
Compact course notes

Combinatorics and Optimization 466/666,

Winter 2012
Continuous optimization

Lecturer: H. Wolkowicz, V.Cheung
transcribed by: J. Lazovskis

University of Waterloo
April 6, 2012

Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Unconstrained optimization 2
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Line search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Trust region methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Conjugate gradient methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Constrained optimization 6
2.1 Feasibility and cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Constraint qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Augmented Lagrangian method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Interior point methods 10
3.1 Barrier functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Long-step IPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Extending IPM to SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



0.1 Introduction

Definition 0.1.1. An optimization problem is of the type

min f(x)
s.t. ci(x) = 0 i ∈ E

cj(x) > 0 j ∈ I

where f(x) is the objective function, the ci are the equality constraints, and the cj are the inequality constraints.
· if E = I = ∅, then we have an unconstrained optimization problem
· otherwise the problem is one of constrained optimization

Definition 0.1.2. If not all the constraints are known at the time of formulation, a problem still can be
created, based on how the model is expected to perform. In this case we call it a stochastic problem.

Definition 0.1.3. A set S ⊂ Rn is termed convex if λx+ (1− λ)y ∈ S for all x, y ∈ S and 0 6 λ 6 1.

Definition 0.1.4. A function f : X → Y is termed convex if X is convex and for all x, y ∈ X and λ ∈ [0, 1]

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

Conversely, a function g is termed concave if −g is convex.

Definition 0.1.5. A convex optimization problem is one that has

· a convex objective function
· linear equality constraints
· concave inequality constraints

1 Unconstrained optimization

This is our main model that we will be using:

min f(x)
s.t. ci(x) = 0 i ∈ E

cj(x) > 0 j ∈ I
x ∈ Ω ⊂ Rn

⇐⇒
min f(x)
s.t. g(x) ∈ K

x ∈ Ω

Above right we have the objective function acting on the unknowns (also variables, parameters) subject to
the equality, inequality, and simple constraints.

Above left, g(x) =

(
(ci(x))i∈E
(cj(x))j∈I

)
∈ Rm+p for |E| = m and |I| = p where K is a cone (or is convex).

1.1 Definitions

Definition 1.1.1. A point x ∈ X is a global minimizer of a function f : X → Y if f(x) 6 f(y) ∀ y ∈ X.

Definition 1.1.2. A point x ∈ X is a local minimizer of a function f : X → Y if there is some neighborhood
N 3 x such that f(x) 6 f(y) ∀ y ∈ N .

· To a local minimizer we may apply the adjectives weak, strict, and isolated.

Definition 1.1.3. Given a function f , the epigraph of f is “the region above f , i.e. the set

epi(f) := {(r, x)} | f(x) 6 r}

Remark 1.1.4. Note that a function f is convex iff epi(f) is convex. Moreover, f being convex =⇒ f is
locally Lipschitz =⇒ f is differentiable almost everywhere.
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Definition 1.1.5. Suppose we have two sequences {ηk} and {νk}. Then we say
{ηk} is O({νk}) ⇐⇒ |ηk| 6 c|νk| for all k for some constant c

{ηk} is o({νk}) ⇐⇒ |ηk|
|νk|
−−−−→

k→∞ 0

1.2 Optimality conditions

Theorem 1.2.1. [Taylor]
Taylor’s theorem may be concisely stated, if x, p ∈ Rn and t ∈ (0, 1), as:

f(x+ p) = f(x) +∇f(x+ tp)T p

= f(x) +∇f(x)T p+ 1
2p
T∇2f(x+ tp)p

= f(x) +∇f(x)T p+ 1
2p
T∇2f(x)p+ o(‖p‖2)

Definition 1.2.2. If x∗ in the domain of a function f is such that ∇f(x∗) = 0, then x∗ is termed a
stationary point.

Definition 1.2.3. A matrix A ∈Mn×n is termed positive semi-definite if xTAx > 0 for all nonzero x ∈ Rn.
The matrix is termed positive definite if the inequality is strict.

Theorem 1.2.4. [Fermat / First order necessary optimality]
Let f ∈ C1 in a neighborhood of a local minimum x∗ of f . Then ∇f(x∗) = 0.

Theorem 1.2.5. [Second order necessary optimality]
Let f ∈ C2 in a neighborhood of a local minimum x∗ of f . Then ∇f(x∗) = 0 and ∇2f(x∗) > 0.

