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0.1 Definitions

Definition 0.1.1. A matrix A ∈ Mn×n is termed positive semi-definite iff for all x ∈ Rn, xTAx > 0.
Moreover, A is positive definite if strict equality holds.

· Also note that such a matrix has nonnegative (or strictly positive) eigenvalues.

1 Situations

1.1 Uncontsrained problems

Theorem 1.1.1. Let f ∈ C2 with x∗ a local minimum of f . Then ∇f(x∗) = 0.

Proof: Suppose that ∇f(x∗) 6= 0.
Let d = −∇f(x∗).
Then the directional derivative is ∇f(x∗)T d = −‖∇f(x∗)‖2 < 0, so

f(x∗ + td) = f(x∗) + t∇f(x∗)T d+O(t)

< f(x∗)

�

Theorem 1.1.2. Let f ∈ C2 with x∗ a local minimum of f . Then ∇2f(x∗) > 0.

Proof: Since x∗ is a local minimum, from above ∇f(x∗) = 0.

Suppose that ∇2f(x∗) 6> 0.
Then there exists a vector d such that dT∇2f(x∗)d < 0, so

f(x∗ + td) = f(x∗) + t∇f(x∗)T d+ 1
2 t

2dT∇2f(x∗)d+O(t2)

= f(x∗) + 1
2 t

2dT∇2f(x∗)d

< f(x∗)

�

Theorem 1.1.3. Let f ∈ C2 with x∗ in the domain of f such that ∇f(x∗) = 0 and ∇2f(x∗) > 0. Then x∗

is a local minimum.

Proof: Since f ∈ C2, use Taylor to approximate f around x∗.
Then for any vector d that represents the change in x and small positive t < 1,

f(x∗ + td) = f(x∗) + t∇f(x∗)T d+ 1
2 t

2dT∇2f(x∗)d+O(t2)

= f(x∗) + 1
2 t

2dT∇2f(x∗)d+O(t2)

> f(x∗)

�

Remark 1.1.4. If ∇2f(x∗) has one positive and one negative eigenvalue, then x∗ is termed a saddle point.
It is neither a maximum nor a minimum, but is still a stationary point of f .

Remark 1.1.5. A function can be bounded but still have no minimum. For example, arctan(x) is bounded
on x ∈ R by ±π2 , but it never reaches the infimum of −π2 .
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1.2 Constrained problems

Theorem 1.2.1. [Extreme value theorem]
If f is continuous and bounded over a compact domain D, then f attains its infimum on D.

1.3 Convexity

Definition 1.3.1. An optimization problem is termed a convex optimization problem iff
· it is a minimization problem
· the objective function is convex
· the feasible domain is convex

Definition 1.3.2. A set X is termed convex iff for all x, y ∈ X and λ ∈ (0, 1),

λx+ (1− λ)y ∈ X

Definition 1.3.3. A function f : X → Y is termed convex iff dom(f) is convex and for all x, y ∈ X and
λ ∈ (0, 1),

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

Definition 1.3.4. A function f : X → Y is termed concave iff dom(f) is convex and for all x, y ∈ X and
λ ∈ (0, 1),

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y)

Theorem 1.3.5. A function f ∈ C2 over a domain D is convex iff D is convex and

f(y) > f(x) +∇f(x)T (y − x)

Proof: (⇒) Suppose f is convex but D is not.

For x, y ∈ D and 0 < t < 1, we have f((1− t)x+ ty) 6 (1− t)f(x) + tf(y).
Divide both sides by t to get

f(y) > f(x) +
f((1− t)x+ ty)− f(x)

t

= f(x) +
f(x+ t(y − x))− f(x)

t
= f(x) +∇f(x)(y − x) as t→ 0

(⇐) Now suppose that f(y) > f(x) +∇f(x)(y − x).
Since D is convex, choose x 6= y both in D and let z = tx+ (1− t)y.
Applying the premise twice, we find that

f(x) > f(z) +∇f(z)(x− z)
f(y) > f(z) +∇f(z)(y − z)

Multiply the first by t, the second by (1− t), then add to get tf(x) + (1− t)f(y) > f(z). �

Theorem 1.3.6. A function f ∈ C2 over a domain D is convex iff D is convex and ∇2f(x) > 0 ∀ x ∈ D.

Proof: (⇒) Using the Taylor expansion and the premise, we have that

f(y) = f(x) +∇f(x+ t(y − x))T (y − x) > f(x) +∇f(x)T (y − x)

3



This implies that ∇f(x+ t(y − x))(y − x) > ∇f(x)(y − x).
If we assume that y > x, then since 0 < t < 1,

∇(f(x+t(y−x))+∇f(x)
(y−x) > 0

=⇒ lim
x→y

[
∇(f(x+t(y−x))+∇f(x)

t(y−x)

]
t = ∇2f(x)t > 0

=⇒ ∇2f(x) > 0

(⇐) Since ∇2f(x) > 0, every directional derivative ∇fi(x) is a non-decreasing function.
Let 0 < t < 1.
If y > x, then ∇fi(x+ t(y − x)) > ∇fi(x), and so ∇fi(x+ t(y − x))(y − x) > ∇fi(x)(y − x).
If y 6 x, then ∇fi(x+ t(y − x)) 6 ∇fi(x), and so ∇fi(x+ t(y − x))(y − x) > ∇fi(x)(y − x).
For all directions together, ∇f(x+ t(y − x))(y − x) > ∇f(x)(y − x) for all x, y ∈ D. �

Theorem 1.3.7. [Karush, Kuhn, Tucker]

· In the convex case, if x∗ satisfies the KKT conditions, then it is a global optimum.

