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0.1 Foundations

All graphs in this course will be finite. Graphs may have multiple edges and loops:

a simple loop multiple / parallel edges

v
u v

Definition 0.1.1. A graph is a triple (V,E, ϕ) where V,E are finite sets and ϕ : V × E → {0, 1, 2} is a
function such that ∑

v∈V
ϕ(v, e) = 2 ∀ e ∈ E

The function ϕ will be omitted when its action is clear. When the vertex set of G is not clear, it is given by
V (G), and similarly the edge set of G is given by E(G).

A simple graph is a graph without loops and multiple edges. The simplification of a graph G is the graph
that results in deleting the least number of edges from G such that the resulting graph has no loops or
parallel edges.

Definition 0.1.2. Let G = (V,E) be a graph. For X1 ⊂ V and X2 ⊂ E, let G[X1] be the vertex set X1 and
the set of edges in E with both ends in X1. Similarly, let G[X2] be the edge set X2 and the set of vertices
in V that are an end of an edge in X2.

1 Graph minors

1.1 Contraction

Definition 1.1.1. Let e = (u, v) be an edge of a graph G = (V,E). The deletion of e is the removal of e
from the graph, the resulting graph denoted by G \ e, with

G \ e = (V,E \ {e}, ϕ′)

ϕ′(w, f) =


ϕ(w, f) if w /∈ {u, v}
ϕ(w, f)− 1 if u 6= v, w ∈ {u, v}
ϕ(w, f)− 2 if u = v, w = u

Definition 1.1.2. Let e = (u, v) be an edge of (G,E, ϕ). The contraction of e is the identification of u and
v and the deletion of e, the resulting graph denoted by G/e. If u = v, then G/e = G \ e. If u 6= v, then the
resulting graph is defined as

G/e = (V \ {u, v} ∪ {z}, E \ {e}, ϕ′) for z /∈ V

ϕ′(w, f) =

{
ϕ(w, f) if w 6= z

ϕ(u, f) + ϕ(v, f) if w = z

For X = {e1, . . . , en} ⊂ E, let G \X = (· · · ((G \ e1) \ e2) · · · \ en).

Example 1.1.3. This is a simple contraction:
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G = G/e =

u

x

v

y

z

x y

e

Definition 1.1.4. A graph H is termed a minor of a graph G if H is obtained from a subgraph of G by
contracting some (possibly none) edges.

A graph G has an H-minor K if K is a minor of G that is isomorphic to H.

Remark 1.1.5.
1. The number of components of G is equal to |V (G/E)|.
2. For X ⊆ E(G), there is a bijection between the components of the subgraph of G[V,X] and the

vertices of G/X. For example, consider as below X = {(a, c), (a, b), (d, f)}:

G = G/X =

a b

c d

e f

g h

z1

e

z2

g h

Lemma 1.1.6. If H = (V ′, E′, ϕ′) is a minor of G = (V,E, ϕ), then E′ ⊆ E, and there exist vertex-disjoint
trees Tv : v ∈ V ′ in G such that for each e ∈ E′ and v ∈ V ′, we have

ϕ′(v, e) =
∑

u∈V (Tv)

ϕ(u, e)

The converse holds up to relabeling of the vertices of H. This gives a useful way to gain intuition for minors.

Definition 1.1.7. A class of graphs G is termed minor closed if for any G ∈ G, every minor of G is in G.

Example 1.1.8. Some examples of minor closed classes are:
· Planar graphs
· Forests
· Apex graphs
· Graphs that embed in a closed connected 3-dimensional manifold without boundary without crossings
· For k ∈ Z+, the graphs with no path of length k
· For k ∈ Z+, the graphs with no cycle of length > k
· For k ∈ Z+, the graphs that do not have k vertex-disjoint cycles
· Knotless graphs (graphs that embed in R3 such that each cycle is embedded as the unknot)

Definition 1.1.9. A graph (V,E) is termed an apex graph if there is v ∈ V such that (V \ {v}, E \ E(v))
is a planar graph.

Definition 1.1.10. Given a graph G with a cycle C, a chord of the cycle C is an edge e ∈ E(G) such that
e /∈ C, but the ends of e are vertices of C.

Definition 1.1.11. Given a graph G = (V,E) with X ⊂ V , the subgraph of G induced by X is the graph
H = (X,F ) where F ⊂ E and e = (x, y) ∈ F iff x, y ∈ X. Such a graph is denoted by H = G[X].
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1.2 Excluded minors

Definition 1.2.1. A graph G is termed an excluded minor for a minor-closed class G of graphs if G /∈ G,
but each proper minor of G is contained in G.

Kuratowski’s theorem states that the excluded minors of the class of planar graphs are K5 and K3,3.

Remark 1.2.2. Kuratowski’s theorem is equivalent to: A graph is planar if and only if it has no minor
isomorphic to K5 or K3,3.

Remark 1.2.3.
1. The only excluded minor for the class of graphs with no path of length > k is

1 2 · · · · · · k

2. The only excluded minor for the class of graphs without k vertex-disjoint cycles is

1 2
· · · · · ·

k

3. There are 32 excluded minors for the closed projective planar graphs (graphs that can be emebedded
in planar form in the projective plane, or equivalently, the Möbis band).

4. The set of excluded minors for the set of apex graphs has at least 100 elements.

Theorem 1.2.4. [Graph minor theorem - Robertson, Seymour 1985-2012]
Each minor closed class of graphs has finitely many excluded minors.

Remark 1.2.5. The above theorem may be equivalently stated as:

1. Each infinite set of graphs has two graphs, one of which is isomorphic to a minor of the other.
2. There are countably many minor closed classes.
3. For each minor closed class, the membership testing problem is decidable.

Although there is no decidable algorithm known for checking whether or not a graph is knotless, the last
statement guarantees the existence of such an algorithm.

Theorem 1.2.6. [Robertson, Seymour]
There is an O(n3) running-time algorithm that, given an n-vertex graph H, tests an input graph G for an
H-minor.

Corollary 1.2.7. For each minor closed class of graphs, there is an O(n3) running-time algorithm for testing
membership.

1.3 Edge density in minor closed classes

Observe that
1. |E(Kn)| =

(
n
2

)
(quadratic)

2. If G = (V,E) is a simple planar graph with |V | > 3, then |E| 6 3|V | − 6. (linear)

Theorem 1.3.1. [Mader 1967]
If G = (V,E) is a simple graph with no Km-minor, then |E| 6 (2m − 1)|V |.

Proof: Consider a counterexample G with |V (G)| minimal. Then G is simple, has no Km minor, but
|E(G)| > (2m − 1)|V (G)|. Let v be a vertex with degree at least 1, and let H be the graph induced by
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the neighbors of v (i.e. all w such that (v, w) ∈ E). Note that H is simple, has no Km−1 minor, and
|V (H)| < |V (G)|. By our choice of G, |E(H)| 6 (2m−1 − 1)|V (H)|. Recall that

2|E(H)| =
∑

u∈V (H)

degH(u)

So H has a vertex w of degree

degH(w) 6
2|E(H)|
|V (H)|

6 2m − 2

Let e = (v, w) and let G′ be the simplification of G/e. Then |V (G′)| = |V (G)| − 1, and

|E(G′)| = |E(G)| − 1− degH(w)

> (2m − 1)|V (G)| − 1− (2m − 2)

= (2m − 1)|V (G)| − (2m − 1)

= (2m − 1)(|V (G)| − 1)

= (2m − 1)|V (G′)|

However, G′ is simple, |V (G′)| < |V (G)| and G′ has no Km minor. This contradicts our choice of G, as we
have found a smaller graph. �

Corollary 1.3.2. For any proper minor closed class G of graphs, there exists cG ∈ R such that each simple
graph G ∈ G satisfies |E(G)| 6 cG |V (G)|.

Remark 1.3.3. Let ht(n) be the maximum number of edges in a simple n-vertex graph with no Kt-minor.
Then:

1. ht(n) > (t− 2)n−
(
t−1

2

)
for all n > t > 2

2. Equality holds for t ∈ {2, . . . , 7}, (proved by Mader)
3. ht(n) = (α+O(1))t

√
tn for α ≈ 0.319 . . . , (proved by Thomassen)

Remark 1.3.4. A simple graph with no K3-minor is equivalent to a forest. Also, then |E| 6 |V | − 1.

Theorem 1.3.5. Let G = (V,E) be a simple graph with |V | > 2 and no K4-minor. Then |E| 6 2|V | − 3.

Proof: Consider a counterexample G with |V (G)| minimal. We may assume that |V | > 3 (as for 2 the cases
are simple). Let v be a vertex with degree > 1, and let H be the subgraph induced by the neighbors of v, so
H is simple and has no K3-minor. Thus H is a forest and has a vertex w with degH(w) = 1. Let e = (v, w)
and let G′ be the simplification of G/e. Note that |V (G′)| = |V (G)| − 1 and |E(G′)| 6 |E(G)| − 1, giving a
smaller counterexample. �

Theorem 1.3.6. Let G = (V,E) be a simple graph with no K5 minor and with |V | > 3. Then |E| 6 3|V |−6.

1.4 Coloring

Definition 1.4.1. A graph G is termed k-colorable iff its vertices can be colored with k colors so that no
edge has both of its ends in the same color class.

Theorem 1.4.2. [Four color theorem]
Loopless planar graphs are 4-colorable.

Theorem 1.4.3. [Wagner]
Loopless planar graphs with no K5 minor are 4-colorable.

Conjecture 1.4.4. [Hadwiger]
Loopless graphs with no Kn+1 minor are n-colorable.

For all n > 4, this implies the four color theorem.
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Lemma 1.4.5. If G = (V,E) is a simple graph with no K4-minor and V 6= ∅, G has a vertex of degree 6 2.

Theorem 1.4.6. If G is a loopless graph with no K4-minor, then G is 3-colorable.

Proof: Consider a counterexample with |G| + |V | minimal. Then G is simple, has no K4-minor, and has
|V | > 4. By the lemma, G has a vertex v of degree 6 2, and by the choice of example G, G − v has a
3-coloring. Since deg(V ) 6 2, this extends to a 3-coloring of G. �

Theorem 1.4.7. [Wagner]
If G is a loopless graph with no Kn-minor, then G is (2n+1 − 1)-colorable.

Proof: Consider a counterexample with G with |V (G)| minimal, so G has no Kn-minor but is not (2n−1 +1)-
colorable. We may assume that the graph is simple. By Mader, |E(G)| 6 (2n − 1)|V (G)|, so G has a vertex
v with degree

deg(v) 6
2|E(G)|
|V (G)|

6 2(2n − 1) < 2n+1 − 1

Since |V (G − v)| < |V (G)|, G − v has a (2n+1 − 1)-coloring. Since deg(v) < 2n+1 − 1, this extends to a
(2n+1 − 1)-coloring of G, a contradiction. �

1.5 Constructing minor closed classes

Given a minor-closed class of graphs G, is it possible to give a constructive characterization of the graphs in
G?

Definition 1.5.1. A graph is termed series-parallel if it may be obtained from the empty graph by :
· adding isolated vertices
· adding any edge incident with an isolated vertex
· subdividing an edge
· adding loops or parallel edges

Remark 1.5.2.
1. The class of series-parallel graphs is minor closed.
2. K4 is not series-parallel.
3. Any excluded minor for the class of series-parallel graphs is simple and has minimum degree > 3.
4. Any excluded minor for the class of series-parallel graphs contains a K4-minor.

Theorem 1.5.3. A graph is series-parallel iff it does not contain a K4-minor.

Definition 1.5.4. Given a graph G, a clique in G is a complete subgraph of G.

Suppose that K is a clique in G1 and in G2 with |V (K)| = k. If V (G1)∩V (G2) = V (K) and E(G1)∩E(G1) =
E(K), then (G1 ∪G2)− E(K) is termed the clique-sum, or k-sum, of G1 and G2.

Example 1.5.5. Consider the following graphs and their clique-sum for K = K3.

G1 =

1

2

3

G2 =

1

2

3

G1 ∪G2 − E(K) =

1

2

3

Proposition 1.5.6. Every graph can be obtained from isomorphic copies of its 3-connected minors, by 0-,
1-, and 2-sums.
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Example 1.5.7. Consider the following example of the previous proposition, only 2-sums being applied
here:

=

1

2

3

4

56

7

1

1

1

1

2

3

3

3

4

5

5

5

6

6

7

e
f

g

h

Remark 1.5.8. Every 3-connected graph with at least 4 vertices has a K4-minor, as its simplification has
minimum degree > 3.