Theorem 1.2.6. [Second order sufficient optimality]
Let f ∈ C2 in a neighborhood of a local minimum x∗ of f with ∇f(x∗) = 0 and ∇2f(x∗) > 0. Then x∗ is a
strict local minimum.

Theorem 1.2.7. Consider x∗ = min q(x) = 1
2x

TQx− bTx. Then the following are equivalent:

1. q(x) is bounded below
2. Q > 0, Qx = b is consistent
3. X∗ = Q−1b is a global optimum

Remark 1.2.8. If f is convex, then any local minimum is a global minimum. Moreover, if f ∈ C1, then
any stationary point is a global minimum.

1.3 Line search methods

Definition 1.3.1. Given an objective function f(x) and a starting point x0 and a search direction p, the
line search method attempts to solve

min
α>0

f(x0 + αp)

And every next iteration is given by xk+1 = xk + αkpk for αk the step length.

Proposition 1.3.2. There are several descent directions that may be applied:

steepest descent: pk = −∇f(xk)
Newton’s: pk = −(∇2f(xk))−1∇f(xk)

quasi-Newton: pk = −B−1k ∇f(xk)
conjugate gradient: pk = −∇f(xk) + βkpk−1

Note that Newton always has step length 1, Bk is some sort of approximation of ∇2f(xk), and βk ensures
that pk and pk−1 are conjugate.
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Definition 1.3.3. The process of scaling is the making of the substitution Ay + a→ x in a problem.

Theorem 1.3.4. [Wolfe conditions]
Suppose the search direction at xk is pk, and αk ∈ arg minα>0 f(xk + αpk) and the conditions:

I. f(xk + αpk) 6 f(xk) + α(c1∇f(xk)T pk)
II. ∇f(xk + αkpk)T pk > c2∇f(xk)T pk

are satisfied, where 0 < c1 < c2 < 1. Then the search will go much faster. Sometimes we add

III. |∇f(xk + αpk)T pk| 6 c2|∇f(xk)T pk|
to replace II., which we then call the strong Wolfe conditions.

Lemma 1.3.5. Suppose that f is bounded below in the search direction pk for f sufficiently smooth and
0 < c1 < c2 < 1. Then there exist step lengths that satisfy the Wolfe conditions.

Proof: See page 35 in Nocedal & Wright.

Theorem 1.3.6. [Zoutendijk]
Suppose that for min f(x) with xk+1 = xkαkpk the Wolfe conditions are satisfied, and
· f is bounded below
· f is C1 on a neighborhood N of x0
· ∇f is Lipschitz continuous on N

Then, if θk is the angle between pk and −∇f(xk),∑
k>0

cos2(θk)‖∇f(xk)‖2 <∞

Remark 1.3.7. The above, with some manipulation, implies that lim
k→∞

[∇f(xk)] = 0.

Definition 1.3.8. For Q ∈Mn×n, define the weighted inner product ‖ · ‖Q by ‖x‖2Q := xTQx for x ∈ Rn.

Lemma 1.3.9. [Kantorovich]
Let Q ∈Mn×n with Q = QT > 0 and x ∈ Rn. Then

(xTx)2

xTQxxTQ−1x
>

4λmin(Q)λmax(Q)

(λmin(Q) + λmax(Q))2

Theorem 1.3.10. Let f : Rn → R be a C2 function. Suppose we apply exact line search to generate a
sequence (xk) with xk−−−−→k→∞ x∗. Moreover, suppose ∇2f(x∗) > 0 and ∇f(x∗) = 0. Then

f(xk+1)− f(x∗) 6

(
λn − λ1
λn + λ1

)2

(f(xk)− f(x∗))

for λ1 6 λ2 6 · · · 6 λn the eigenvalues of ∇2f(x∗).

1.4 Trust region methods

Definition 1.4.1. Given an objective function f(x), a starting point x0 and a model mk(x) of f around x0,
the trust region method attempts to solve

min
p

mk(x0 + p)

such that x0 + p always lies inside some predefined trust region.
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Definition 1.4.2. The trust region subproblem (TRS), for Bk ≈ ∇2f(xk) is given by

min f(xk) +∇f(xk)T pk + 1
2p
T
kBkpk

s.t. ‖pk‖ 6 ∆k

This is quadratic minimization with one constraint, where we minimize over pk.

Definition 1.4.3. Define the actual reduction and the predicted reduction in the ratio

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)

Note that if ρk < 0, then the trust region is too large, and must be decreased. If ρk ≈ 1, we may increase
the trust region size safely.

