Compact course notes Compact course notes COMBINATORICS AND OPTIMIZATION 466/666, Lecturer: H. Wolkowicz, V.Cheung

WINTER 2012

Continuous optimization

transcribed by: J. Lazovskis University of Waterloo April 6, 2012

Contents

	0.1	Introduction	
1	Une	constrained optimization 2	
	1.1	Definitions	
	1.2	Optimality conditions	
	1.3	Line search methods	
	1.4	Trust region methods	
	1.5	Conjugate gradient methods	
2 Co	Cor	onstrained optimization 6	
	2.1	Feasibility and cones	
	2.2	Convex analysis	
	2.3	Duality	
	2.4	Constraint qualifications	
	2.5	Augmented Lagrangian method	
3	Interior point methods 10		
	3.1	Barrier functions	
	3.2	Long-step IPM	
	3.3	Extending IPM to SDP	

0.1 Introduction

Definition 0.1.1. An optimization problem is of the type

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & c_i(x) = 0 \quad i \in \mathcal{E} \\ & c_j(x) \ge 0 \quad j \in \mathcal{I} \end{array}$$

where f(x) is the objective function, the c_i are the equality constraints, and the c_j are the inequality constraints.

· if $\mathcal{E} = \mathcal{I} = \emptyset$, then we have an unconstrained optimization problem

 \cdot otherwise the problem is one of constrained optimization

Definition 0.1.2. If not all the constraints are known at the time of formulation, a problem still can be created, based on how the model is expected to perform. In this case we call it a stochastic problem.

Definition 0.1.3. A set $S \subset \mathbb{R}^n$ is termed <u>convex</u> if $\lambda x + (1 - \lambda)y \in S$ for all $x, y \in S$ and $0 \leq \lambda \leq 1$.

Definition 0.1.4. A function $f: X \to Y$ is termed <u>convex</u> if X is convex and for all $x, y \in X$ and $\lambda \in [0, 1]$

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

Conversely, a function g is termed <u>concave</u> if -g is convex.

Definition 0.1.5. A convex optimization problem is one that has

- \cdot a convex objective function
- · linear equality constraints
- \cdot concave inequality constraints

1 Unconstrained optimization

This is our main model that we will be using:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & c_i(x) = 0 & i \in \mathcal{E} \\ & c_j(x) \ge 0 & j \in \mathcal{I} \\ & x \in \Omega \subset \mathbb{R}^n \end{array} \qquad \qquad \begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \in K \\ & x \in \Omega \end{array}$$

Above right we have the objective function acting on the unknowns (also variables, parameters) subject to the equality, inequality, and simple constraints.

Above left, $g(x) = \begin{pmatrix} (c_i(x))_{i \in \mathcal{E}} \\ (c_j(x))_{j \in \mathcal{I}} \end{pmatrix} \in \mathbb{R}^{m+p}$ for $|\mathcal{E}| = m$ and $|\mathcal{I}| = p$ where K is a cone (or is convex).

1.1 Definitions

Definition 1.1.1. A point $x \in X$ is a global minimizer of a function $f: X \to Y$ if $f(x) \leq f(y) \forall y \in X$.

Definition 1.1.2. A point $x \in X$ is a <u>local minimizer</u> of a function $f : X \to Y$ if there is some neighborhood $N \ni x$ such that $f(x) \leq f(y) \forall y \in N$.

 \cdot To a local minimizer we may apply the adjectives weak, strict, and isolated.

Definition 1.1.3. Given a function f, the epigraph of f is "the region above f, i.e. the set

$$\operatorname{epi}(f) := \{(r, x)\} \mid f(x) \leqslant r\}$$

Remark 1.1.4. Note that a function f is convex iff epi(f) is convex. Moreover, f being convex $\implies f$ is locally Lipschitz $\implies f$ is differentiable almost everywhere.

Definition 1.1.5. Suppose we have two sequences $\{\eta_k\}$ and $\{\nu_k\}$. Then we say

 $\{\eta_k\}$ is $\mathcal{O}(\{\nu_k\}) \iff |\eta_k| \le c|\nu_k|$ for all k for some constant c

 $\{\eta_k\}$ is $o(\{\nu_k\}) \iff \frac{|\eta_k|}{|\nu_k|} \xrightarrow[k \to \infty]{} 0$

1.2 Optimality conditions

Theorem 1.2.1. [TAYLOR]

Taylor's theorem may be concisely stated, if $x, p \in \mathbb{R}^n$ and $t \in (0, 1)$, as:

$$f(x+p) = f(x) + \nabla f(x+tp)^T p$$

= $f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+tp) p$
= $f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x) p + o(||p||^2)$

Definition 1.2.2. If x^* in the domain of a function f is such that $\nabla f(x^*) = 0$, then x^* is termed a stationary point.

Definition 1.2.3. A matrix $A \in M_{n \times n}$ is termed positive semi-definite if $x^T A x \ge 0$ for all nonzero $x \in \mathbb{R}^n$. The matrix is termed positive definite if the inequality is strict.