Definition 1.3.8. A feasible point x satisfies LICQ, the linear independence constraint qualification, iff the
gradients of the active constraints are linearly independent.

Theorem 1.3.9. A convex function is continuous on the interior of its domain.

2 Strategies

2.1 Unconstrained nonlinear optimization

Definition 2.1.1. The two main strategies for unconstrained nonlinear programming are line search methods
and trust region methods.

In the trust region method, we approximate f by a quadratic in a ball around our current iterate.
· The second-order term in this approach is found with the SR1 or BFGS strategy

Proposition 2.1.2. Suppose that f is convex and continuously differentiable. Then ∇f(x) is the gradient
of f at x iff for all y ∈ D,

f(y) > f(x) +∇f(x)T (y − x)

Proof: Taylor’s theorem. �

Definition 2.1.3. For a function f over its domain D, define the subdifferetial of f at x ∈ D to be

∂f(x) := {z ∈ Rn | f(y) > f(x) + zT (y − x) ∀ y ∈ D}

Proposition 2.1.4. If f is convex, then
1. ∂f(x) 6= ∅ for all x ∈ D
2. f differentiable at x implies ∂f(x) = {∇f(x)}
3. f not differentiable at x implies λ(∂f(x)) > 0

Corollary 2.1.5. The function f has a minimum at x iff 0 ∈ ∂f(x).
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Definition 2.1.6. For a function f with domain D, define the Fenchel conjugate of f as the convex function

f∗(y) := sup
x∈D

{
yTx− f(x)

}
Theorem 2.1.7. [Subgradient method]
Let f be Lipschitz continuous with Lipschitz constant L and x∗ ∈ arg inf

x∈Rn
{f(x)} with ‖x0 − x∗‖2 6 R. If

αk is the implemented step length at iteration k,

min
k

{
|f(xk)− f(x∗)|

}
6
R2 + L2

∑k
i=1 α

2
i

2
∑k
i=1 αi

2.2 Duality

Definition 2.2.1. Given a function f(x) for optimization and its associated Lagrangian L(x, λ), define the
dual function to be the extended-real valued concave function

g(λ) = inf
x
{L(x, λ)} = inf

x

f(x)−
∑
i∈E,I

λici(x)


The values of λ for which g(λ) ∈ R are termed dual feasible.

This is a general analysis of functions and problems associated with duality.

Primal
min
x

f(x)

s.t. x ∈
{
x ∈ R | ci(x)=0, i∈E

cj>0, j∈I

}
= D

Lagrangian fit L(x, λ) = f(x)−
∑
i∈E,I

λici(x), λi > 0 for i ∈ I

Lagrangial dual fit
g(λ) = inf

x
{L(x, λ)} 6 inf

x∈D
{f(x)}

dom(g) = {λ ∈ R|E|+|I| | λi > 0 for i ∈ I and g(λ) > −∞}

Lagrangian dual
max
λ

g(λ)

s.t. λi > 0 for i ∈ I

Proposition 2.2.2. The Lagrangian dual function g is concave.

Proof: This is just computation, from the definition of concave. �

Proposition 2.2.3. For any Lagrange multiplier λ with λi > 0 for i ∈ I, the Lagrange dual function is a
lower bound on the optimal value of the primal. That is,

g(λ) = inf
x
{L(x, λ)} 6 inf

x
{f(x)} = f∗

Proof: Note that λi > 0 and ci(x) > 0 for all i. �
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2.3 Perturbation and sensitivity analyisis

Definition 2.3.1. Consider the perturbed problem

f0(ε) = min
x∈Dε

f(x)

s.t. Dε = {x ∈ Rn | ci(x) = εi for i ∈ E and ci > εi for i ∈ I}

If εi < 0 for i ∈ I, the problem is relaxed.
If εi > 0 for i ∈ I, the problem is tightened.

Proposition 2.3.2. Suppose that an optimization problem has strong duality. Then for an optimal dual
solution λ∗,

f0(ε) > f0(0) + λ∗T ε

Proof: Suppose that λ∗ is an optimal dual solution to the original problem f(x) = f0(0).
So then for any x ∈ Dε,

f0(0) = g(λ∗)

6 f(x)−
∑
i

λ∗i ci(x)

6 f(x)−
∑
i

λ∗i εi

Rearranging and restating gives the desired result. �

Proposition 2.3.3. Suppose that an optimization problem has strong duality and f0 is differentiable at 0.
Then for an optimal dual solution λ∗,

∇f0(0) = λ∗

Or equivalently,
f0(ε) = f0(0) + λ∗T ε+O(ε2)
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