Theorem 1.4.4. The point p∗ solves the TRS iff there exists a λ such that

(Bk + λI)p∗ = −∇f(xk)λ
Bk + λI > 0

}
dual feasibility

‖p∗‖ 6 ∆k } primal feasibility
λ(‖∆∗‖ −∆k) = 0 } complementary slackness

modern paradigm

where ∆k ∈ (0,∆∗) for all k.

1.5 Conjugate gradient methods

Definition 1.5.1. A set of nonzero vectors {v0, . . . , vn} is termed conjugate wrt A if vTi Avj = 0 iff i 6= j.

Lemma 1.5.2. A conjugate set is linearly independent.

Definition 1.5.3. Suppose we begin with A ∈Mn×n and a problem

min
x

1
2x

TAx− bTx = ϕ(x)

Then with a given set of conjugate vectors {p1, . . . , pn}, we solve

min
α

ϕ(xk + αpk)

This is termed the conjugate gradient method (CG).

Definition 1.5.4. With respct to the above, the expression ∇ϕ(x) = r(x) = Ax− b is termed the residue.

Theorem 1.5.5. For any starting point, the conjugate gradient method converges in at most n steps.

Proposition 1.5.6. Recall, from above, that to find the set of conjugate direction vectors, we use the
calculation pk = −∇f(xk) + βkpk−1. To make the CG method practical, we use

αk =
rTk rk
pTkApk

βk =
rTk+1rk

rTk rk

Theorem 1.5.7. If A has at most m distinct eigenvalues, then the CG method converges in at most m
iterations.
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2 Constrained optimization

Remark 2.0.1. Consider smooth functions f1, . . . , fn in an optimization problem

min max{f1(x), . . . , fn(x)}

Such a problem may not have a smooth objective function. Then we may reformulate this equivalently as

min t
s.t. t > f1(x)

...
t > fn(x)

which now has a smooth objective function and mooth constraints.

2.1 Feasibility and cones

Definition 2.1.1. Consider an optimization problem

min f(x)
s.t. ci(x) = 0 ∀ i ∈ E

ck(x) > 0 ∀ k ∈ I
x ∈ Ω

Define the set of linearized feasible directions and the active set by

F :=
{
d | ∇ci(x)

T d=0 ∀ i∈E
∇ck(x)T d>0 ∀ i∈I∩A(x)

, x ∈ Ω
}

A(x) := E ∪ {i ∈ I | ci(x) = 0}

Definition 2.1.2. Let Ω ⊂ Rn and x ∈ Ω. Then a quantity d is termed a feasible direction to Ω at x iff
there exists α > 0 such that x+ αd ∈ Ω for all 0 6 α < α.

Definition 2.1.3. Let Ω ⊂ Rn and x ∈ Ω. The tangent cone of Ω at x is defined to be

T (Ω, x) :=

{
αd | ∃(xk)∞k=1 ⊂ Ω s.t. xk → x and d = lim

k→∞

[
xk − x
‖xk − x‖

]
, α ∈ R>0

}
= cone(Ω− x)

This is also termed the cone of limiting feasible directions.

· We note that T (Ω, x) is always closed, and is convex if Ω is convex.

Definition 2.1.4. Let Ω ⊂ Rn and x ∈ Ω. The normal cone of Ω at x is defined to be the set

N(Ω, x) := {v | 〈v, d〉 6 0 ∀ d ∈ T (Ω, x)}

Definition 2.1.5. Let Ω ⊂ Rn. The polar cone of Ω is defined to be the set

Ω+ := {v | 〈v, d〉 > 0 ∀ d ∈ Ω}

· In Rn, 〈v, d〉 = vT d, and we know cos(θ) = vT d
‖v‖‖d‖ .

Definition 2.1.6. Consider an optimization problem with local solution x∗ and associated Lagrange mul-
tiplier λ∗. The critical cone of x∗ with λ∗ is defined to be the set

C(x∗, λ∗) := {w ∈ F(x∗) | ∇ci(x∗)Tw = 0 ∀ i ∈ I ∩ A(x∗) with λ∗i > 0}
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Definition 2.1.7. The set X ⊂ Rn is termed an orthant iff it is the intersection of n pairwise orthogonal
half-spaces of Rn.

Theorem 2.1.8. Given a minimization problem as above, x ∈ arg min
x∈F

f(x) implies ∇f(x) ∈ T (F , x).

Proof: Suppose the premise holds but not the conclusion.