Theorem 1.5.9. A graph has no K4-minor if and only if it can be obtained from graphs with 6 3 vertices
by (6 2)-sums.

1.6 Tree decomposition

Definition 1.6.1. A tree decomposition of a graph G consists of a tree T and a collection Bv for v ∈ V (T )
called bags such that

1. for each e = (u, v) ∈ E(G), there exists w ∈ V (T ) with u, v ∈ Bw
2. for each v ∈ V (G), the set {w ∈ V (T ) | v ∈ Bw} induces a tree in T

Equivalently, we may say that G is the clique-sum of some graphs Hw with w ∈ V (T ) where V (Hw) = Bw.

Example 1.6.2. The tree decomposition for the graph given in the previous example would be as below,
with vertices that correspond to the original graph indicated next to the vertices of the tree.

α
β

γ

δ

ε

{1, 2, 3} {3, 4, 5}

{1, 3, 5}

{1, 5, 6}

{1, 6, 7}

Definition 1.6.3. The width of a tree is defined by

width(T, (Bw | w ∈ V (T ))) = max
w∈V (T )

{|Bw| − 1}

The tree-width of a graph G is the minimum k ∈ N such that G has a tree decomposition of width k.
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Remark 1.6.4.
1. Trees have tree-width 6 1
2. A graph has no K4-minor iff it has tree width 6 2
3. If H is a minor of G, then tree-width(H) 6 tree-width(G)

Theorem 1.6.5. [Grid theorem - Robertson, Seymour]
Given H planar, there exists k ∈ Z such that if G is a graph with no H-minor, then tree-width(G) 6 k.

Example 1.6.6. This is a 4× 4 grid.

Remark 1.6.7.
1. The k × k grid is planar
2. For any planar graph G, there exists k ∈ N such that G is a minor of a k × k grid
3. tree-width(k × k grid) = k

Note that by the second remark, it suffices to prove the grid theorem for grids.

Theorem 1.6.8. [Qualitative structure theorem]
For n� k, the following inclusions of sets holds:

{graphs of tree-width 6 k − 1} ⊂ {graphs with no k × k grid minor} ⊂ {graphs of tree-width 6 n}

Remark 1.6.9. Let Ck be the set of graphs without k vertex-disjoint cycles (recall that Ck is minor closed).
By the grid theorem, for every k ∈ N, there is some tk ∈ N such that every graph in Ck has tree-width 6 tk.

Definition 1.6.10. A hitting set for a graph G is a set X ⊂ V (G) such that G−X is a forest. That is, X
meets every cycle in G.

Note that {graphs with a hitting set of size k − 1} ⊂ Ck.

Lemma 1.6.11. [Helly property of trees]
Let F be a collection of subtrees of a tree T and let k ∈ N. Then either

1. there are k vertex-disjoint trees in F , or
2. there is a set X ⊂ V (T ) with |X| 6 k − 1 such that each tree in F contains a vertex of X

Theorem 1.6.12. [Erdos, Posa]
For each k ∈ N, there exists ` ∈ N such that for each graph G, exactly one of the following hold:

1. G has k vertex-disjoint cycles
2. G has a hitting set of size 6 `

Proof: Consider G ∈ Ck. The graph G has tree decomposition (T, (Bw | w ∈ V (T ))) of width 6 tk. For each
cycle C of G, define

SC = {w ∈ V (T ) | Bw ∩ V (C) 6= ∅}

Note that SC induces a subtree of T , so let F be the collection of all such subtrees. Since G ∈ Ck and by
the definition of F , there do not exist k vertex-disjoint subtrees in F . By the lemma, there is a set X of
at most k − 1 vertices in T that meet each tree in F . Now

⋃
w∈X Bw is a hitting set in G and has size

6 (k − 1)(tk + 1). Therefore the result holds with ` = (k − 1)(tk + 1). �
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Remark 1.6.13. If H is the set of excluded minors for a minor-closed class G of graphs, then
1. By the grid theorem, if H contains a planar graph, then there exists t ∈ N such that each graph in G

has tree-width 6 t.
2. If H contains no planar graph, then G contains all planar graphs, and hence the class G has unbounded

tree-width.

The second remark may be generalized: a minor-closed class G has unbounded tree-width iff G contains all
planar graphs.

Theorem 1.6.14. [Wagner]
Every graph with no K5-minor may be obtained by (6 3)-sums from:

1. planar graphs, and
2. copies of V8

where V8 is the non-planar graph given by

V8 =

For example, below is K3,3 constructed by a 3-sum of planar graphs:

+ = K3,3

Definition 1.6.15. Let Gk be the class of graphs that do not contain k vertex-disjoint non-planar subgraphs.
Then Gk is minor-closed.

Let Φk be the orientable surface of genus k.
Let Ψk be the non-orientable surface of genus k.

Then Gk contains all graphs that embed in Φk−1 or Ψk−1.

Theorem 1.6.16. [Robertson, Seymour]
For all z ∈ N, there exists t ∈ N such that for each graph G, either

1. G contains k vertex-disjoint non-planar subgraphs, or
2. there exists X ⊂ V (G) with |X| 6 tk such that G−X embeds in Φk−1 or Ψk−1

Remark 1.6.17. The graph minor structure theorem gives a structural description of graphs with no Kt-
minor.

2 Coloring

In this section, all discussed graphs will be simple.

Definition 2.0.1. Given a graph G, the chromatic number of G is the least k ∈ N such that G is k-colorable.
This number is denoted by χ(G).
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2.1 Critical graphs

Definition 2.1.1. A graph G is termed k-critical iff χ(H) < χ(G) = k for all proper subgraphs H of G.

Remark 2.1.2.
1. A graph is (k − 1)-colorable iff it has no k-critical subgraphs
2. A graph is 3-critical iff it is an odd cycle

Proposition 2.1.3. If a graph G is k-critical, then each vertex of G has degree > k − 1.

Proof: Consider v ∈ V (G). Since G is k-critical, G − v has a (k − 1)-coloring. If deg(v) 6 k − 2, then a
(k− 1)-coloring of G− v extends to a (k− 1)-coloring of G. This contradicts the fact that G is k-critical. �

Definition 2.1.4. A graph G is termed d-degenerate iff every non-empty subgraph of G has a vertex of
degree 6 d.

Example 2.1.5. These are some examples of d-degenerate classes.
· forests are 1-degenerate
· simple planar graphs are 5-degenerate
· simple planar graphs with no K4-minor are 2-degenerate

Proposition 2.1.6. Every d-degenerate graph is (d+ 1)-colorable.

Proof: By the above proposition, no d-degenerate graph has a (d + 2)-critical subgraph (else every vertex
would have degree > d+ 1). Then by the previous remark, such graphs are (d+ 2− 1) = (d+ 1)-colorable.
�

2.2 Graphs on orientable surfaces

Lemma 2.2.1. Let G be a simple graph that embeds in Φk−1. Then |E(G)| 6 3|V (G)|+ 6(k − 1).

Lemma 2.2.2. Let G be an 8-critical graph that embeds in Φk. Then |V (G)| 6 12(k − 1).

Proof: Each vertex of G has degree > 7, so

7
2 |V (G)| 6 |E(G)| 6 3|V (G)|+ 6(k − 1)

This directly implies that |V (G)| 6 12(k − 1), completing the proof. �

Remark 2.2.3.
1. There are finitely many 8-critical graphs that embed in Φk
2. There are finitely many 6-critical graphs that embed in Φk, (Thomassen)

Theorem 2.2.4. For each k ∈ N, there is a polynomial-time algorithm for testing whether a given Φk-
embeddable graph is 7-colorable.

Proof: Let G be a graph that embeds in Φk, so it has at most 12(k − 1) vertices. Then G is 7-colorable iff
every one of its at most 12(k− 1) vertex-neighborhood subgraphs is 6-colorable. There is a finite number of
subgraphs to check. �

Remark 2.2.5.
1. Thomassen’s idea allows us to replace in the above theorem 7 with 5.
2. 3-coloring planar (or on any other surface) graphs is an NP -hard problem.
3. 4-coloring graphs on arbitrary surfaces is an open problem.
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Theorem 2.2.6. Let G be a simple graph that embeds in Φk. Then either:
1. G is 7-colorable, or
2. G has a non-contractible cycle of length 6 12(k − 1)

Proof: If G is not 7-colorable, then it has an 8-critical subgraph H. Note that H is not planar with
|V (H)| 6 12(k − 1), and so H has a non-contractible cycle of length 6 12(k − 1). �

Remark 2.2.7.
1. Thomassen’s idea gives a similar result with 5 instead of 7.
2. A similar result holds for Ψk.

2.3 Clique cutsets

Definition 2.3.1. Let G be a graph, and a clique a set of pairwise adjacent vertices. A set X ⊂ V (G) is
termed a clique cutset if X is a clique and G−X is not connected.

The pair (G1, G2) is termed a separation of G if G1, G2 are subgraphs of G and G = G1 ∪G2. The order of
the separation is |V (G1)∩V (G2)|. The separation is proper if V (G1)−V (G2) 6= ∅ and V (G2)−V (G1) 6= ∅.

Lemma 2.3.2. If G is a k-critical graph, then G has no clique cutset.

Proof: Suppose that (G1, G2) is a proper separation in a graph G and G1 ∩ G2 is complete. Note that G1

has a χ(G1)-coloring and G2 has a χ(G2)-coloring. Since G1 ∩ G2 is complete, we may assume that these
colorings agree on V (G1) ∩ V (G2). Hence χ(G) = max{χ(G1), χ(G2)}, so G is not k-critical. �

The above implies that k-critical graphs are 2-connected. Recall that a graph is k-connected iff there exists
no X ⊂ V (G) of size k− 1 such that G−X is disconnected. Consider, for example, the following graph that
is 4-critical and 2-connected, whose vertex labels denote colors.

1
22

33

41

Definition 2.3.3. A chord in a cycle is an edge not in the cycle, but with both ends in the cycle. A hole
in a graph is a chordless cycle of length > 4.

Lemma 2.3.4. If G is a graph with no clique cutset, then either G is complete or has a hole.

Proof: Suppose that G is not complete and has no clique cutset, so G is connected. Since G is connected and
not complete, there exist distinct vertices x, u, v ∈ V (G) such that (x, u), (x, v) ∈ E(G), but (u, v) /∈ E(G).

x

u v

Choose distinct vertices u, v ∈ G and a non-empty clique X in G such that
1. u and v are complete to X (i.e. X ⊂ N(u) ∩N(v))
2. (u, v) /∈ E(G)
3. subject to the first two conditions, take |X| maximal

Now X is not a clique cutset, so there is a shortest chordless uv-path P in G−X.
We may assume that each vertex on P is complete to X, as otherwise we can find a hole.
For P = (v0, v1, . . . , vt) the choice of (u, v,X) is contradicted by (v0, v2, X ∪ {v1}). �
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Remark 2.3.5.
1. Holes do not have clique cutsets.
2. The proof above was constructive.

Definition 2.3.6. Let H be an induced subgraph of G. Let u, v be distinct non-adjacent vertices in H. Let
P be an induced uv-path in G with V (P ) ∩ V (H) = {u, v}. Then G[V (H) ∪ V (P )] is obtained from H by
adding an induced ear.

Remark 2.3.7.
1. If H has no clique cutset and H ′ is obtained from H by adding an induced ear, then H ′ has no clique

cutset.
2. If G is not complete and G has no clique cutset, then G may be obtained from a hole by successively

adding induced ears.

Algorithm 2.3.8. [Greedy algorithm]
Input: A graph G = (V,E) and a set of colors (c1, . . . , ck)
Output: A coloring ((v1, cv1), (v2, cv2), . . . , (vn, cvn)) of the vertices of G

· Order the vertices of G as (v1, . . . , vn).
· Color v1, . . . , vn in that order, assigning each vertex the first available color.

Note that for ∆(G) the maximum degree of a vertex in G, the greedy algorithm uses at most ∆(G) + 1
colors. Hence χ(G) 6 ∆(G) + 1. Moreover, the only graphs with χ(G) = ∆(G) + 1 are complete graphs and
odd cycles (this is Brooks’ theorem, discussed below).

Lemma 2.3.9. If u, v, w are distinct vertices in a simple graph G with (u,w), (v, w) ∈ E(G) but (u, v) /∈
E(G), and G− u− v is connected, then χ(G) 6 ∆(G).