Theorem 1.2.4. [FERMAT / FIRST ORDER NECESSARY OPTIMALITY] Let $f \in C^1$ in a neighborhood of a local minimum x^* of f. Then $\nabla f(x^*) = 0$.

Theorem 1.2.5. [SECOND ORDER NECESSARY OPTIMALITY] Let $f \in C^2$ in a neighborhood of a local minimum x^* of f. Then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \ge 0$.

Theorem 1.2.6. [SECOND ORDER SUFFICIENT OPTIMALITY] Let $f \in C^2$ in a neighborhood of a local minimum x^* of f with $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) > 0$. Then x^* is a strict local minimum.

Theorem 1.2.7. Consider $x^* = \min q(x) = \frac{1}{2}x^TQx - b^Tx$. Then the following are equivalent:

- **1.** q(x) is bounded below
- **2.** $Q \ge 0, Qx = b$ is consistent
- **3.** $X^* = Q^{-1}b$ is a global optimum

Remark 1.2.8. If f is convex, then any local minimum is a global minimum. Moreover, if $f \in C^1$, then any stationary point is a global minimum.

1.3 Line search methods

Definition 1.3.1. Given an objective function f(x) and a starting point x_0 and a search direction p, the line search method attempts to solve

$$\min_{\alpha \ge 0} f(x_0 + \alpha p)$$

And every next iteration is given by $x_{k+1} = x_k + \alpha_k p_k$ for α_k the step length.

Proposition 1.3.2. There are several descent directions that may be applied:

steepest descent:
$$p_k = -\nabla f(x_k)$$

Newton's: $p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$
quasi-Newton: $p_k = -B_k^{-1} \nabla f(x_k)$
conjugate gradient: $p_k = -\nabla f(x_k) + \beta_k p_{k-1}$

Note that Newton always has step length 1, B_k is some sort of approximation of $\nabla^2 f(x_k)$, and β_k ensures that p_k and p_{k-1} are conjugate.

Definition 1.3.3. The process of scaling is the making of the substitution $Ay + a \rightarrow x$ in a problem.

Theorem 1.3.4. [WOLFE CONDITIONS]

Suppose the search direction at x_k is p_k , and $\alpha_k \in \arg \min_{\alpha>0} f(x_k + \alpha p_k)$ and the conditions:

I.
$$f(x_k + \alpha p_k) \leq f(x_k) + \alpha (c_1 \nabla f(x_k)^T p_k)$$

II. $\nabla f(x_k + \alpha_k p_k)^T p_k \geq c_2 \nabla f(x_k)^T p_k$

are satisfied, where $0 < c_1 < c_2 < 1$. Then the search will go much faster. Sometimes we add

III. $|\nabla f(x_k + \alpha p_k)^T p_k| \leq c_2 |\nabla f(x_k)^T p_k|$

to replace II., which we then call the strong Wolfe conditions.

Lemma 1.3.5. Suppose that f is bounded below in the search direction p_k for f sufficiently smooth and $0 < c_1 < c_2 < 1$. Then there exist step lengths that satisfy the Wolfe conditions.

Proof: See page 35 in Nocedal & Wright.

Theorem 1.3.6. [ZOUTENDIJK]

Suppose that for min f(x) with $x_{k+1} = x_k \alpha_k p_k$ the Wolfe conditions are satisfied, and

 $\cdot f$ is bounded below

- $\cdot f$ is C^1 on a neighborhood N of x_0
- $\cdot \nabla f$ is Lipschitz continuous on N

Then, if θ_k is the angle between p_k and $-\nabla f(x_k)$,

$$\sum_{k \ge 0} \cos^2(\theta_k) \|\nabla f(x_k)\|^2 < \infty$$

Remark 1.3.7. The above, with some manipulation, implies that $\lim_{k \to \infty} [\nabla f(x_k)] = 0$.

Definition 1.3.8. For $Q \in M_{n \times n}$, define the weighted inner product $\|\cdot\|_Q$ by $\|x\|_Q^2 := x^T Q x$ for $x \in \mathbb{R}^n$.

Lemma 1.3.9. [KANTOROVICH] Let $Q \in M_{n \times n}$ with $Q = Q^T > 0$ and $x \in \mathbb{R}^n$. Then

$$\frac{(x^T x)^2}{x^T Q x x^T Q^{-1} x} \ge \frac{4\lambda_{\min}(Q)\lambda_{\max}(Q)}{(\lambda_{\min}(Q) + \lambda_{\max}(Q))^2}$$

Theorem 1.3.10. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^2 function. Suppose we apply exact line search to generate a sequence (x_k) with $x_k \xrightarrow[k \to \infty]{} x^*$. Moreover, suppose $\nabla^2 f(x^*) > 0$ and $\nabla f(x^*) = 0$. Then

$$f(x_{k+1}) - f(x^*) \leq \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 (f(x_k) - f(x^*))$$

for $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ the eigenvalues of $\nabla^2 f(x^*)$.