Then there exists a d ∈ T (F , x) such that ∇f(x)T d < 0 for d = lim
k→∞

[
xk−x
‖xk−x‖

]
.

Then for some K ∈ N, we have ∇f(x)T (xk − x) < 0 for all k > K.
But then f(xk) = f(x) +∇f(x)T (xk − x)︸ ︷︷ ︸

<0

+o(‖xk − x‖), implying f(xk) < f(x).

This is a contradiction. �

Corollary 2.1.9. [Fermat]
If x ∈ int(F) and x ∈ arg min

x∈F
f(x), then ∇f(x) = 0.

Corollary 2.1.10. If f is a convex function and F is a convex set, then

x ∈ arg min
x∈F

f(x) iff ∇f(x) ∈ T (F , x)+ iff ∇f(x) ∈ (F − x)+

Theorem 2.1.11. [Rockafellar, Pshenichny]
If x ∈ int(F) then ∇f(x) ∈ T (F , x)+.

2.2 Convex analysis

Lemma 2.2.1. Let K 6= ∅ be a closed, bounded, convex set with x /∈ K. Then there exists a unique y ∈ A
with y ∈ arg min

y∈K
{‖y − x‖}.

Definition 2.2.2. Let K ⊂ Rn nontrivial. Then K is termed a cone if αK ⊂ K for all α > 0. K is termed
a convex cone if it is a cone, and K +K ⊂ K.

Definition 2.2.3. A cone K is termed pointed iff K ∩ −K = {0}.

Definition 2.2.4. A cone K is termed self-dual or self-polar if K+ = K.

Definition 2.2.5. Let K be a cone. Then K = K++ iff K is a closed convex cone.

Lemma 2.2.6. [Farkas]
Let A ∈Mn×n Then equivalently

I. Ax = b, x > 0 is consistent
II. AT y > 0 implies bT y > 0

Theorem 2.2.7. Suppose that for two convex sets C1, C2 we have C1∩ int(C2) = ∅. Then we can separate
the two sets by a hyperplane.

Definition 2.2.8. Given a problem with
Ax = b
bx 6 d
g(x) 6 0

linear constraints and g convex, the generalized Slater CQ is

there exists x̂ such that Ax̂ = b, Bx̂ 6 d, g(x̂) = 0

Remark 2.2.9. The GSCQ implies the weakest CQ.
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2.3 Duality

Definition 2.3.1. Given convex cones K,L define the primal and dual problems to be

p∗ = min 〈c, x〉 α∗ = max 〈b, y〉
s.t. Ax >

K
b s.t. A∗y 6

L+ c
x >

L
0 y >

K+ 0

where A∗ is found through the adjoint linear transformation, i.e. 〈A∗y, x〉 = 〈y,Ax〉 for all x, y.

Definition 2.3.2. Suppose that f is convex, g is K-convex for K a closed convex cone and C is convex.
Then for the problem

min f(x)
s.t. g(x) 6

K
0

x ∈ C
define the perturbation function w(ε) = min

x∈C
{f(x)} where g(x) 6

K
ε for g : X → Y .

Proposition 2.3.3. Let ε ∈ Rn and K = Rm+ with Γ = {ε ∈ Y | there exists x ∈ C with g(x) 6
K
ε}. Then

i. Γ is a convex set
ii. w(ε) is a convex function on its domain (where it is finite)
iii. w is non-increasing in ε

Theorem 2.3.4. Suppose there exists x̂ ∈ C with g(x̂) > 0 (that is, g(x̂) ∈ −int(K)), so SCQ is satisfied.
If w(0) is finite, then there exists equivalently
· an optimal Lagrange multiplier
· λ∗ >

K
0 such that w(0) = min

x∈C
{f(x) + 〈λ∗, g(x)〉}

Moreover, if the minimum is attained at x∗ ∈ C and x∗ is feasible (that is, g(x∗) 6
K

0), then x∗ solves the
convex program, and 〈λ∗, g(x∗)〉 = 0.