Proof: Take an ordering (v1, v2, . . . , vn) of V (G) with v1 = u, v2 = v, vn = w, and so that for each 1 6 i 6
n− 1, vi has a neighbor vj with j > i. Note that such an ordering exists, as G− u− v is connected. Color
the vertices using the greedy algorithm. Now u, v get the same color, so the algorithm only needs 6 ∆(G)
colors. �

Lemma 2.3.10. If G is a simple graph with no clique cutset and G is neither a cycle nor complete, then G
contains distinct vertices u, v, w such that (u,w), (v, w) ∈ E(G) but (u, v) /∈ E(G) and G−u−v is connected.

Proof: Since G is not complete and has no clique cutset, G has a hole C. Since G is not a cycle, G 6= C.

Case 1: There is a component H of G−N(u) such that N(u) ∩ V (H) = ∅.
By (possibly) changing our choice of u, it will be that:

1. (u,w) ∈ E(C)
2. (w, v) ∈ E(G)
3. N(u) ∩ V (H) = ∅

Since G has no clique cutset, G is 2-connected and hence G − v is connected. Now each component of
(G− C)− v has a neighbor in N(u)− {u}. Hence G− u− v is connected.

Case 2: Not case 1.
Take u, v, w as 3 consecutive vertices of C. Then G− u− v is connected. �

Theorem 2.3.11. [Brooks]
If G is a simple connected graph with χ(G) = ∆(G) + 1, then G is either an odd cycle or is complete.

Proof: Let G be a simple connected graph with χ(G) = ∆(G) + 1. We may assume that G is not a cycle and
that G is not complete. Note that G has a (∆(G)+1)-critical subgraph H. Therefore H is not ∆(G)-regular.
Since G is connected, G = H. So then G is (∆(G) + 1)-critical, and hence G has no clique cutset. Then by
lemmas 1 and 2 we have that χ(G) 6 ∆(G), which is a contradiction. �

Definition 2.3.12. A graph G is termed k-regular if every vertex in V (G) has degree k.

12



2.4 Building k-chromatic graphs

Remark 2.4.1.
1. Testing χ(G) = 3 is NP -complete.
2. It is conjectured that NP 6= coNP
3. Applying the first two remarks, it follows that there is no succinct proof that χ(G) > 4.

Definition 2.4.2. Let G = (V,E) be a graph, and (u, v) = uv /∈ E. Then the vertex identification of u and
v is the simplification of the graph (G+ uv)/uv = G ◦ uv.

u

v

z→

Then coloring the graph on the left with u, v having the same color is equivalent to coloring the graph on
the right, so χ(G ◦ uv) > χ(G).

Definition 2.4.3. Given two graphs H1, H2 with V (H1) ∩ V (H2) = {v}, the Hajos construction of these
two graphs results in the new graph G = (H1 ∪H2)− {xy1, xy2}+ y1y2, for xy1 ∈ H1 and xy2 ∈ H2. Below
is an illustration of such a construction.

V (H1) ∩ V (H2) = {v} G = (H1 ∪H2)− {xy1, xy2}+ y1y2

→

H1 H2 G

x x

y1 y2

x

y1 y2

Proposition 2.4.4. If χ(H1) > k and χ(H2) > k, then χ(G) > k.

Proof: In any (k − 1)-coloring of H1 − xy1, x and y1 get the same color, WLOG. Similarly for H2 − xy2.
Hence in any (k − 1)-coloring of (H1 − xy1) ∪ (H2 − xy2), y1 and y2 get the same color. Hence G is not
(k − 1)-colorable. �

Definition 2.4.5. A graph G is termed k-constructable if it may be obtained from copies of Kk by a
sequence of vertex identifications and Hajos constructions. Note that if G is k-constructable, then χ(G) > k.

Theorem 2.4.6. [Hajos’ amazing theorem]
A graph G has chromatic number > k iff G has a k-constructable subgraph.

Proof: Let G be a simple counterexample with |V (G)| minimal and |E(G)| maximal subject to |V | minimal.
Thus χ(G) > k and G does not have a a K-constructible subgraph, so G is k-critical. Since G is not complete,
it contains adjacent vertices x, y1. Observe that the neighbor set of y1 is not contained in the neighbor set
of x, as G is k-critical. So there exists y2 ∈ N(y1)−N(x), and we have found the following subgraph in G:

13



x

y1

y2

By our choice of G, G + xy1 and G + xy2 contain K-constructible subgraphs, say H1, H2. Note that
xy1 ∈ E(H) and xy2 ∈ E(H2).

x

y1

y2

H2

H1 G

Now G contains a k-constructable subgraph. To find it, split the vertices and identify the two copies. �

2.5 Edge colorings

Definition 2.5.1. An edge coloring of a graph G is a coloring of the edges of G so that no vertex has two
incident edges with the same color.

Below is an edge coloring of a graph. Instead of colors we will use different graphical styles to represent
different edge colors.

By convention, graphs with loops are not edge-colorable.

Definition 2.5.2. The edge chromatic number (or chromatic index) of G, denoted by χ′(G) is the minimum
number of colors required for an edge coloring.

Definition 2.5.3. Given a graph G, the line graph of G, denoted by L(G), is the graph induced by replacing
edges of G with vertices and connecting two vertices with an edge for every vertex the edges they represent
are both incident on.

Below is a graph G with its line graph L(G) overlaid on G.

G = L(G) =

14



Remark 2.5.4.
1. χ′(G) 6 k iff E(G) can be partitioned into k matchings.
2. χ′(G) = χ(L(G))
3. ∆(G) 6 χ′(G) 6 ∆(L(G)) + 1 6 2(∆(G)− 1) + 1 = 2∆(G)− 1

Theorem 2.5.5. If G is a bipartite graph, then χ′(G) = ∆(G). In this case G need not be simple.

Lemma 2.5.6. Let v be a vertex of a simple graph G and let k ∈ Z. If the following conditions hold:
i. v and its neighbors have degree 6 k
ii. at most 1 neighbor of v has degree = k
iii. χ′(G− v) 6 k

Then χ′(G) = k.

Proof: Let (v,G, k) be a counterexample with k minimal (note that k > 0). By possibly adding pendent
(dangling) edges, we may assume that V has a neighbor w with degree k and all other neighbors have degree
k − 1. Consider an edge coloring of G − v with colors 1, 2, . . . , k. For each i ∈ {1, 2, . . . , k}, let Xi be the

set of neighbors of v that are not incident with an edge of color i. Note that

k∑
i=1

|Xi| = 2deg(v) − 1, as w

contributes 1 to the sum and all other neighbors contribute 2. We may assume that our coloring is chosen
so as to minimize min{|Xi| | |Xi| is odd}. Let Xi be a set of odd cardinality attaining this minimum.

Case 1: |Xi| = 1
Suppose that Xi = {u}. Let Mi be the edges of G − v with color i and let G′ = G − (Mi ∪ {uv}). Then
(v,G′, k − 1) satisfies points i, ii, iii. By our choice of (v,G, k), χ′(G′) = k − 1 and χ′(G) = k, contradicting
the minimality of |V (G)|.

Case 2: |Xi| > 3
Since the average degree of the sets Xi is < 2 (by above), there is j ∈ {1, 2, . . . , k} with |Xj | < 2. By our
choice of Xi, |Xj | = 0. Let Mi,Mj be the sets of edges with colors i, j respectively. Note that G[Mi ∪Mj ]
consists of paths and cycles, with z ∈ Xi at the end of one such path P . Define a new edge coloring of G− v
by swapping the colors i and j on P . Let X ′` denote the set of neighbors of v that do not see an edge of
color ` in the new coloring. If P has one end in Xi, then the other end of P is not a neighbor of v, and

|X ′`| =


1 if ` = j

|X`| − 1 if ` = i

|X`| else

In this case |X ′j | = 1 < |Xi|, which contradicts our choice of Xi. If P has both ends in Xi, then

|X ′`| =


2 if ` = j

|X`| − 2 if ` = i

|X`| else

In this case |X ′i| < |Xi| and |X ′i| is odd, again contradicting our choice of Xi. Since the only two possible
cases result in contradictions, there is no counterexample. �

Theorem 2.5.7. [Vizing]
If G is a simple graph, then ∆(G) 6 χ′(G) 6 ∆(G) + 1.

Proof: Consider a counterexample G with |V (G)| minimal. Let v ∈ V (G) and k = ∆(G) + 1. Then (v,G, k)
satisfy points i, ii, iii of the lemma above, so χ′(G) 6 k. This contradicts the minimality of |V (G)|. �

Remark 2.5.8. In the case of Vizing’s theorem, it is important for G to be simple.
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. . .

...

...

This graph G of 3 vertices and k edges
between each pair of vertices has:

· χ′(G) = 3k
· ∆(G) = 2k

2.6 Cut spaces and cycle spaces

Definition 2.6.1. Let G be a graph. For X ⊂ V (G), let δ(X) be the set of edges (x, y) with x ∈ X and
y ∈ V (G)−X. Then δ(X) is termed a cut of G. If both G[X] and G[V (G)−X] are connected, then δ(X)
is termed a bond of G.

Proposition 2.6.2. Let G be a graph. For X,Y ⊂ V (G), δ(X) 4 δ(Y ) = δ(X 4 Y ), where 4 is the
symmetric difference operator on sets.

Definition 2.6.3. Let C∗ be the set of all cuts of a graph G, or

C∗ = {δ(X) | X ⊂ V (G)}

This is termed the cut space of the graph G. Note that:
1. If A,B ∈ C∗, then A4B ∈ C∗, so C∗ is a vector space over GF (2).

2. For each A ∈ C∗, there exists X ⊂ V (G) with A = δ(X) =4
x∈X

δ({x})

So the cut space is generated by elementary cuts (cuts with |X| = 1).

Definition 2.6.4. Let G = (V,E) be a graph and A ∈ {0, 1, 2}|V×E| be the incidence matrix of G, with
[A]v,e = # of ends of e at v. Moreover, if G = (V,E, ϕ) is our graph, then A = ϕ.

· The rows of A correspond to elementary cuts.
· The rowspace of A over GF (2) is the cut space.

Example 2.6.5. Consider the following graph G and its incidence matrix.

1 2

3

a

b

cd

A =

a b c d2 1 0 1
0 1 1 0
0 0 1 1

 1
2
3

Proposition 2.6.6. Let A be the incidence matrix of G with X ⊂ E(G) and x ∈ GF (2)|E(G)| such that
xe =

{
1 if e∈X
0 if e/∈X . Then X ⊂ C∗ iff x ∈ rowspaceGF (2)(A).

Theorem 2.6.7. If a graph G has c components, then dim(C∗) = |V (G)| − c.

Proof: Let A be the incidence matrix, and consider x ∈ GF (2)|V (G)|. Note that xTA = 0 iff xu = xv
whenever u, v are in the same component, and

dim
({
x ∈ GF (2)|V (G)| | xTA = 0

})
= c

Hence rankGF (2)(A) = |V (G)| − c. So by the above proposition, dim(C∗) = |V (G)| − c. �

Definition 2.6.8. A graph G is termed even if every one of its vertices has even degree.
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Definition 2.6.9. Let G be a graph and its cycle space C defined by

C = {X ⊂ E(G) | G[V,X] is even}

This space has the following properties:
1. If A,B ∈ C, then A4B ∈ C, so C is a vector space over GF (2).
2. If C is a cycle of G, then C ∈ C.

Proposition 2.6.10. Let G be a graph with E ⊂ E(G). Then X ∈ C iff there is a partition (C1, . . . , Ck) of
X such that G[C1], . . . , G[Ck] are all cycles.

Definition 2.6.11. Let G be a graph and its orthogonal space space C⊥ defined by

C⊥ = {X ⊂ E(G) | |C ∩ δ(X)| is even for all C ∈ C}

This space has the following properties:
1. C⊥ is a vector space
2. dim(C) + dim(C⊥) = |E(G)|
3. (C⊥)⊥ = C

Note that if C ⊂ E(G) is a cycle and X ⊂ V (G), then |C ∩ δ(X)| is even. Since cycles generate C, we have
that C∗ ⊂ C⊥ and C⊥ ⊂ (C∗)⊥.

Theorem 2.6.12. Let G be a graph. Then C∗ = C⊥. Equivalently, if X ⊂ E(G) intersects each cycle an
even number of times, then X is a cut.