1.4 Trust region methods

Definition 1.4.1. Given an objective function f(x), a starting point x_0 and a model $m_k(x)$ of f around x_0 , the trust region method attempts to solve

$$\min_{p} m_k(x_0 + p)$$

such that $x_0 + p$ always lies inside some predefined trust region.

Definition 1.4.2. The trust region subproblem (TRS), for $B_k \approx \nabla^2 f(x_k)$ is given by

$$\begin{array}{ll} \min & f(x_k) + \nabla f(x_k)^T p_k + \frac{1}{2} p_k^T B_k p_k \\ \text{s.t.} & \|p_k\| \leqslant \Delta_k \end{array}$$

This is quadratic minimization with one constraint, where we minimize over p_k .

Definition 1.4.3. Define the <u>actual reduction</u> and the predicted reduction in the ratio

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

Note that if $\rho_k < 0$, then the trust region is too large, and must be decreased. If $\rho_k \approx 1$, we may increase the trust region size safely.

Theorem 1.4.4. The point p^* solves the TRS iff there exists a λ such that

$$\begin{array}{l} (B_k + \lambda I)p^* = -\nabla f(x_k)\lambda \\ B_k + \lambda I \ge 0 \\ \|p^*\| \le \Delta_k \\ \lambda(\|\Delta^*\| - \Delta_k) = 0 \end{array} \right\} \text{dual feasibility} \\ \text{complementary slackness} \end{array} \right\} \text{modern paradigm}$$

where $\Delta_k \in (0, \Delta^*)$ for all k.

1.5 Conjugate gradient methods

Definition 1.5.1. A set of nonzero vectors $\{v_0, \ldots, v_n\}$ is termed conjugate wrt A if $v_i^T A v_j = 0$ iff $i \neq j$.

Lemma 1.5.2. A conjugate set is linearly independent.

Definition 1.5.3. Suppose we begin with $A \in M_{n \times n}$ and a problem

$$\min_{x} \frac{1}{2}x^T A x - b^T x = \varphi(x)$$

Then with a given set of conjugate vectors $\{p_1, \ldots, p_n\}$, we solve

$$\min \varphi(x_k + \alpha p_k)$$

This is termed the conjugate gradient method (CG).

Definition 1.5.4. With respect to the above, the expression $\nabla \varphi(x) = r(x) = Ax - b$ is termed the residue.

Theorem 1.5.5. For any starting point, the conjugate gradient method converges in at most n steps.

Proposition 1.5.6. Recall, from above, that to find the set of conjugate direction vectors, we use the calculation $p_k = -\nabla f(x_k) + \beta_k p_{k-1}$. To make the CG method practical, we use

$$\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k} \qquad \qquad \beta_k = \frac{r_{k+1}^T r_k}{r_k^T r_k}$$

Theorem 1.5.7. If A has at most m distinct eigenvalues, then the CG method converges in at most m iterations.

2 Constrained optimization

Remark 2.0.1. Consider smooth functions f_1, \ldots, f_n in an optimization problem

$$\min \quad \max\{f_1(x),\ldots,f_n(x)\}$$

Such a problem may not have a smooth objective function. Then we may reformulate this equivalently as

$$\begin{array}{ll} \min & t\\ \text{s.t.} & t \geqslant f_1(x)\\ & \vdots\\ & t \geqslant f_n(x) \end{array}$$

which now has a smooth objective function and mooth constraints.

2.1 Feasibility and cones

Definition 2.1.1. Consider an optimization problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & c_i(x) = 0 \quad \forall \ i \in \mathcal{E} \\ & c_k(x) \ge 0 \quad \forall \ k \in \mathcal{I} \\ & x \in \Omega \end{array}$$

Define the set of linearized feasible directions and the active set by

$$\mathcal{F} := \left\{ d \mid \frac{\nabla c_i(x)^T d=0}{\nabla c_k(x)^T d \ge 0} \quad \forall \ i \in \mathcal{I} \cap A(x), x \in \Omega \right\}$$
$$\mathcal{A}(x) := \mathcal{E} \cup \{ i \in \mathcal{I} \mid c_i(x) = 0 \}$$

Definition 2.1.2. Let $\Omega \subset \mathbb{R}^n$ and $\overline{x} \in \Omega$. Then a quantity d is termed a <u>feasible direction</u> to Ω at \overline{x} iff there exists $\overline{\alpha} > 0$ such that $\overline{x} + \alpha d \in \Omega$ for all $0 \leq \alpha < \overline{\alpha}$.

Definition 2.1.3. Let $\Omega \subset \mathbb{R}^n$ and $\overline{x} \in \Omega$. The tangent cone of Ω at \overline{x} is defined to be

$$T(\Omega, \overline{x}) := \left\{ \alpha d \mid \exists (x_k)_{k=1}^{\infty} \subset \Omega \text{ s.t. } x_k \to \overline{x} \text{ and } d = \lim_{k \to \infty} \left[\frac{x_k - \overline{x}}{\|x_k - \overline{x}\|} \right], \alpha \in \mathbb{R}_{\ge 0} \right\}$$
$$= \overline{\operatorname{cone}}(\Omega - \overline{x})$$

This is also termed the cone of limiting feasible directions.

