t?)
(z*) + 32dTV? f(z*)d
(")

f
f

A

Theorem 1.1.3. Let f € C? with z* in the domain of f such that Vf(2*) =0 and V2f(z*) > 0. Then z*

is a local minimum.

Proof: Since f € C2, use Taylor to approximate f around z*.
Then for any vector d that represents the change in = and small positive ¢ < 1,

fla* +td) = f(z*) +tV f(z*) d+ 32dTV2 f(2*)d + O(t?)
= f(a*) + 3t2d" V2 f(z*)d + O(t?)
f(@")

V

Remark 1.1.4. If V2f(2*) has one positive and one negative eigenvalue, then x* is termed a saddle point.
It is neither a maximum nor a minimum, but is still a stationary point of f.

Remark 1.1.5. A function can be bounded but still have no minimum. For example, arctan(z) is bounded
on z € R by £7, but it never reaches the infimum of —7.



1.2 Constrained problems

Theorem 1.2.1. [EXTREME VALUE THEOREM]
If f is continuous and bounded over a compact domain D, then f attains its infimum on D.

1.3 Convexity

Definition 1.3.1. An optimization problem is termed a convex optimization problem iff
- it is a minimization problem
- the objective function is convex
- the feasible domain is convex

Definition 1.3.2. A set X is termed convex iff for all 2,y € X and A € (0, 1),
A+ (1-NyeX

Definition 1.3.3. A function f : X — Y is termed convex iff dom(f) is convex and for all z,y € X and
A€ (0,1),
FOz+ 1 =Ny) <Af(z) + (1 =N f(y)

Definition 1.3.4. A function f: X — Y is termed concave iff dom(f) is convex and for all z,y € X and
A€ (0,1),
fAz+ (1 =Ny) =2 Af(z)+ (1= A)f(y)

Theorem 1.3.5. A function f € C? over a domain D is convex iff D is convex and
fy) = f(2) + V@) (y - )

Proof: (=) Suppose f is convex but D is not.

For z,y € D and 0 <t < 1, we have f((1 —t)z +ty) < (1 —¢)f(z) +tf(y).
Divide both sides by ¢ to get

f(( =)z +ty) — f(x)

F) > f)+ :
_ ey + Lo =) = 1)
= [@)+ V@) —x) ast—0

(<) Now suppose that f(y) > f(zx) + Vf(x)(y — x).
Since D is convex, choose z # y both in D and let z =tz + (1 — t)y.
Applying the premise twice, we find that

f@) =2 f(z) + VI(z)(x - 2)
2 f(2) +Vf(2)(y —2)

Multiply the first by ¢, the second by (1 — t), then add to get tf(x) + (1 — ) f(y) = f(2). [ |

Theorem 1.3.6. A function f € C? over a domain D is convex iff D is convex and V2f(z) >0V x € D.

Proof: (=) Using the Taylor expansion and the premise, we have that

fly) = f2) + V(@ +tly — )" (y —2) > f(z) + VI(2) (y - @)



This implies that Vf(z +t(y — 2))(y —z) > Vf(z)(y — ).
If we assume that y > x, then since 0 < t < 1,

V(=) 4V S (@)
(=) >0

i | VU @Htly—a)+V (@) |, _ o2
= ;gr%/ [ t(yy_x) } t=Vf(x)t >0

— V%f(z) >0

(<) Since V2f(x) > 0, every directional derivative V f;(z) is a non-decreasing function.

Let 0 <t <1

Ity >, then Vfi(z + t(y — )) > Vfi(x), and so V iz + t(y — D)y — ) > V(x)(y — ).

If y <z, then Vf;(z +t(y — 2)) < Vfi(z), and so Vfi(z + t(y — z))(y — ) > Vfi(z)(y — 2).

For all directions together, Vf(z +t(y — z))(y — z) = Vf(z)(y — x) for all z,y € D. [ ]

Theorem 1.3.7. [KARUSH, KUHN, TUCKER]

- In the convex case, if x* satisfies the KKT conditions, then it is a global optimum.