Proof: Note that G/(E(G)−X) has no odd cycles. So G/(E(G)−X) is bipartite. Therefore X is a cut of
G. �

2.7 Planar graphs

Definition 2.7.1. Given a planar graph G, a plane graph of G is a specific embedding of G in the plane.
The dual G∗ of a plane graph is the dual of a planar graph.

Example 2.7.2. This is a graph G overlaid with its dual G∗.

G G∗

Definition 2.7.3. Let F be the set of faces on a plane graph G = (V,E). For e ∈ E and f ∈ F , define

ϕ∗(f, e) = # of sides of e in the embedding of G that are in face f

Remark 2.7.4. For a plane graph G, we have that
1. G∗ is planar
2. G∗ is connected
3. If G is connected and we take the natural embedding of G∗, then (G∗)∗ = G.

Theorem 2.7.5. Let G be a plane graph. Then C(G) = C∗(G∗) and C∗(G) = C(G∗).
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Proof: If G is not connected, identify pairs of vertices in different components but on the same face. Since G
is now connected, (G∗)∗ = G. It suffices now to prove that C(G) = C∗(G∗), as the other statement is then
equivalent.

Consider a cycle C of G. Let F be the set of faces ”inside” C in the embedding of G. Then E(G) = δG∗(F ).
Hence C(G) ⊂ C∗(G∗), and dually C(G∗) ⊂ C∗(G). It suffices to show for X ⊂ V (G) with G[X] and
G[V (C)−X] connected that δG(X) is a cycle in G∗. In this case X is a bond. �

Remark 2.7.6. For the above theorem to hold, it is necessary for G to be a plane graph, as planar graphs
may induce plane graphs with varying duals and varying cut spaces, for example:

G = =

Corollary 2.7.7. Euler’s formula follows. That is, for G a connected graph with vertex set V , edge set E
and face set F ,

|E| = dim(C∗(G)) + dim(C(G))

= dim(C∗(G)) + dim(C∗(G∗))
= (|V | − 1) + (|F | − 1)

=⇒ |V |+ |F | = |E|+ 2

Remark 2.7.8. Let e be an edge of a plane graph G. Then
1. (G \ e)∗ = G∗/e
2. If e is not a loop, then (G/e)∗ = G∗ \ e

Definition 2.7.9. Given a connected graph G, an edge e ∈ E(G) is termed a bridge iff G\e is disconnected.

Proposition 2.7.10. The following are equivalent:
1. The four-color theorem (every loopless planar graph is 4-colorable)
2. If G is a loopless planar graph, then there exist C1, C2 ∈ C∗(G) with E(G) = C1 ∪ C2.
3. If G is a bridgeless planar graph, then there exist C1, C2 ∈ C(G) such that E(G) = C1 ∪C2. That is,

G is the union of two even subgraphs.

Theorem 2.7.11. [Jaeger]
Every bridgeless graph is the union of 3 even subgraphs.

Theorem 2.7.12. [Jaeger]
For every graph G, there is a partition (C,C∗) of E(G) such that c ∈ C(G) and C∗ ∈ C∗(G). Equivalently,
a cut may be deleted from G to get an even graph.

Definition 2.7.13. A simple connected plane graph is termed a plane triangulation, or triangulation, iff
every face of the graph has degree 3. As a result of the Jordan curve theorem, a simple connected plane
graph is a triangulation iff its dual is cubic.

Lemma 2.7.14. If G is a minimal counterexample to the four-color theorem, then G is a simple planar
triangulation.
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Proof: A minimal counterexample is a 5-critical plane graph G, which is simple and 2-connected. If G is not
a triangulation, is has a face f of degree > 4. Let x1, . . . , x4 be consecutive vertices on f . Note that both
(x1, x3), (x2, x4) are not in G. WLOG (x1, x3) /∈ G. Identifying x1 and x3 gives a smaller counterexample,
a contradiction. �

Lemma 2.7.15. Every minimal counterexample to the four-color theorem is 4-connected.

Proposition 2.7.16. The following are equivalent:
1. The four-color theorem.
2. Every loopless plane graph is a triangulation.
3. Every bridgeless cubic plane graph is the union of two even subgraphs.

Lemma 2.7.17. Let G be a cubic graph. Then G is the union of two even subgraphs iff G is 3-edge-colorable.

Remark 2.7.18. In 1879, Tait conjectured that the four color theorem is equivalent to the statement that
every bridgeless subic plane graph is 3-edge-colorable. This turned out to be false, as Julius Petersen showed
with a counterexample that bears his name.

Theorem 2.7.19. [Petersen 1891]
The Petersen graph P is not 3-edge-colorable.

Proof: No perfect matching of P uses exactly one edge of the outer cycle C.

P = C

This follows from trial and error. So every perfect matching uses an even number of edges from C. But
|E(C)| is odd, so P is not 3-edge-colorable. �

Proposition 2.7.20. Let G be a cubic graph with a Hamilton cycle C (a cycle that meets every vertex).
Then G is 3-edge-colorable.

Proof: Color the complement of the cycle color 1. Since G is cubic, |V (G)| is even. Hence the edges of C
may be colored with colors 2,3. �
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Conjecture 2.7.21. [Tait 1879]
Every bridgeless (equivalently, 3-connected) cubic planar graph has a Hamilton cycle.

Tutte proved this theorem false in 1946 with a graph built as follows. First, note that no Hamilton cycle of
the graph G1 contains both accented edges.

G1 = G2 =

It follows that no Hamilton cycle of the graph G2 avoids the accented edge. Otherwise if that edge were to
be removed and the remaining 4-cycles contracted, there would be a cycle using both the accented edges of
G1. Redraw G2 as follows, centered aroud the accented edge.

G2 =

Then G, known as Tutte’s graph, has no Hamilton cycle. It is composed of three partial copies of G2, as
below.

Theorem 2.7.22. [Tutte]
Every 4-connected planar graph has a Hamilton cycle.
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2.8 The proof of the four-color theorem

Remark 2.8.1.
· 1976: Appel and Haken prove the four-color theorem finding 1476 unavoidable configurations.
· 1997: Robertson, Sanders, Seymour, and Thomas prove it with 633 unavoidable configurations.
The proof has three main steps:

Step 1: Prove that every minimal counterexample to the theorem is a simple, internally 6-connected
plane triangulation (i.e. 6-connected with vertices of degree 5 allowed).

Step 2: Show that every internally 6-connected plane triangulation contains one of 633 unavoidable con-
figurations.

Step 3: Show that each of these configurations is reducible, i.e. they cannot occur in a minimal coun-
terexample to the theorem, by contracting them for smaller counterexamples.

Lemma 2.8.2. Every minimal counterexample to the four-color theorem is a 5-connected triangulation.

Proof: Consider such a minimal counter example G. We have already seen that G is a simple 4-connected
plane triangulation. Now suppose that G is not 5-connected, so then there is a proper separation (G1, G2)
of G such that G1 ∩G2 is a 4-cycle. Label the cycle C = (a, b, c, d, a).

G1 =

a b

cd

G2 =

a b

cd

Up to color symmetry, there are 4 colorings of C, listed here as colors for (a, b, c, d).

c1 = (1, 2, 1, 2) c2 = (1, 2, 1, 3)
c3 = (1, 3, 2, 3) c4 = (1, 3, 4, 2)

For i ∈ {1, 2}, let Ci be the set of 4-colorings of C that extend to Gi, and as G is not 4-colorable, C1∩C2 = ∅.
By minimality, we have that G1 +ac and G2 +ac are 4-colorable. By possibly swapping G1 and G2, we may
assume that c3 ∈ C1 and c4 ∈ C2. Similarly, G1 + bd is 4-colorable, so c2 ∈ C1.

Now consider a coloring of G2 that extends c4. For colors i, j, let G2(i, j) be the subgraph of G2 induced by
vertices of color i, j. Then note that:

· If we swap the colors i, j on any component, of G2(i, j), we get another 4-coloring of G2

· Since C bounds a face in G, there cannot exist both an ac-path in G2(1, 2) and a bd-path in G2(3, 4)

By possibly relabelling (a, b, c, d) by (b, c, d, a), we may assume that there is no ac-path in G2(1, 2). Now
swapping colors 1 and 2 on the component of G2(1, 2) that contains a, we see that c2 ∈ C2. But c2 ∈ C1, a
contradiction. �

The observation on vertex swapping is due to Kempe.

Lemma 2.8.3. Every simple plane triangulation of minimum degree 5 contains either 5 5 or 5 6 .

Proof: Let G = (V,E) be a simple plane triangulation with minimum degree 5, so |E| = 3|V | − 6. For each
v ∈ V , assign a charge ϕ by ϕ(v) = 5(6− deg(v)), so∑

v∈V
ϕ(v) = 5

∑
v∈V

(6− deg(v)) = 5(6|V | − 2|E|) = 5(6|V | − 2(3|V | − 6)) = 60
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Define a discharging rule among the vertices:

5

1

So each vertex of degree 5 sends one unit of charge to each of its neighbors. Now let ϕ′ denote the resulting
charge, and let α denote the number of degree 5 neighbors of a vertex, so

ϕ′(v) =

{
ϕ(v) + α(v) if deg(v) > 5

α(v) if deg(v) = 5

Note that
∑
v∈V ϕ(v) =

∑
v∈V ϕ

′(v) = 60. For v a vertex of positive charge, we now consider all the possible
cases.

Case 1: deg(v) = 5

Then 0 < ϕ′(v) = α(v), so v has at least one neghbor of degree 5, giving 5 5 .

Case 2: deg(v) = 6

Then 0 < ϕ′(v) = ϕ(v) + α(v) = α(v), so v has at least one neghbor of degree 5, giving 5 6 .

Case 3: deg(v) = 7
Then 0 < ϕ′(v) = ϕ(v)+α(v) = α(v)−5, so v has at least 6 neighbors of degree 5, and the plane triangulation
of v and its neighbors looks like

7

5
5

5

5

5
5

So we have found 5 5 .

Case 4: deg(v) > 8
Then 0 < ϕ′(v) = ϕ(v) + α(v) 6 5(6 − deg(v)) + deg(v) = 30 − 4deg(v) 6 −2, but this is a contradiction.
Hence deg(v) < 8 for all v in the triangulation, and all the cases have been checked. �

Lemma 2.8.4. No minimum counterexample to the four-color theorem contains the Birkhoff diamond:

Proof: Suppose that the lemma does not hold. Consider the neighbor set of the Birkhoff diamond, along with
their common edges. Then there is a minimal counterexample G with a proper planar separation (G1, G2),
so
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G1 =

G1 ∩G2 = C

C = (a, b, c, d, e, f, a)

a b

c

de

f

Let Ci for i = 1, 2 be the set of 4-colorings of C that extend to Gi, so C1 ∩ C2 = ∅. As G is a minimal
counterexample, it is 5-connected, so the cycle C indicated above is an induced cycle, i.e. chordless. By the
minimality of G, there is a 4-coloring of G s.t

i. a, e have color 1
ii. c has color 2

This follows by identifying a and e, 4-coloring that graph, and then separating a and e, while keeping the
same coloring. Up to color symmetry, there are then 6 colorings of C, namely

c1 : 2

31

2

1 3

c2 : 2

31

2

1 4

c3 : 2

31

3

1 3

c4 : 2

31

3

1 4

c5 : 2

41

3

1 3

c6 : 2

41

3

1 4

We know that at least one ci must extend to G2, i.e. be in C2, as G is minimal. To find it, we extend
all colorings to G1. By trial and error, we find that c1, c2, c3, c5, c6 ∈ C1, so we must have that c4 ∈ C2 and
c4 /∈ C1.

Now consider a 4-coloring of G2 extending c4. For distinct colors i, j, let G2(i, j) be the subgraph induced
by the vertices of colors i, j. Note that then b, d, f are in the same component of G2(3, 4), as otherwise by
swapping the colors 3, 4 in one of the components gives a restricted ck-coloring. Then a, c, e are in distinct
components of G2(1, 2). Switching the colors 1, 2 on the component of G2(1, 2) containing e, we have the
coloring

1 3

2

32

3
4 4

2

1

Now we have a coloring c7 of C with c7 ∈ C1 ∩C2, a contradiction. Hence no minimal counterexample exists.
�

In a similar way to the proof above, it may be shown that the configuration on the left (another one of the
633 possible configurations) is reducible by considering the neighbors of the configuration, in the subgraph
on the right.
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6 6

66

6

6 6

The general method of this part of the four-color theorem is as follows:
· Get G1, a known graph, in an induced cycle
· Compute C1 and set C̃2 = {4-colorings of C not in C1} explicitly
· For every partition of pair of colors in a coloring in C̃2 find a coloring that extends to G1

3 Extremal graph theory

In this section, all graphs will be simple.