· We note that $T(\Omega, x)$ is always closed, and is convex if Ω is convex.

Definition 2.1.4. Let $\Omega \subset \mathbb{R}^n$ and $x \in \Omega$. The <u>normal cone</u> of Ω at x is defined to be the set

$$N(\Omega, x) := \{ v \mid \langle v, d \rangle \leq 0 \ \forall \ d \in T(\Omega, x) \}$$

Definition 2.1.5. Let $\Omega \subset \mathbb{R}^n$. The polar cone of Ω is defined to be the set

$$\Omega^+ := \{ v \mid \langle v, d \rangle \ge 0 \ \forall \ d \in \Omega \}$$

· In \mathbb{R}^n , $\langle v, d \rangle = v^T d$, and we know $\cos(\theta) = \frac{v^T d}{\|v\| \|d\|}$.

Definition 2.1.6. Consider an optimization problem with local solution x^* and associated Lagrange multiplier λ^* . The <u>critical cone</u> of x^* with λ^* is defined to be the set

$$\mathcal{C}(x^*,\lambda^*) := \{ w \in \mathcal{F}(x^*) \mid \nabla c_i(x^*)^T w = 0 \ \forall \ i \in \mathcal{I} \cap \mathcal{A}(x^*) \ \text{with} \ \lambda_i^* > 0 \}$$

Definition 2.1.7. The set $X \subset \mathbb{R}^n$ is termed an <u>orthant</u> iff it is the intersection of n pairwise orthogonal half-spaces of \mathbb{R}^n .

Theorem 2.1.8. Given a minimization problem as above, $\overline{x} \in \arg\min_{x \in \mathcal{F}} f(x)$ implies $\nabla f(\overline{x}) \in T(\mathcal{F}, \overline{x})$.

Proof: Suppose the premise holds but not the conclusion.

Then there exists a $d \in T(\mathcal{F}, \overline{x})$ such that $\nabla f(\overline{x})^T d < 0$ for $d = \lim_{k \to \infty} \left[\frac{x_k - \overline{x}}{\|x_k - \overline{x}\|} \right]$. Then for some $K \in \mathbb{N}$, we have $\nabla f(\overline{x})^T (x_k - \overline{x}) < 0$ for all $k \ge K$. But then $f(x_k) = f(\overline{x}) + \nabla f(\overline{x})^T (x_k - \overline{x}) + o(\|x_k - \overline{x}\|)$, implying $f(x_k) < f(\overline{x})$. This is a contradiction.

Corollary 2.1.9. [FERMAT] If $\overline{x} \in \operatorname{int}(\mathcal{F})$ and $\overline{x} \in \arg\min_{x \in \mathcal{F}} f(x)$, then $\nabla f(\overline{x}) = 0$.

Corollary 2.1.10. If f is a convex function and \mathcal{F} is a convex set, then

$$\overline{x} \in \arg\min_{x \in \mathcal{F}} f(x)$$
 iff $\nabla f(\overline{x}) \in T(\mathcal{F}, \overline{x})^+$ iff $\nabla f(\overline{x}) \in (\mathcal{F} - \overline{x})^+$

Theorem 2.1.11. [ROCKAFELLAR, PSHENICHNY] If $\overline{x} \in int(\mathcal{F})$ then $\nabla f(\overline{x}) \in T(\mathcal{F}, \overline{x})^+$.

2.2 Convex analysis

Lemma 2.2.1. Let $K \neq \emptyset$ be a closed, bounded, convex set with $\overline{x} \notin K$. Then there exists a unique $\overline{y} \in A$ with $\overline{y} \in \arg\min_{y \in K} \{\|y - \overline{x}\|\}$.

Definition 2.2.2. Let $K \subset \mathbb{R}^n$ nontrivial. Then K is termed a <u>cone</u> if $\alpha K \subset K$ for all $\alpha \ge 0$. K is termed a <u>convex cone</u> if it is a cone, and $K + K \subset K$.

Definition 2.2.3. A cone K is termed pointed iff $K \cap -K = \{0\}$.

Definition 2.2.4. A cone K is termed <u>self-dual</u> or self-polar if $K^+ = K$.

Definition 2.2.5. Let K be a cone. Then $K = K^{++}$ iff K is a closed convex cone.

Lemma 2.2.6. [FARKAS]

Let $A \in M_{n \times n}$ Then equivalently **I.** $Ax = b, x \ge 0$ is consistent **II.** $A^T y \ge 0$ implies $b^T y \ge 0$

Theorem 2.2.7. Suppose that for two convex sets C_1, C_2 we have $C_1 \cap int(C_2) = \emptyset$. Then we can separate the two sets by a hyperplane.

Definition 2.2.8. Given a problem with

$$Ax = b$$
$$bx \leq d$$
$$g(x) \leq 0$$

linear constraints and g convex, the generalized Slater CQ is

there exists \hat{x} such that $A\hat{x} = b$, $B\hat{x} \leq d$, $g(\hat{x}) = 0$

Remark 2.2.9. The GSCQ implies the weakest CQ.