Definition 1.3.8. A feasible point x satisfies LICQ, the linear independence constraint qualification, iff the
gradients of the active constraints are linearly independent.

Theorem 1.3.9. A convex function is continuous on the interior of its domain.

2 Strategies

2.1 Unconstrained nonlinear optimization

Definition 2.1.1. The two main strategies for unconstrained nonlinear programming are line search methods
and trust region methods.

In the trust region method, we approximate f by a quadratic in a ball around our current iterate.
- The second-order term in this approach is found with the SR1 or BFGS strategy

Proposition 2.1.2. Suppose that f is convex and continuously differentiable. Then V f(x) is the gradient
of f at x iff for all y € D,

fy) = f@) + V(@) (y - 2)
Proof: Taylor’s theorem. [ |

Definition 2.1.3. For a function f over its domain D, define the subdifferetial of f at x € D to be
Of(x) :={z €R" | f(y) > f(z) + 2" (y —x) Vy € D}

Proposition 2.1.4. If f is convex, then
1. 0f(z) #0 forall z € D
2. f differentiable at x implies 0f(z) = {V f(x)}
3. f not differentiable at x implies A(9f(x)) > 0

Corollary 2.1.5. The function f has a minimum at x iff 0 € 9f(z).



Definition 2.1.6. For a function f with domain D, define the Fenchel conjugate of f as the convex function

[y = sup {y"2z— f(z)}

Theorem 2.1.7. [SUBGRADIENT METHOD]
Let f be Lipschitz continuous with Lipschitz constant L and z* € arg ian {f(x)} with ||xzo — z*|]2 < R. If
reR™

ay, is the implemented step length at iteration k,
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2.2  Duality

Definition 2.2.1. Given a function f(x) for optimization and its associated Lagrangian £(z, ), define the
dual function to be the extended-real valued concave function

g(\) = mf{L(z, )} =inf § f(z) = D Aici(x)

€€,
The values of A for which g(A) € R are termed dual feasible.
This is a general analysis of functions and problems associated with duality.
min  f(2)

Primal (2)=0. icE
st. xz¢€ {:13 ER| Clc(;;)o, ]éI } =D

Lagrangian fit L(z,\) = f(z) = > Nci(z), i >0 for i€Z
i€E,T

g() = inf{£(z, )} < inf {F(2)}

Lagrangial dual fit
dom(g) = {AN € REIFIZI | \; >0 for i €Z and g()\) > —occ}

max g(\)

Lagrangian dual ]
st. N>=0 for ie”l

Proposition 2.2.2. The Lagrangian dual function g is concave.

Proof: This is just computation, from the definition of concave. |

Proposition 2.2.3. For any Lagrange multiplier A with A; > 0 for ¢ € Z, the Lagrange dual function is a
lower bound on the optimal value of the primal. That is,

9(\) = inf{L(z, \)} < inf{f()} = f°

Proof: Note that \; > 0 and ¢;(x) > 0 for all 4. [ |



2.3 Perturbation and sensitivity analyisis

Definition 2.3.1. Consider the perturbed problem

%) = min f(2)

reDs
st. Df={r eR"|¢(x)=¢;foriec & andc; >¢; foriecl}

If ¢; < 0 for ¢ € Z, the problem is relaxed.
If ¢; > 0 for ¢« € Z, the problem is tightened.

Proposition 2.3.2. Suppose that an optimization problem has strong duality. Then for an optimal dual

solution \*,
o) = f2(0) + N e

Proof: Suppose that A\* is an optimal dual solution to the original problem f(z) = £°(0).
So then for any =z € D®,

< f@) =Y Nelw)
< flz) - Z/\ffi

Rearranging and restating gives the desired result. |

Proposition 2.3.3. Suppose that an optimization problem has strong duality and f° is differentiable at 0.
Then for an optimal dual solution \*,

V£o»0) = A"

Or equivalently,
Fe) = f2(0) + ATe + O(e?)
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