3.1 Ramsey theory

Definition 3.1.1. Let G be a graph. Define the complement of G by the graph Gc with edge and vertex
set given by

V (Gc) = V (E)
E(Gc) = {(x, y) | x, y ∈ V (G), (x, y) /∈ E(G)}

If Gc has a clique set, then that clique is a stable set of G.

Theorem 3.1.2. [Ramsey]
For each k ∈ N, there exists R ∈ N such that if G is a graph with |V (G)| > R, then G or Gc contains Kk.

Theorem 3.1.3. (Version 2 of (3.1.2))
There exists a function R : N×N→ N such that if G is a graph with |V (G)| > R(k, `), then G has a clique
of size k or a stable set of size `.

Proof: Define R, for which we will prove the result, recursively by

R(k, `) =

{
1 if k = 1 or ` = 1

R(k − 1, `) +R(k, `− 1) else

Suppose that R fails and there exists a counterexample (G, k, `) with k + ` minimal. Note that (Gc, `, k) is
also a minimal counterexample in this case. Clearly we have k > 2 and ` > 2.

Let v ∈ V (G) and X = NG(v) with Xc = NGc(v). As G has no clique of size k or stable set of size `, G[X]
has no clique of size k − 1 or stable set of size `. By our choice of (G, k, `), we have |X| 6 R(k − 1, `) − 1
and |Xc| 6 R(k, `− 1). Hence

|V (G)| = 1 + |X|+ |Xc| < R(k − 1, `) +R(k, `− 1) = R(k, `)

This contradicts the definition of R, so the original assumption is false. �

Note that the function R used in the above proof is given explicitly by R(k, `) =
(
k+`−2
k−1

)
.

Definition 3.1.4. Let r(k, `) be the least integer so that each graph with > r(k, `) vertices has a clique of
size k or a stable set of size `. Then r(k, `) 6 R(k, `) and r(k, `) 6 4k−1.
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Theorem 3.1.5. [Erdos]

For k > 3, r(k, k) >
√

2
k
.

Proof: Let Gn denote the set of all simple graphs with vertex set {v1, . . . , vn}. Let Gkn denote the set of all
graphs in Gn with a clique of size k. Let X ⊂ {v1, . . . , vn} be of size k. Then the number of graphs in Gn
with a clique on X is

2(n2)−(k2) =⇒ |Gkn| 6
(
n

k

)
2(n2)−(k2)

Then for n 6
√

2
k
,we have

|Gkn|
|Gn|

6

(
n

k

)
2−(k2)

<
nk

k!
2−(k2)

6
2k

2/2

k!
2−(k(k−1))/2

=
2k/2

k!

=

√
2

1
·
√

2

2
·
√

2

3
· · ·
√

2

n

<
1

2

Therefore less than 1
2 of graphs in Gn have a clique of size k. So there exists G ∈ Gn such that G /∈ Gkn and

Gc /∈ Gkn. Hence G has nether a clique of size k nor a stable set of size k. �

Example 3.1.6.

1. We proved that
√

2
k
6 r(k, k) 6 4k, which are bounds close to the bleeding edge of research

2. The above proof was not constructive
3. Known constructions give subexponential lower bounds
4. For fixed k, r(k, `) is polynomial in `:

r(k, `) 6

(
k + `− 2

k − 1

)
6

(
`+

k − 1

(const.)

)k−1

Conjecture 3.1.7. [Erdos, Hajnal]
For any graph H, there is a polynomial pH(k) such that if k ∈ N and G is a graph with no induced subgraph
isomorphic to H and with |V (G)| > pH(k), then G has a clique or a stable set of size k.

Proof: A proof to this conejcture is claimed by Gabor Sagi, at http://arxiv.org/abs/1211.3876 �

Theorem 3.1.8. Every infinite sequence of distinct numbers in R contains a monotonic subsequence.

Proof: Let {αn}∞n=1 be a sequence of distinct real numbers. Then one of the following two sets is infinite:

{αj | j > 2, αj > αi ∀ i < j} {αj | j > 2, αj < αi ∀ i < j}

Therefore we can find an infinite subsequence {βk} of {αi} by building it one element at a time, such that
for all i ∈ N, either

i. βj > βi for all j > i, or
ii. βj < βi for all j > i
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Case 1: For infinitely many i ∈ N, i. holds
This gives an infinite increasing subsequence of {αn}.

Case 2: For infinitely many i ∈ N, i. does not hold.
So ii. holds , and this gives an infinite decreasing subsequence of {αn}. �

Theorem 3.1.9. (Restatement of (3.1.2))
For any k ∈ N, if G = (V,E) is a graph with |V | > 22k−1, then G has a clique or a stable set of size k.

Proof: Choose vertex sets (X1, X2, . . . , X2k+2) and vertices (v1, v2, . . . , v2k+2) as follows:

· Set X1 = V and choose any v1 ∈ X.
· For all i > 1, take Xi+1 to be the larger of (Xi − {vi}) ∩ N(vi) and (Xi − {vi}) − N(vi), and any

vi+1 ∈ Xi+1.

Note that |Xi+1| > 22k−i. Now define four sets

K = {vi | i ∈ {1, 2, . . . , 2k − 3}, (vi, vi+1) ∈ E} K ′ = K ∪ {v2k−2}
S = {vi | i ∈ {1, 2, . . . , 2k − 1}, (vi, vi+1) /∈ E} S′ = S ∪ {v2k−2}

Then K ′ is a clique in G and S′ is a stable set in G. Since |K ′|+ |S′| = 2k − 1, either |K ′| > k or |S′| > k,
proving the theorem. �

Theorem 3.1.10. (Version 3 of (3.1.2))
There is a function R̃ : N× N→ N such that for any k, t, n ∈ N with n > R̃(k, t), if we color the edges of a
graph G = Kn with t colors, then G contains a monochromatic (having a single color) copy of Kk.

Proof: This is done by induction on t.
t = 1: Trivial.
t = 2: Follows from the previous presentation of Ramsey’s theorem.
t > 3: Assume that the result holds for all fewer colors. Define R̃(k, t) = R(k, R̃(k, t − 1)) and let

n > R̃(k, t). Consider a coloring of Kn with colors c1, . . . , ct. If G contains Kk as a monochromatic
subgraph, then we are done. Else, assume that G does not have Kk as a monochromatic subgraph of color
c1. Then by the first restatement of Ramsey’s theorem, G contains Kn′ as a subgraph with no edge of color
c1, with n′ = R̃(k, t− 1). The result follows by induction. �

Ramsey’s theorem has applications, such as in the proof of the following theorem.

Theorem 3.1.11. [Schur]
For each t ∈ N, there exists s ∈ N such that if (A1, . . . , At) is a partition of {1, . . . , s}, then there exists
i ∈ {1, . . . , t} and x, y, z ∈ Ai (not necessarily distinct) with x+ y = z.

Proof: Let s = R̃(3, t) and let (A1, . . . , At) be any partition of {1, . . . , s}. Color edge (i, j) of Ks by color `
iff |i− j| ∈ A`. By the last restatement of Ramsey’s theorem, there exist 0 < a < b < c 6 s and ` such that

b− a, c− b, c− a ∈ A`

Let x = b− a, y = c− b and z = c− a, so x+ y = z and x, y, z ∈ Ai. �

3.2 Forbidding subgraphs

Definition 3.2.1. For a graph H and n ∈ N, let ex(H,n) be the maximum number of edges of a simple
n-vertex graph with no subgraph isomorphic to H.

Remark 3.2.2.
1. If H is a subgraph of G, then χ(H) 6 χ(G)
2. The densest (t−1)-colorable graph with n vertices is the complete (t−1)-partite graph Kn1,n2,...,nt−1

,
denoted by T (t, n) and termed the Turan graph:
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1 2

3t− 1

n1 vertices n2 vertices

n3 verticesnt−1 vertices

Here,
⌊

n
t−1

⌋
6 n1 6 n2 6 · · · 6 nt−1 6

⌈
n
t−1

⌉
. Moreover, note that e(t, n) = |E(T (t, n))| ≈ t−2

t−1

(
n
2

)
.

3. Hence ex(H,n) > e(χ(H), n) ≈ χ(H)−2
χ(H)−1

(
n
2

)
, which is, in fact, asymptotically an equality.

Definition 3.2.3. Vertices u, v of a graph are termed clones iff N(u) = N(v). By cloning a vertex v, we
refer to the operation of adding a vertex v′ to G with the same neighbors as v.

Note that of G has no Kt-subgraph, then no graph obtained from G by cloning has a Kt-subgraph.

Theorem 3.2.4. [Turan]
For t, n ∈ N, ex(Kt, n) = e(t, n). Moreover, T (t, n) is the only n-vertex graph with e(t, n) edges that does
not contain Kt as a subgraph.

Proof: Suppose that G is a simple n-vertex graph with no Kt-subgraph, and that |E(G)| is maximal, subject
to having no Kt-subgraph.

Claim 1: If vertices u, v of G are not adjacent, then deg(u) = deg(v).
Suppose that deg(v) > deg(u) for u, v not adjacent. Let G′ be the graph obtained from G− v by cloning u.
Now G′ has no Kt-subgraph, and |E(G′)| > |E(G)|, contradicting the maximality of G.

Claim 2: If vertices u, v of G are not adjacent, then u, v are clones.
Suppose that they are not adjacent but are not clones. Then by possibly swapping u and v, we may assume
that there exists w ∈ N(v)−N(u). Let G′ be obtained from G− v − w by cloning u twice. Now G′ has no
Kt-subgraph and |E(G′)| > |E(G)|, contradicting the maximality of G.

By the second claim, G is a complete multipartite graph. Due to the assumptions, χ(G) = t − 1. Let
X1, . . . , Xt−1 be the color classes. Suppose that G 6= T (t, n). Then there exist i, j such that |Xi| 6 |Xj | − 2.
Let u ∈ Xi and v ∈ Xj , so deg(v) > deg(u) + 2. Let G′ be the graph obtained from G−u by cloning v. Now
G′ has no Kt-subgraph and |E(G′)| > |E(G)|, contradicting the maximality of G. �

Definition 3.2.5. Given a graph H, define the Turan density of H to be

π(H) = lim
n→∞

[
ex(H,n)(

n
2

) ]

Note that lim
n→∞

[
e(t,n)

(n2)

]
= t−2

t−1 , so Turan’s theorem implies that π(Kt) = t−2
t−1 .

Theorem 3.2.6. [Erdos, Stone 1946]

For any graph H with E(H) 6= ∅, π(H) = χ(H)−2
χ(H)−1 .

Note that for χ(H) > 3, the above theorem describes the asymptotic behavior of ex(H,n). As for
χ(H) = 2, we get π(H) = 0.
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Lemma 3.2.7. If G = (V,E) is an n-vertex graph with no Kt,t-subgraph, then

∑
v∈V

(
deg(v)

t

)
6 (t− 1)

(
n

t

)
Proof: First note that every bipartite graph is contained in some complete bipartite graph. Therefore it
suffices to prove the statement only for complete bipartite graphs.

Let X be a t-element subset of V . As G has no Kt,t-subgraph, the number of vertices v with X ⊂ N(v) is
6 t− 1. It follows directly that ∑

v∈V

(
deg(v)

t

)
︸ ︷︷ ︸

# of ways to choose
a t-element subset of N(v)

6 (t− 1)

(
n

t

)
︸︷︷︸

# of choices
for X

�

Theorem 3.2.8. There exists f : N× (0, 1)→ N such that if n, t ∈ N and α ∈ (0, 1) with n > f(t, α), then
ex(Kt,t, n) 6

(
α
2

)
.

Proof: Note that
(
d
t

)
is a degree t polynomial in d with leading coefficient 1

t! . So there exists ct ∈ R with(
d
t

)
> dt

t! − ctd
t−1 for all d > 1. Define

f(t, α) =
t− 1 + ct · t!

α2t+2
+ 1

Let G = (V,E) be a graph with |V | = n > f(t, α) and |E| > α
(
n
2

)
. Let X be the set of vertices of G with

degree > α2(n− 1).