2.3 Duality

Definition 2.3.1. Given convex cones K, L define the primal and <u>dual</u> problems to be

$$\begin{array}{rclcrcl} p^* & = & \min & \langle c, x \rangle & & & \alpha^* & = & \max & \langle b, y \rangle \\ & & \text{s.t.} & Ax \geqslant_{\scriptscriptstyle K} b & & & \text{s.t.} & A^*y \leqslant_{\scriptscriptstyle L^+} c \\ & & & & & & y \geqslant_{\scriptscriptstyle K^+} 0 \end{array}$$

where A^* is found through the adjoint linear transformation, i.e. $\langle A^*y, x \rangle = \langle y, Ax \rangle$ for all x, y.

Definition 2.3.2. Suppose that f is convex, g is K-convex for K a closed convex cone and C is convex. Then for the problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leqslant_{\kappa} 0 \\ & x \in C \end{array}$$

define the perturbation function $w(\varepsilon) = \min_{x \in C} \{f(x)\}$ where $g(x) \leqslant_{\kappa} \varepsilon$ for $g: X \to Y$.

Proposition 2.3.3. Let $\varepsilon \in \mathbb{R}^n$ and $K = \mathbb{R}^m_+$ with $\Gamma = \{\varepsilon \in Y \mid \text{ there exists } x \in C \text{ with } g(x) \leq_K \varepsilon\}$. Then **i.** Γ is a convex set

- ii. $w(\varepsilon)$ is a convex function on its domain (where it is finite)
- **iii.** w is non-increasing in ε

Theorem 2.3.4. Suppose there exists $\hat{x} \in C$ with $g(\hat{x}) > 0$ (that is, $g(\hat{x}) \in -int(K)$), so SCQ is satisfied. If w(0) is finite, then there exists equivalently

- \cdot an optimal Lagrange multiplier
- $\cdot \ \lambda^* \geqslant_{\scriptscriptstyle K} 0 \ \text{such that} \ w(0) = \min_{x \in C} \{f(x) + \langle \lambda^*, g(x) \rangle \}$

Moreover, if the minimum is attained at $x^* \in C$ and x^* is feasible (that is, $g(x^*) \leq_K 0$), then x^* solves the convex program, and $\langle \lambda^*, g(x^*) \rangle = 0$.

Remark 2.3.5. Suppose that we have a *nonlinear problem*

$$\min_{x} \quad f(x) \\ \text{s.t.} \quad c_{i}(x) = 0 \quad \forall \ i \in \mathcal{E} \\ c_{k}(x) \ge 0 \quad \forall \ k \in \mathcal{I} \\ x \in \mathbb{R}^{n}$$

To provide a lower bound on the optimal solution, we form the Lagrangian

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E}, \mathcal{I}} \lambda_i c_i(x) \quad \text{ for } \ \lambda_i \ge 0 \text{ if } i \in \mathcal{I}$$

Then we define the *dual functional*

$$g(\lambda) = \inf_{x} \{ \mathcal{L}(x, \lambda) \}$$

And finally we have the *dual problem*

$$\begin{array}{ll} \max_{\lambda} & g(\lambda) \\ \text{s.t.} & \lambda \geqslant 0 \quad \forall \ i \in \mathcal{I} \end{array}$$

Proposition 2.3.6. If the weakest constraint qualifications (WCQ) hold at x^* (that is, $T(\Omega, x^*) = \mathcal{F}(x^*)$), then the KKT conditions hold at x^* , that is, there exists a λ^* such that

$$\begin{aligned} \nabla_x \mathcal{L}(x^*, \lambda^*) &= 0 \quad \lambda_i = 0 \; \forall \; i \in \mathcal{I} \quad \text{(dual feasibility)} \\ c_i(x^*) &= 0 \quad \forall \; i \in \mathcal{E} \quad \text{(primal feasibility)} \\ c_j(x^*) &\geq 0 \quad \forall \; j \in \mathcal{I} \\ \lambda_i^* c_i(x^*) &= 0 \quad \forall \; i \in \mathcal{E}, \mathcal{I} \quad \text{(complementary slackness)} \\ \lambda_i^* &\geq 0 \quad \forall \; j \in \mathcal{I} \end{aligned}$$

Definition 2.3.7. The strict complementarity conditions hold at x^* if the KKT conditions hold with for some Lagrangian multiplier λ^* such that $\lambda_j^* > 0$ for all $j \in \mathcal{I}$.

Proposition 2.3.8. Let $\Omega \subset \mathbb{R}^n$ and $x^* \in \Omega$. If $N(\Omega, x^*) = -\mathcal{F}(x^*)^+$, then Ω is convex and WCQ holds.

2.4 Constraint qualifications

There are several main constraint qualifications:

LICQ holds at $x \in \Omega$ if $\{\nabla c_i(x) \mid i \in A(x)\}$ is linearly independent MFCQ holds at $x \in \Omega$ if **1.** there exists w such that $\nabla c_i(x)^T w = 0$ for all $i \in \mathcal{E}$ **2.** $\{\nabla c_i(x) \mid i \in \mathcal{E}\}$ is linearly independent WCQ holds at $x \in \Omega$ if all constraints are linear

We note that LICQ \implies MFCQ \implies WCQ.

Corollary 2.4.1. If LICQ holds, then none of the active contsraint gradients can be zero.

Definition 2.4.2. Given a feasible point x^* in an optimization problem, a sequence $(z_k)_{k=1}^{\infty}$ is termed a feasible sequence approaching x^* iff $z_k \xrightarrow{k \to \infty} x^*$ and $z_k \in \Omega$ for all k.

· We note that for any x^* feasible, the inclusion $T(\Omega, x^*) \subset \mathcal{F}(x^*)$ always holds.

Lemma 2.4.3. Let $x^* \in \Omega$ and LICQ holds at x^* . Let $d \in \mathcal{F}(x^*)$. Then for all $t_k > 0$ with $t_k \xrightarrow{k \to \infty} 0$, there exists $(z_k)_{k=1}^{\infty}$ such that

1.
$$z_k \in \Omega$$
 for all k
2. $z_k \xrightarrow{k \to \infty} x^*$
3. $d = \lim_{k \to \infty} \left[\frac{z_k - x^*}{t_k} \right]$
4. $c_i(z_k) = t_k \nabla c_i(x^*)^T d$ for all $i \in A(x^*)$

Corollary 2.4.4. LICQ \implies WCQ, i.e. $T(\Omega, x^*) = \mathcal{F}(x^*)$.

2.5 Augmented Lagrangian method

Definition 2.5.1. For an equality-constrained non-linear problem, define the <u>augmented Lagrangian</u> to be the equation

$$\mathcal{L}_A(x,\lambda,\mu) = f(x) - \sum_{i \in \mathcal{E}} \lambda_i c_i(x) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} (c_i(x))^2$$
$$= \mathcal{L}(x,y) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} (c_i(x))^2$$

Augmenting the Lagrangian proves useful, as we may adjust μ as desired. Moreover, first order conditions are unchanged from the original problem, as

$$\nabla_x \mathcal{L}_A(x,\lambda,\mu) = \nabla_x \mathcal{L}(x,\lambda) + \mu \sum_{i \in \mathcal{E}} c_i(x) \nabla c_i(x)$$
$$= \nabla_x f(x) + \sum_{i \in \mathcal{E}} (\mu c_i(x) - \lambda_i) \nabla c_i(x)$$

Theorem 2.5.2. Suppose that x^* is a local solution to (ECNLP) that satisfies the KKT conditions with Lagrangian multiplier λ^* , as well as the second order sufficiency conditions. Then there exists a $\mu_0 \in \mathbb{R}_{\geq 0}$ such that for all $\mu \geq \mu_0$, x^* solves the problem

$$\min_{x} \quad \mathcal{L}_A(x,\lambda^*,\mu)$$

Theorem 2.5.3. For fixed μ , if $\frac{\|\lambda - \lambda^*\|}{\mu}$ is small, then the following method works for solving (ECNLP).

1.
$$x \leftarrow \arg \min \mathcal{L}_A(\cdot, \lambda, \mu)$$

2. $\lambda \leftarrow \lambda - \mu c(x)$

In this case a solution x^* to (ECNLP) will be the limit of the iterates under the above instructions.

We may update μ in the following fashion. Choose $\beta > 1$ not too large and not too small such that convergence is not too slow and the problem does not degenerate. Then set

$$\mu_{k+1} \leftarrow \begin{cases} \beta \mu_k & \text{if } \|c(x_k)\| > \gamma \|c(x_{k-1})\| \text{ for some fixed } \gamma \in (0,1) \\ \mu_k & \text{else} \end{cases}$$

3 Interior point methods

To the classical optimization problem so far we have seen several approaches:

- **1.** merit functions
- 2. ouadratic penalty methods
- **3.** ℓ^2 penalty method
- 4. augmented Lagrangian method

All these deal with so-called "exterier point methods," which involve approaching the feasible region from the outside.

3.1 Barrier functions

Definition 3.1.1. It at optimization problem, a <u>barrier function</u> is added to the objective function to prevent it from going near the boundary of the feasible region. We may define such a function in several ways:

$$\hat{B}(x) := \begin{cases} \sum_{i \in \mathcal{I}} \frac{1}{c_i(x)} & \text{if } c_i(x) > 0 \ \forall \ i \in \mathcal{I} \\ \infty & \text{else} \end{cases}$$
$$\cdot \text{ log barrier function: } B(x) := \begin{cases} \sum_{i \in \mathcal{I}} \log(c_i(x)) & \text{if } c_i(x) > 0 \ \forall \ i \in \mathcal{I} \\ \infty & \text{else} \end{cases}$$

Note that the log barrier function, while extended-real valued, is continuous.