Claim: |X| > α2n
If not, then

2αn

(
n

2

)
6 2|E|

=
∑
v∈V

deg(v)

< α2n(n− 1) + (1− α2)nα2(n− 1)

= α2n(n− 1)(1− α2)

< αn(n− 1) (as α < 1
2 )

= 2α

(
n

2

)
As this is a contradiction, the claim is proven.
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Now note that ∑
v∈V

(
deg(v)

t

)
>
∑
v∈V

(
deg(v)t

t!
− ctdeg(v)t−1

)
>
∑
v∈V

(
deg(v)t

t!

)
− ctn(n− 1)

> αn
(α2(n− 1))t

t!
− ctn(n− 1)t−1

=
n(n− 1)t−1

t!

(
α2t+2(n− 1)− ctt!

)
>

(
n

t

)
(t− 1)

Then by the previous lemma, G has a Kt,t-subgraph. �

Remark 3.2.9.
1. The above theorem implies the base case of the Erdos-Stone theorem (the case where H is bipartite)
2. Also, it implies that if n > f(t, 1

k ), then in any coloring of the edges of Kn with k colors, we can find
a monochromatic Kt,t-subgraph. Hence it is termed a density Ramsey theorem for bipartite graphs.

4 The probabilistic method

Definition 4.0.1. Let Gn denote the set of all simple graphs with vertex set {1, 2, . . . , n}. For 0 < p < 1,
let Gn,p denote the probability distribution of Gn, so that

P (G) = p|E(G)|(1− p)|E(Gc)|

4.1 Applications

Existence theorems

Recall the lower bounds for Ramsey numbers. For α(G) the size of the largest stable set in G, if n <
√

2
k

and G ∈ Gn, 12 , then

P (α(G) > k) <
1

2

Thus there exists G ∈ Gn with α(G) < k and α(Gc) < k. This showed us that r(k, k) >
√

2
k
.

Properties of random graphs

Theorem 4.1.1. For 0 < p < 1, G ∈ Gn,p has asymptotically almost surely (a.a.s.) the property that every
pair of vertices has a common neighbor. That is, if λn,p is the probability that G has this property, then
lim
n→∞

[λn,p] = 1.

Proof: Let i, j ∈ V (G) be distinct. The probability that i, j have no common neighbor is equal to (1−p2)n−2.

So the probability that there is no pair of vertices wih a common neighbor is 6
(
n
2

)
(1 − p2)n−2, and by

l’Hopital’s rule,

lim
n→∞

[(
n

2

)
(1− p2)n−2

]
= lim
n→∞

[
n(n− 1)

2
(1− p2)n−2

]
= 0

�

Corollary 4.1.2. A graph in Gn,p is a.a.s. connected.
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Random processes of graphs

Proposition 4.1.3. Every loopless graph with m edges has a cut size of size at least m
2 .

Proof: Choose X ⊂ V (G) uniformly at random. For e ∈ E(G), we have that P (e ∈ δ(X)) = 1
2 . Hence

E(|δ(X)|) = m
2 . Therefore there exists X ⊂ V (G) with |δ(X)| > m

2 .

This follows by observing that for the random variable ce = |δ(X) ∩ {e}| and the linearity of E,

E[|δ(X)|] = E

 ∑
e∈E(G)

ce

 =
∑

e∈E(G)

E[ce] =
∑

e∈E(G)

P (e ∈ δ(X)) =
m

2

�

Remark 4.1.4. Finding a maximum cut in a graph is NP -hard. The above shows that we can always find
a cut of size > m

2 , which is at least half the maximal size.

Theorem 4.1.5. For any simple graph G, α(G) >
∑
v∈V (G)

1
deg(v)+1 .

Proof: Choose an ordering (v1, . . . , vn) of V (G) at random uniformly, and express G as

G = v1 v2 v3 vn· · ·

Let X be the set of all vi ∈ V (G) such that for each vj ∈ N(vi), j > i. Then X is a stable set. For any
v ∈ V (G), P (v ∈ X) = 1

deg(v)+1 , so E[|X|] =
∑
v∈V (G)

1
deg(v)+1 . Then there is an ordering giving

α(G) > |X| >
∑

v∈V (G)

1

deg(v) + 1

�

Remark 4.1.6. Equality is attained in the above theorem iff G is a disjoint union of cliques. Moreover,
Turan’s theorem is a consequence of it.

Conjecture 4.1.7. [Hajos]
If G does not contain Kt as a topological minor, then χ(G) 6 t− 1.

Theorem 4.1.8. [Catlin]
Almost all graphs are counterexamples to Hajos’ conjecture. That is, G ∈ Gn, 12 is a.a.s. a counterexample.

Remark 4.1.9.
· Hajos’ conjecture remains open for K5 and K6.
· Hadwiger’s conjecture is known to be a.a.s. true for G ∈ Gn, 12 .

Lemma 4.1.10. For G ∈ Gn, 12 , α(G) < 2 log2(n) a.a.s.
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Proof: Let k = d2 log2(n)e. Then n 6
√

2
k
, and

P (α(G) > k) 6

(
n

k

)(
1

2

)(k2)

<
nk

k!
2
−k(k−1)

2

=
2k/2

k!

=

√
2

1
·
√

2

2
·
√

2

3
· · ·
√

2

k
k,n→∞−−−−−−→ 0

�

With the result of this lemma, we return to the proof of (4.1.8).

Proof: Let G ∈ Gn, 12 . By the lemma, a.a.s.

χ(G) >
|V (G)|
α(G)

>
n

2 log2(n)

Let k = dn/(2 log2(n))e. We may assume that N is large enough, so
(k

2

)
> n3/2. It remains to show that G

a.a.s. does not contain Kk as a topological minor.

Now suppose that G has a subgraph H that is a subdivision of Kk. Note that H must have fewer than n
degree 2 vertices. Hence G has a subgraph H ′ with |V (H ′)| = k, and |E(H ′)| >

(k
2

)
−n. Then the probability

of G̃ ∈ Gn 1
2

containing such a subgraph is less than or equal to

(
n

k

)((k
2

)
n

)(
1

2

)(k
2)−n

< n!

(
k2
2

)n
n!

(
1

2

)(k
2)−n

= k2n2−(k
2)

6 n2n2−n
3/2

n→∞−−−−−→ 0

�

4.2 Large girth and chromatic number

Definition 4.2.1. The girth of a graph is the length of a shortest cycle.

Theorem 4.2.2. [Erdos 1959]
For all k, ` ∈ N, there is a graph with girth > ` and chromatic number > k.

Proof: (outline) Choose n, p so that for G ∈ Gn,p,

· P (α(G) > n
2k ) < 1

2 , and
· With probability < 1

2 , G has more that n
2 cycles of length 6 `

So there exists G ∈ Gn such that α(G) < n
2k , and G has 6 n

2 cycles of length `. By deleting a vertex from
each short cycle, we get a subgraph H with

· girth(G) > `
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· |V (H)| > n
2

· α(H) < n
2k

The last two facts together imply that χ(H) > k. �

To complete the proof, it is necessary to remark on some facts first.

1. If 0 < ε < 1, then lim
n→∞

[
εn

log(n)

]
=∞

2. If 0 < ε < 1, then lim
n→∞

[
n−n

ε
]

= 0

3. If X is a non-negative random variable, then P (X > 2E(X)) < 1
2

4. For all x ∈ R, 1− x 6 e−x

With these facts we now complete the proof to (4.2.2).

Proof: Let ε = 1
2` and choose n ∈ N suficiently large so that

i. `
√
n < n

4

ii. n−
1
2 d3n

1−ε log(n)e < 1
2

iii. k < n
6 log(n)+2

Let p = nε−1 and t = 3
p log(n) + 1. Consider G ∈ Gn,p, and let x be the number of cycles of length 6 ` in G.

Claim: P (x > n
2 ) < 1

2
This is a result of some routine calculations:

E[X] =
∑̀
i=3

i!

2i︸︷︷︸
because of
symmetry

pi 6
∑̀
i=3

(np)i =
∑̀
i=3

nεi =
∑̀
i=3

√
n
i/`
6 `
√
n <

n

4

This shows that P (x > n
2 ) < 1

2 , from application of fact 3. above.

Claim: P (α(G) > t) < 1
2

This again is the result of a long calculation.

P (α(G) > t) 6

(
n

t

)
(1− p)(

t
2)

< nt(1− p)t(
t−1
2 )

=
(
n(1− p)(t−1)/2

)t
6
(
ne−p(

t−1
2 )
)t

6
(
ne−3/2·log(n)

)t
(as T =

3

p
log(n) + 1)

= n−t/2 (as elog(n) = n)

<
1

2

This proves the claim.

Now by the above claims there exists G ∈ Gn,p such that
a. G has 6 n

2 cycles of length `
b. α(G) < t

By deleting a vertex from each of the shortest cycles, there is an induced subgraph of G with girth(G) > `
and |V (H)| > n

2 and α(H) < t. Then by applying iii.,

χ(G) >
|V (H)|
α(H)

>
n

2k
>

n
6
p log(n) + 2

=
n

6n1−ε log(n) + 2
> k
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This completes the proof. �

5 Flows

5.1 The chromatic and flow polynomials

Definition 5.1.1. Let G be a graph. Then λG(t) is the chromatic polynomial of G, and indicates the
number of t-colorings of G. The name implies it is a polynomial, a fact to be verified later.

Example 5.1.2. To find the chromatic polynomial of a graph G, consider the following approach.

a

b

c

d et

t− 1

t− 2

t− 2

t− 1

Choose a vertex, here we choose a. Keep choosing the next vertex that is adjacent to a previous vertex.

Vertex a can be colored with any one of t colors.
Vertex b can be colored with any one of t− 1 colors.
Vertex c can be colored with any one of t− 2 colors.
Vertex d can be colored with any one of t− 2 colors.
Vertex e can be colored with any one of t− 1 colors.

Then λG(t) = t(t− 1)2(t− 2)2. However, this approach fails in the following case, where it is not possible to
determine whether e can be colored with any one of t− 2 or t− 1 colors, as a and e could have the same or
different colors.

a b

c

de

t t− 1

t− 2

t− 2

Proposition 5.1.3. Given a graph G, if e ∈ E(G) is not a loop, then λG(t) = λG−e(t)− λG/e(t).

Proof: Each coloring of G− e is either a coloring of G or gives a coloring of G/e. �

This allows us to calculate the chromatic polynomial of the graph presented above. By slightly abusing
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notation,

λ

  = λ

 − λ
 

= t(t− 1)(t− 2)3 − t(t− 1)(t− 2)(t− 3)

Remark 5.1.4. If a graph G has a bridge e = (u, v), then 1
tλG−e(t) = λG/e(t), hence λG(t) = (1−t)λG/e(t).

This is clear, as a component of G− e has colorings where u (v, respectively) gets t different colors. In G/e,
those colorings must have u and v in the same color, hence we can only take 1

t of all the colorings of G− e.

G =
e

u v

G− e = u v

G/e =

u = v

Proposition 5.1.5. Given a graph G, fix an edge e ∈ E(G). Then the chromatic polynomial may be defined
by a recursive formula:

λG(t) =


0 if e is a loop

(t− 1)λG/e(t) if e is a bridge

λG−e(t)− λG/e(t) if e is any other type of edge

t|V (G)| if E(G) = ∅

This shows that λG(t) is a polynomial in t.

Recall that for a connected plane graph G and e not a loop or a bridge of G, we had

(G− e)∗ = G∗/e

(G/e)∗ = G∗ − e

Also note that e is a loop of G iff e is a bridge of G∗. This leads us to the folowing definition.

Definition 5.1.6. Given a graph G, the flow polynomial fG(t) of G is defined recursively as

fG(t) =


0 if e is a bridge

(t− 1)fG−e(t) if e is a loop

fG/e(t)− fG−e(t) if e is any other type of edge

1 if E(G) = ∅

Comparing this and the chromatic polynomial, it emerges that, for G a connected graph, λG∗(t) = tfG(t).
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5.2 Nowhere-zero flows

Definition 5.2.1. Let G be a graph and ~G an orientation of G, i.e. G with with direction assigned to every
element of E(G). Then ~G is termed a directed graph, or digraph.

Definition 5.2.2. Given a digraph ~G with values assigned to edges, a nowhere-zero flow over a finite abelian
group Γ, is a set of assignments to edges of ~G such that for each vertex v of ~G, the flow into v equals the
flow out of v.

Example 5.2.3. This is an exapmle of a digraph ~G with a nowhere zero flow over the group Γ = Z4.