The general barrier method algorithm works as follows:

• start with
$$\mu_0 > 0$$

• for $k = 0, 1, ...$
• find $x_k \in \arg\min_x \{f(x) + \mu_k B(x) \mid c_i(x) = 0 \forall i \in \mathcal{E}\}$
• choose $\mu_{k+1} \in (0, \mu_k)$
• end

Proposition 3.1.2. Let $\Omega = \operatorname{cl}\left\{x \mid \begin{array}{c} c_i(x)=0 & \forall i \in \mathcal{E} \\ c_j(x)>0 & \forall i \in \mathcal{I} \end{array}\right\} = \operatorname{cl}(\hat{\Omega})$. Then every limit point \overline{x} of $(x_k)_{k \in \mathbb{N}}$ generated by the general barrier method with $(\mu_k)_{k \in \mathbb{N}}$ and $\mu_k \xrightarrow{k \to \infty} 0$ is a global solution of (NLP).

Proof: Let $y \in \Omega$,

Then there exists a sequence $(y_\ell)_{\ell=1}^{\infty} \subset \hat{\Omega}$ such that $y_\ell \xrightarrow{\ell \to \infty} y$, This implies that for all ℓ and for all k,

$$f(x_k) + \mu_k \beta(x_k) \leqslant f(y_\ell) + \mu_k \beta(y_\ell)$$

Taking the limit as $k \to \infty$,

$$f(\overline{x}) \leqslant \lim_{k \to \infty} \left[f(x_k) + \mu_k \beta(x_k) \right] \leqslant f(y_\ell)$$

Then taking the limit as $\ell \to \infty$, we find that $f(\overline{x}) \leq f(y)$.

Theorem 3.1.3. [Fundamental theorem of LPs]

- A linear program (LP) is exactly one of the following:
 - $1. \ infeasible$
 - 2. unbounded
 - **3.** solvable (implying strong duality)

The (LP) may be solved by the interior point method with

$$(p_{\mu}) \quad \min_{x} \quad f_{p}(x) = c^{T}x - \mu \sum_{i=1}^{n} \log(x_{i})$$

s.t.
$$Ax = b$$

Remark 3.1.4. For such a problem, (p_{μ}) has a unique solution $x(\mu)$ for each $\mu > 0$ if Ax = b is consistent.

Definition 3.1.5. The set $\{x(\mu) \mid \mu > 0\}$ is termed the <u>central path</u>. The <u>analytic center</u> of the set of optimal solutions is defined by

$$x_{\infty} := \arg\min_{x} \left\{ -\sum_{i=1}^{n} \log(x_i) \mid Ax = b, x \ge 0 \right\}$$

The general primal/dual interior point method works as follows:

 \cdot Initialize:

$$\begin{array}{c} x^0 > 0\\ y^0\\ s^0 > 0\\ 0 \leqslant \sigma_{\min} < \sigma_{\max} \leqslant 1\\ \mathrm{tol} > 0 \end{array}$$

$$\begin{aligned} &\cdot \text{ for } k = 0, 1, \dots; \\ &\cdot \mu_k \leftarrow (x_k^T s_k)/n \\ &\cdot \text{ if } \mu_k < \text{ tol and } \|r_d\| < \text{ tol and } \|r_p\| < \text{ tol: } \\ &\text{ break } \\ &\cdot \text{ else: } \\ &\cdot \text{ pick } \sigma_k \in [\sigma_{\min}, \sigma_{\max}] \end{aligned}$$

 \cdot solve the system

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_d \\ -r_p \\ -x_k \circ s_k + \sigma_k \mu_k e \end{bmatrix}$$

where S = diag(s) and X = diag(x) \cdot pick $\alpha_k \in (0, 1)$ such that

 $(x_{k+1}, y_{k+1}, s_{k+1}) = (k_k + \alpha \Delta x, y_k + \alpha \Delta y, s_k + \alpha \Delta s)$

satisfying $x_{k+1} > 0$ and $s_{k+1} > 0$ and the centrality criterion

 \cdot end

The <u>centrality criterion</u> is a restriction on $\theta \in [0, 1)$ and $\gamma \in (0, 1]$ so that every iterate is not be too far from the central path C in terms of some neighborhood of C. We define the <u>centrality measure</u> to be $\mu = x^T s/n$. We speak in terms of the neighborhoods

 $N_{2}(\theta) = \{(x, y, s) \mid A^{T}y + s = c, Ax = b, x > 0, s > 0, \|x \circ s - \mu e\|_{2} \leq \theta \mu \}$ $N_{-\infty}(\gamma) = \{(x, y, s) \mid A^{T}y + s = c, Ax = b, x > 0, s > 0, x_{i}s_{i} \geq \gamma \mu \text{ for all } i \}$

Then if $\theta \in (0,1)$ for all $(x, y, s) \in N_2(\theta)$, we will have that for all i,

$$|x_i s_i - \mu| \leqslant ||x \circ s - \mu e||_2 \leqslant \theta \mu \implies x_i s_i \geqslant \mu - \theta \mu = (1 - \theta)\mu \text{ and } N_2(\theta) \subset N_{-\infty}(1 - \theta)$$

3.2 Long-step IPM

Remark 3.2.1. For all $\varepsilon > 0$ with initial duality measure μ_0 , the long-step interior point method takes $k = \mathcal{O}(n|\log(\varepsilon)|)$ steps to reduce the duality measure by a factor of ε , i.e. to find (x_k, y_k, s_k) such that

$$\mu_k = \frac{x_k^T s_k}{n} \leqslant \varepsilon \mu_0$$

Lemma 3.2.2. For all $u, v \in \mathbb{R}^n$ with $u^T v \ge 0$,

$$||u \circ v||_2 \leq 2^{-3/2} ||u + v||_2^2$$

where \circ is the Hadamard product, for which $(u \circ v)_i = u_i v_i$.