2

3
1

1

3

2

1

2

1

Definition 5.2.4. Let G be a graph, ~G an orientation, X ⊂ V (G) and f : E(G)→ Γ for Γ a finite abelian
group. Then define

inflowf (X) =
∑

e=uv∈E(~G)
u/∈X,v∈X

f(e)−
∑

e=uv∈E(~G)
u∈X,v/∈X

f(e)

Proposition 5.2.5. For the definitions as above,

inflowf (X) =
∑
x∈X

inflowf (x)

Proof: Consider the contributions of each edge. �

Definition 5.2.6. With these new concepts, we may redefine some terms:
· A function f as above is termed a Γ-flow iff inflowf (v) = 0Γ for all v ∈ V (G).

· A function f is termed nowhere-zero iff f(e) 6= 0 for all e ∈ ~G.

Remark 5.2.7.
1. The existence of nowhere-zero flows is independent of the choice of orientation of ~G.
2. By the previous proposition, if G has a bridge, then ~G cannot have a nowhere-zero flow.

Proposition 5.2.8. Given a graph G, if T is a spanning tree of G and f ′ : E(G)−E(T )→ Γ is a function
assigning weights, for Γ a finite abelian group, then there is a unique Γ-flow f : E(G) → Γ such that
f(e) = f ′(e) for each e ∈ E(G)− E(T ).

Definition 5.2.9. Given a graph G and Γ a finite abelian group, let F (G,Γ) denote the number of nowhere-
zero Γ-flows. Note that if G has a bridge, then F (G,Γ) = 0 for any Γ.

Proposition 5.2.10. Given a graph G with e ∈ E(G) a loop,

F (G,Γ) = (|Γ| − 1)F (G− e,Γ)

Proof: Any flow through e both enters and leaves the end of e, and hence the flow can take any non-zero
value in Γ. �

Proposition 5.2.11. Given a graph G with e ∈ E(G) a non-loop edge,

F (G,Γ) = F (G/e,Γ)− F (G− e,Γ)
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Proof: Each nowhere-zero flow in G/e is either a nowhere-zero Γ-flow of in G− e, or it extends uniquely to
give a nowhere-zero Γ-flow in G. �

Theorem 5.2.12. For the definitions as above,

F (G,Γ) = fG(|Γ|)

Proof: The result follows by induction. �

Corollary 5.2.13. Let Γ1,Γ2 be abelian groups with |Γ1| = |Γ2|. Then G has a nowhere-zero Γ1-flow iff G
has a nowhere-zero Γ2-flow.

Corollary 5.2.14. A connected plane graph G has a nowhere-zero Zk-flow iff G∗ is k-colorable.

Definition 5.2.15. A Zk-flow is termed a k-flow iff inflowf (v) = 0 for all v ∈ V and f : E(G) → Z (i.e. it
is a Z-flow), and |f(e)| < k for all e ∈ E(G).

Example 5.2.16. Consider the previous example. This is a Z4-flow, but is not a 4-flow, as some vertices
do not have 0 net flow. By replacing the edges with flow 2 by flow -2, we get a 4-flow.

2

3
1

1

3

6 2 − 2

1

6 2 − 2

1

Theorem 5.2.17. A graph has a nowhere-zero Zk-flow iff it has a nowhere-zero k-flow.

Proof: (⇐) Trivial.

(⇒) Let f ′ be a nowhere-zero Zk-flow. Choose f : E → Z such that for all e ∈ E,

i. |f(e)| < k
ii. f(e) = f ′(e) (mod k)

iii.
∑
v∈V
|inflowf (v)| is minimized subject to i.

By reorienting edges, we may assume that f(e) > 0 for all e ∈ E. Define

V + = {v ∈ V | inflowf (v) > 0}
V − = {v ∈ V | inflowf (v) < 0}

Now suppose that f is not a k-flow, or equivalently, that V + ∪ V − 6= ∅. And since
∑
v∈V inflowf (v) = 0, we

then have that V + 6= ∅ and V − 6= ∅. Then either

I. There is a dipath P from u ∈ V − to v ∈ V +, or
II. There is a partition (X−, X+) of V with V − ⊂ X−, V + ⊂ X+ and {uv ∈ E | u ∈ X−, v ∈ X+} = ∅

Case I: Define f̃(e) =
{
f(e)−k if e∈P
f(e) else

. Then for all e ∈ E, f̃(e) satisfies i., and∑
v∈V
|inflowf̃ (v)| <

∑
v∈V
|inflowf (v)|

which contradicts iii., so this case cannot hold.
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Case II: Simply observe that, as f > 0 and no edge enters X+,

0 >
∑
v∈X+

inflowf (v) =
∑
v∈V +

inflowf (v) > 0

As this is also a contradiction, case II cannot hold. Since none of the cases hold, the assumption that f is
not a k-flow was false, hence f is a k-flow. �

5.3 Flow conjectures and theorems

Definition 5.3.1. A graph G = (V,E) is termed k-edge-connected iff for every X ⊂ E of size less than k,
G−X is connected.

Conjecture 5.3.2. [5-flow conjecture - Tutte]
Every bridgeless graph has a nowhere-zero 5-flow.

Remark 5.3.3. Let G be a graph. Then
· G has a nowhere-zero 2-flow iff G is even
· G has a nowhere-zero (Z2)

k
flow iff G is the union of k even subgraphs

· A cubic graph has a nowhere-zero 4-flow iff it is 3-edge colorable

The last statement directly implies that the Petersen graph has no nowhere-zero 4-flow.

Conjecture 5.3.4. [4-flow conjecture - Tutte]
Every bridgeless graph with no Petersen graph minor has a nowhere-zero 4-flow.

This conjecture implies the four-color theorem, and has not been proven yet. Robertson, Seymour, and
Thomas proved this for cubic graphs, by using the four-color theorem.

Conjecture 5.3.5. [3-flow conjecture - Tutte]
Every 4-edge-connected graph has a nowhere-zero 3-flow.

Theorem 5.3.6. [Grotzsch]
Every triangle-free planar graph is 3-colorable.

The 3-flow conjecture, if true, implies Grotzsch’s theorem.

Lemma 5.3.7. If T is a spanning tree of a graph G, then G has an even subgraph H with E(G) =
E(T ) ∪ E(H).

Proof: Let f ′(e) = 1 for each e ∈ E(G)− E(T ) and apply a previous exercise. �

Theorem 5.3.8. [Nash-Williams, Tutte] Every 2k-edge-connected graph has k edge-disjoint spanning
trees.

Proof: Apply the matroid intersection theorem. �

Corollary 5.3.9. Every 4-edge-connected graph has a nowhere-zero 4-flow.

Proof: There exist 2 edge-disjoint spanning trees T1, T2, and so there are two even subgraphs H1, H2 such
that E(G) = E(Hi) ∪ E(Ti) for i = 1, 2. Since T1 and T2 are edge-disjoint, E(G) = E(H1) ∪ E(H2). �

Corollary 5.3.10. [Jaeger]
Every 3-edge-connected graph has a nowhere-zero 8-flow.

Proof: It suffices to find 3 spanning trees such that no edge is contained in all three. Duplicate every edge,
that is, apply the map
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→

to every edge in G to get a 6-edge-connected graph. By the theorem, this new graph has 3 edge-disjoint
spanning trees. �

Remark 5.3.11. It is easy to deduce that every bridgeless graph has a nowhere-zero 8-flow. The only
seeming problem is 2-edge cuts, but these can be taken care of as follows.

→

As flow values on the cut shown for the graph on the left are equal, the given problem is equivalent to finding
flows on the two bridgeless connected components on the right.

Theorem 5.3.12. [6-flow theorem - Seymour 1981]
Every bridgeless graph has a nowhere-zero 6-flow.

Proof: See below. �

Definition 5.3.13. Given a bridgeless graph G, a 2-decomposition of G is a sequence (H0, . . . ,Hk) of
bridgeless graphs such that

1. H0 is even
2. Hk = G
3. For each i = 1, . . . , k, Hi−1 is a subgraph of Hi with |E(Hi)| − |E(Hi−1)| = 1 or 2

Example 5.3.14. This is an example of a 2-decomposition.

G =

H0 H1 H2 H3

Lemma 5.3.15. Every graph with a 2-decomposition has a nowhere-zero Z2 × Z3-flow.

Example 5.3.16. Consider the graph from the previous example with the above lemma, by applying an
orientation to the edges of G.

~G =
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To get a Z2-flow, simply push a flow of 1 through every connected component of the base even subgraph H0,
and give a flow of 0 to all other edges.

1

1

1

1

1

1

1

0 0

0

0

0

To get a Z3-flow, first assign all edges a flow of 0. To the last graph in the 2-decomposition of G, push a
flow through a cycle containing the edge(s) added to the previous graph, so that (those) edge(s) has (have)
non-zero flow. Here we choose a flow of 1 clockwise.

−1

−1

1

−1
1

Keep the assigned flows on the edges and look at the previous graph in the decomposition, applying the
same operation. Here we choose a flow of 1 clockwise, as a flow of 2 would give the added edge at the top a
flow of 0.

−1

−2

2

-2

1

1

1

Continue in the same manner, by applying a flow of 1 clockwise. A flow of 2 would again give one of the
added edges zero flow.

−1 −1

1

1

The final flow is then found taking values of the edges most recently changed, and working backward. The
result is a nowhere-zero Z2 × Z3-flow.
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(1,0)

(1,0)

(1,2)

(1,2)

(1,2)

(0,1) (0,2)

(1,1)

(0,2)
(1,1)

(1,0)

(0,1)

Theorem 5.3.17. [Menger]
If s, t are distinct vertices in a graph G, and k ∈ Z+, then either
· there exist k edge-disjoint (s, t)-paths in G, or
· there is a partition (S, T ) of V (G) with s ∈ S, t ∈ T , and δ(S) < k

Corollary 5.3.18. For any graph G and k ∈ Z+, there is a partition Πk(G) of V (G) such that for u, v ∈
V (G), there are k edge-disjoint (u, v)-paths in G iff u, v are in the same component of Πk(G).

Remark 5.3.19. Consider Π2(G). Note that

· e = uv ∈ E(G) is a bridge iff u, v are in different components of Π2(G)
· For each X ∈ Π2(G), G[X] is a 2-edge-connected subgraph

Π2(G) then resembles a forest with nodes that are connected graphs:

Lemma 5.3.20. Every non-empty graphG has a non-empty 2-edge-connected subgraphH with |δG(V (H))| 6
1.

Proof: Let G′ be obtained from G by contracting all the non-bridge edges. Then G′ is a non-empty forest,
and thus has a vertex of degree at most 1. �

Lemma 5.3.21. Every 3-edge connected graph has a 2-decomposition.

Proof: Let G be a 3-edge-connected graph, with H the largest 2-edge-connected subgraph of G that admits
a 2-decomposition. Since H is connected by maximality, H is an induced subgraph of G. Let (H0, . . . ,Hk)
be the 2-decomposition of H. Assume that H 6= G, hence V (H) 6= V (G). Let H̃ = G − V (H). Let L be a
2-edge-connected subgraph of H̃, with |δH̃(V (L))| 6 1. As G is 3-edge-connected, there exist distinct edges
e1 = (u1, v1) and e2 = (u2, v2) with u1, u3 ∈ V (L) and v1, v2 ∈ V (H).
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H

L

H̃

e1

e2

Since L is 2-edge-connected, by Menger’s theorem there exist 2 edge-disjoint (u1, u2)-paths P1, P2 in L. Note
that P1 ∪P2 is an even subgraph of L. Then (H1 ∪P1 ∪P2, . . . ,Hk ∪P1 ∪P2, (Hk ∪P1 ∪P2) + {e1, e2}) is a
2-decomposition. However, (Hk ∪ P1 ∪ P2) + {e1, e2} is connected and larger than H, a contradiction. �

Definition 5.3.22. Let G = (V,E) be a graph with an orientation ~G. Then for each v ∈ V define

· indeg~G(v) = |IN~G(v)|
· outdeg~G(v) = |OUT~G(v)|
· outflow~G(v) = outdeg~G(v)− indeg~G(v)

Here IN~G(v) is the set of edges in E directed into v, and OUT~G(v) is the set of edges directed out from v.

Now we return to prove (5.3.12).