Lemma 3.2.3. If $(x, y, s) \in N_{-\infty}(\gamma)$ for $\gamma \in (0, 1]$ fixed, and $(\Delta x, \Delta y, \Delta s)$ solves

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -x \circ s + \sigma \mu e \end{bmatrix}$$

then we have the following three results:

1. $\|\Delta x \circ \Delta s\|_2 \leq 2^{-3/2} \left(1 + \frac{1}{\gamma}\right) n\mu$ 2. $\Delta x^T \Delta s = 0$ 3. $(x(\alpha), y(\alpha), s(\alpha)) \in N_{-\infty}(\gamma)$ where $x(\alpha) = x + \alpha \Delta x$ $y(\alpha) = u + \alpha \Delta y$ for any

Theorem 3.2.4. Given $\gamma, \sigma_{\min}, \sigma_{\max}$ in the long-step IPM path for each k, setting

$$\alpha_k = 2^{3/2} \cdot \frac{\gamma(1-\gamma)}{1+\gamma} \cdot \frac{\sigma_k}{n}$$

there exists $\delta > 0$, independent of n, such that

 $\mu_{k+1} \leqslant \left(1 - \frac{\delta}{n}\right) \mu_k$

Proof: Performing routine calculations we get the result.

$$\mu_{k+1} = \mu_k \alpha_k$$

$$= \left(1 - 2^{3/2} \frac{\gamma(1-\gamma)}{1+\gamma} \cdot \frac{1}{n} \cdot \sigma(1-\sigma)\right) \mu_k$$

$$\leqslant \left(1 - \frac{1}{n} \cdot \underbrace{2^{3/2} \cdot \frac{\gamma(1-\gamma)}{1+\gamma} \cdot \min\left\{\frac{\sigma_{\min}(1-\sigma_{\min}),}{\sigma_{\max}(1-\sigma_{\max})}\right\}}_{\sim \delta}\right) \mu_k$$

Theorem 3.2.5. Fix $\varepsilon \in [0,1]$, $\gamma \in (0,1)$, $0 \leq \delta_{\min} \leq \delta_{\max} \leq 1$, an initial point $(x_0, y_0, s_0) \in N_{-\infty}(\gamma)$. Then for δ as in the above proof,

$$\mu_k \leqslant \varepsilon \mu_0$$
 for all $k \ge \frac{\delta}{n} |\log(\varepsilon)|$

3.3 Extending IPM to SDP

Definition 3.3.1. In graph theory, a common problem is the <u>max-cut problem</u>. Given a graph G = (V, E) with weighted edges $e \in E$, what is the cut of maximum size?

- · a <u>cut</u> of G is a partition $\{U_1, U_2\}$ of V such that $U_1 \cup U_2 = V$
- \cdot the <u>size</u> of a cut $\{U_1, U_2\}$ is the sum of edge weights of edges that are not completely within U_1 or U_2

Here we will consider the problem with unweighted edges, that is, where all edges have an equal weight of 1.

Definition 3.3.2. For A the adjacency matrix of G, define the Laplacian matrix of G to be

 $L = \operatorname{diag}(Ae) - A$

This matrix is positive semi-definite (PSD) and singular.

Now we may formulate the max-cut problem in an optimization manner. Here the vector x is basically the set of vertices V of G arranged in a vector.

$$\begin{array}{ll} \max_{x} & \frac{1}{2}x^{T}Lx\\ \text{s.t.} & x_{i}^{2} = 1 \quad \text{for all } i \end{array}$$

The SDP relaxation of this problem is given by

$$\begin{array}{ll} \max_{X} & \langle L, X \rangle \\ \text{s.t.} & \operatorname{diag}(X) = e \\ & X \geqslant 0 \end{array}$$

The dual to the original problem is given by

$$\begin{array}{ll} \min_{\lambda} & \lambda^T e \\ \text{s.t.} & \text{diag}(\lambda) - \frac{1}{4}L \geqslant 0 \end{array}$$

Remark 3.3.3. In a more general setting, an SDP program and its dual are given by

$$\begin{array}{cccc} (P) & \inf_{X} & \langle C, X \rangle \\ & \text{s.t.} & \langle A_{i}, X \rangle = b_{i} \text{ for all } i \\ & X \geqslant 0 \end{array}$$

$$\begin{array}{cccc} (D) & \sup_{y} & b^{T}y \\ & \text{s.t.} & C - \sum_{i} y_{i}A_{i} \geqslant 0 \end{array}$$