Proof: (of (5.3.12)) Consider a counter-example G with |E(G)| minimal. Thus G is bridgeless and has no
nowhere-zero 6-flow. By minimality, G is connected. Moreover, G is bridgeless, so G is 2-edge-connected.
Using the previous two lemmae, G is not 3-edge-connected. Hence there exists X ⊂ V (G) with δG(X) =
{e1, e2}, so G resembles

G =

e2

e1

Consider an orientation ~G of G. Note that ~G/e2 is bridgeless and smaller than G (in terms of edge count),

so ~G/e2 has a nowhere-zero 6-flow f ′.

~G/e2 =

e1

Hence there is a unique Z6-flow f in ~G such that f(e) = f ′(e) for all e 6= e2. Since G has no nowhere-zero
Z6-flow, we must have that f(e2) = 0. Then 0 = inflowf (X) = f(e1) = f ′(e1) 6= 0, which is a contradiction.
�

Remark 5.3.23. Consider a nowhere-zero flow f . By reorienting, we can get f(e) = 1 for all e ∈ E(G).

Hence G has a nowhere-zero 3-flow iff there is an orientation ~G of G such that |IN~G(v)| = |OUT~G(v)| (mod 3)
for all v ∈ V (G).
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Proposition 5.3.24. [Weak 3-flow conjecture - Jaeger]
There exists k ∈ Z such that each k-edge-connected graph has a nowhere-zero 3-flow.

Remark 5.3.25.
· The above conjecture has been proven for:

k = 8 by Thomassen
k = 6 by Lovasz, Zhang, and Thomassen

· The case k = 5 implies Tutte’s 3-flow conjecture
· We will prove the case k = 17

Definition 5.3.26. Let G = (V,E) be a graph. A (p mod 3)-flow of G is an orientation ~G and a map
p : V → Z with outflow~G(v) ≡ p(v) (mod 3) for all v ∈ V .

Note that G has a nowhere-zero 3-flow iff G has a (p = 0 mod 3)-flow.

Further, for every A ⊂ V , let p(A) =
∑
v∈A p(v).

Remark 5.3.27. Let G = (V,E) be a graph. Then for each v ∈ V , specifying outflow is equivalent to
specifying out-degree. This follows from the below calculation.

p(v) ≡ outflow~G(v) (mod 3)

≡ outdeg~G − indeg~G(v) (mod 3)

≡ 2outdeg~G(v)− deg~G(v) (mod 3)

≡ −outdeg~G(v)− deg~G(v) (mod 3)

Theorem 5.3.28. [Thomassen]
Let G be 17-edge-connected and p : V (G)→ Z with p(v) ≡ 0 (mod 3). Then G has (p mod 3)-flow.

Eqivalently, if G is a 17-edge-connected graph with d+ : V → Z satisfying
∑
v∈V d

+(v) ≡ |E(G)| (mod 3),

then there is an orientation ~G of G with outdeg~G(v) ≡ d+(v) (mod 3) for each v ∈ V .

Corollary 5.3.29. If G is a 17-edge-connected graph with |E(G)| ≡ 0 (mod 3), then E(G) can be covered
by edge-disjoint copies of K1,3.

Example 5.3.30. The graph below is vertex-transitive, i.e. every pair of vertices is equivalent under some
automorphism of the graph.

1 2

3 4

5 6

7 8

This graph cannot be covered by edge-disjoint copies of K1,3, as using vertex 1 as the degree 3 vertex of
K1,3 means for vertex 2 either vertex 4 or 8 has to be the degree 3 vertex of K1,3. Using 8, the edge (3, 6)
now has both ends taken by copies of K1,3, and so cannot be covered by another edge-disjoint K1,3.

→

42



Proposition 5.3.31. [Thomassen]
For each tree T , there exists k ∈ N such that for each k-edge-connected graph with |E(G)| ≡ 0 (mod |E(T )|),
there is a cover of E(G) by edge-disjoint copies of T .

The above theorem has been proven for stars and for the path with 4 edges, and remains open.

5.4 The proof of the weakened 3-flow theorem

Definition 5.4.1. Let G be a graph and p : V (G) → Z) a map with p(v) ≡ 0 (mod 3) for all v ∈ V (G).

For A ⊂ V (G), define degG(A) = |δG(A)|. Note that if ~G is a (p mod 3)-flow, then outflow~G(A) ≡ p(A)
(mod 3). Further, define typeG(A) to be the unique number m ∈ Z such that

a. −2 6 m 6 3
b. m ≡ deg(A) (mod 2)
c. m ≡ p(A) (mod 3)

The Chinese remainder theorem guarantees existence of such an m.

Lemma 5.4.2. If degG(A) > 3, then there is an orientation ~G of G with

i. −2 6 outflow~G(A) 6 3, and
ii. outflow~G(A) ≡ p(A) (mod 3)

Moreover, for any such orientation, outflow~G(A) = typeG(A). Heuristically, the type is the measure of how
unbalanced an orientation of δ(A) is. There exists some m1,m ∈ N such that δ(A) has m1 arcs oriented in
both directions, and m additional arcs all in one direction. Then type~G(A) = m.

m

m1

m1
A

Theorem 5.4.3. Let G = (V,E) be a 17-edge-connected graph. If p : V → Z is such that p(v) ≡ 0 (mod 3),
then G has a (p mod 3)-flow

Remark 5.4.4. Before proceeding to the proof of this theorem, consider some reductions that will be
applied:

1. Orient and delete an edge:

G

x y

p(x) p(y)

→

G′

x y

p′(x) = p(x)− 1 p′(y) = p(y) + 1

Now we have a (p′ mod 3)-flow in G′, given a (p mod 3)-flow in G, such that typeG′({x}) > 0 implies
typeG({x})− 1.

2. Splitting off:

G

x y

z

→ G′

x y

z
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Note that the flows along the oriented edges stay the same. So if G′ has a (p mod 3)-flow, then so does G.
Now we prove a technical lemma, from which the theorem (5.4.3) will follow trivially.

Lemma 5.4.5. Let G = (V,E) be a loopless graph. If p : V → Z, z0 ∈ V are such that
i. p(V ) ≡ 0 (mod 3)
ii. deg(z0) 6 25
iii. For each A ⊂ V − {z0} with 1 6 |A| 6 |V | − 2, deg(A) > 14 + |typeG(A)|

Then each orientation of the edges incident with z0 satisfying outflowG(z0) = p(z0) (mod 3) extends to a (p
mod 3)-flow of G.

Proof: (of (5.4.3)) Add an isolated vertex z0 with p(z0) = 0, and apply the technical lemma. �

Proof: (of (5.4.5)) Consider a counter-example (G, p, z0) with |E(G)|+|V (G)|minimal. Consider the following
claims.

Claim 1: For each A ⊂ V (G)− {z0} with 2 6 A 6 |V | − 2, degG(A) > 26.
Proof sketch: Consider the following transformation by edge contraction:

z0

A

G

→
z0

A

G1 G2

a z0

p′(a) = p(A)

p′′(z0) = p(V −A)

Then G1 is smaller than G, in terms of number of edges. Choose an orientation of the edges from z0 to
its neighbors in G1, and extend that to an orientation of G1. Using the same orientation of the oriented
edges around a in G1 for the edges around z0 in G2, orient G2 completely. Now G may be oriented. This is
essentially induction on (G1, p

′, z0) and (G2, p
′′′, z0).

Claim 2: There is no edge e = xy with typeG(x) < 0 < typeG(y).
Proof sketch: If such a situation does arise, perform the orient and delete reduction to such an edge.

→ →
G

x y

type(x) < 0 type(y) > 0

x y
G′

x y

p′(x) = p(x) + 1 p′(y) = p(y)− 1

Then |typeG′(x)| < |typeG(x)| and |typeG′(y)| > |typeG(y)|. Now apply induction to (G′, p′, z0).

For x, y ∈ V (G), let mult(x, y) be the number of edges whose ends are x, y.

Claim 3: For each x, y ∈ V (G)− {z0}, mult(x, y) 6 1.
Proof sketch: If such a situation does arise, apply the orientation and deletion reduction to each edge,

and then identify x and y.

G G′

x y → x′

p′(x′) = p(x) + p(y)

Since there are two edges to be oriented, there are 3 possible ways to orient them, and mod 3, it always
possible to get what we want. Now apply induction to (G′, p′, z0).

Claim 4: |V (G)| > 10, and for each x ∈ V (G)− {z0}, mult(x, z0) < deg(x)/2.
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Proof: Clearly |V (G)| > 2. Suppose that V (G) = {z0, x, y}. Visually, with the number of edges in each
cut indicated, we have

z0 6 25

x

> 14

y

> 14

6 1

Then it follows that

1 > mult(x, y) =
deg(x) + deg(y)− deg(z0)

2
>

14 + 14− 25

2
> 1

Hence |V (G)| > 4. WLOG we then group all the new vertices near y, so the situation looks like:

z0 6 25

x

> 14

> 2

> 26

By Claim 1, deg({z0, x}) > deg(z0), so mult(x, z0) < deg(x)
2 . And by claim 3, |V (G)| > |{z0, x}|+ 1

2 deg(x) > 9,
so |V (G)| > 10.

Claim 5: For each x ∈ V (G)− {z0}, deg(x) = 14 + |type(x)|.
Proof sketch: By definition,

deg(x) ≡ type(x) (mod 2) ≡ 12 + |type(x)| (mod 2)

So if deg(x) 6= 14 + |type(x)|, then deg(x) > 14 + |type(x)| + 2, and then we may perform the splitting off
reduction, which will reduce the degree of x by 2.

G

y w

x
→ G′

y w

x

Now apply induction to (G′, p, z0).

Claim 6: For each x ∈ V (G)− {z0} and A ⊂ V (G)− {z0} with 2 6 |A| 6 |V (G)| − 3, degG−{x}(A) > 18.
Proof: By claim 5, x has at most 8 edges going to A or to V (G) − {x} − A. However, by claim 1,

deg(A) > 26 and deg(A ∪ {x}) > 26.

V (G)−
{x}−A > 26

x

6 8

6 8

A

> 26
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This proves the claim.

Claim 7: No vertex x ∈ V (G) has type 0.
Proof sketch: If some vertex x has type 0, then deg(x) ≡ 0 (mod 2) and p(x) ≡ 0 (mod 3). Perform a

splitting off reduction, by splitting off all edges incident to x without creating loops.

G x

→
G′ x

Such a loopless reduction is indeed possible, as the degree of x is even and its demand is zero (so no multiple
edges). Now apply induction to (G′, p′, z0).

Since |V (G)| > 10 and deg(z0) 6 25, there exists x ∈ V (G) − z0 with mult(x, z0) 6 2. WLOG, we assume
that type(x) > 0, by possibly considering (G,−p, z0). By claims 2 and 7, type(y) > 0 for each neighbor
y 6= z0 of x. Now we do a final reduction.

In G, x has degree 14 + type(x).

y1

y2

ym

· 6− type(x) edges
· z0 is not here
· edges to be oriented and deleted

v1

v2

vk

z0

· 4 + type(x) edges
· z0 may be here
· edges to be split off

w1 w2

w`

· 4 + type(x) edges
· z0 may be here
· edges to be split off

···
··
·

· · ·

x

Orient y1, . . . , ym and v1, . . . , vk toward x, and w1, . . . , w` out from x. Then delete y1x, . . . , ymx, and split
off the other edges. This results in G′, where x has degree 0.

→

y1

y2

ym

v1

v2

vk

z0

w1 w2

w`

···
··
·

· · ·

x

y1

y2

ym

p′(yi) = p(yi)− 1v1

v2

vk

z0

w1 w2

w`

···
··
·

· · ·

x

Now apply induction to (G′, p′, z0). This concludes the proof of (5.4.5). �
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cut, 16
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induced, 22
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directed graph (digraph), 35
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ear, 12
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face, 17, 18
flow
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flow polynomial, 34
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girth, 31
graph, 2

apex, 3
complete, 6
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graph
d-degenerate, 10

dual, 17
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knotless, 3
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non-planar, 9
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plane, 17
graph
k-regular, 12

series-parallel, 6
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Turan, 26
vertex-transitive, 42

grid, 8

Hajos construction, 13
Hamilton cycle, 19, 20
hitting set, 8
hole, 11

incidence matrix, 16
induced subgraph, 3

loop, 2
loopless, 19

matching, 19
maximum degree, 12
minor, 3

excluded, 4
H-minor, 3

minor closed class, 3
monochromatic, 26

nowhere-zero flow, 35

orthogonal space, 17

partition, 18
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of trees, Helly, 8
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simplification, 2
stable set, 24
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