Remark 2.3.5. Suppose that we have a nonlinear problem

min
x

f(x)

s.t. ci(x) = 0 ∀ i ∈ E
ck(x) > 0 ∀ k ∈ I
x ∈ Rn

To provide a lower bound on the optimal solution, we form the Lagrangian

L(x, λ) = f(x)−
∑
i∈E,I

λici(x) for λi > 0 if i ∈ I

Then we define the dual functional
g(λ) = inf

x
{L(x, λ)}

And finally we have the dual problem
max
λ

g(λ)

s.t. λ > 0 ∀ i ∈ I

Proposition 2.3.6. If the weakest constraint qualifications (WCQ) hold at x∗ (that is, T (Ω, x∗) = F(x∗)),
then the KKT conditions hold at x∗, that is, there exists a λ∗ such that

∇xL(x∗, λ∗) = 0 λi = 0 ∀ i ∈ I (dual feasibility)
ci(x

∗) = 0 ∀ i ∈ E (primal feasibility)
cj(x

∗) > 0 ∀j ∈ I
λ∗i ci(x

∗) = 0 ∀ i ∈ E , I (complementary slackness)
λ∗j > 0 ∀j ∈ I
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Definition 2.3.7. The strict complementarity conditions hold at x∗ if the KKT conditions hold with for
some Lagrangian multiplier λ∗ such that λ∗j > 0 for all j ∈ I.

Proposition 2.3.8. Let Ω ⊂ Rn and x∗ ∈ Ω. If N(Ω, x∗) = −F(x∗)+, then Ω is convex and WCQ holds.

2.4 Constraint qualifications

There are several main constraint qualifications:

LICQ holds at x ∈ Ω if {∇ci(x) | i ∈ A(x)} is linearly independent
MFCQ holds at x ∈ Ω if 1. there exists w such that ∇ci(x)Tw = 0 for all i ∈ E

2. {∇ci(x) | i ∈ E} is linearly independent
WCQ holds at x ∈ Ω if all constraints are linear

We note that LICQ =⇒ MFCQ =⇒ WCQ.

Corollary 2.4.1. If LICQ holds, then none of the active contsraint gradients can be zero.

Definition 2.4.2. Given a feasible point x∗ in an optimization problem, a sequence (zk)∞k=1 is termed a

feasible sequence approaching x∗ iff zk
k→∞−−−−−→ x∗ and zk ∈ Ω for all k.

· We note that for any x∗ feasible, the inclusion T (Ω, x∗) ⊂ F(x∗) always holds.

Lemma 2.4.3. Let x∗ ∈ Ω and LICQ holds at x∗. Let d ∈ F(x∗). Then for all tk > 0 with tk
k→∞−−−−−→ 0,

there exists (zk)∞k=1 such that
1. zk ∈ Ω for all k

2. zk
k→∞−−−−−→ x∗

3. d = lim
k→∞

[
zk − x∗

tk

]
4. ci(zk) = tk∇ci(x∗)T d for all i ∈ A(x∗)

Corollary 2.4.4. LICQ =⇒ WCQ, i.e. T (Ω, x∗) = F(x∗).

2.5 Augmented Lagrangian method

Definition 2.5.1. For an equality-constrained non-linear problem, define the augmented Lagrangian to be
the equation

LA(x, λ, µ) = f(x)−
∑
i∈E

λici(x) +
µ

2

∑
i∈E

(ci(x))2

= L(x, y) +
µ

2

∑
i∈E

(ci(x))2

Augmenting the Lagrangian proves useful, as we may adjust µ as desired. Moreover, first order conditions
are unchanged from the original problem, as

∇xLA(x, λ, µ) = ∇xL(x, λ) + µ
∑
i∈E

ci(x)∇ci(x)

= ∇xf(x) +
∑
i∈E

(µci(x)− λi)∇ci(x)

Theorem 2.5.2. Suppose that x∗ is a local solution to (ECNLP) that satisfies the KKT conditions with
Lagrangian multiplier λ∗, as well as the second order sufficiency conditions. Then there exists a µ0 ∈ R>0

such that for all µ > µ0, x∗ solves the problem

min
x

LA(x, λ∗, µ)
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Theorem 2.5.3. For fixed µ, if ‖λ−λ
∗‖

µ is small, then the following method works for solving (ECNLP).

1. x← arg minLA(·, λ, µ)

2. λ← λ− µc(x)

In this case a solution x∗ to (ECNLP) will be the limit of the iterates under the above instructions.

We may update µ in the following fashion. Choose β > 1 not too large and not too small such that
convergence is not too slow and the problem does not degenerate. Then set

µk+1 ←

{
βµk if ‖c(xk)‖ > γ‖c(xk−1)‖ for some fixed γ ∈ (0, 1)

µk else

3 Interior point methods

To the classical optimization problem so far we have seen several approaches:
1. merit functions
2. ouadratic penalty methods
3. `2 penalty method
4. augmented Lagrangian method

All these deal with so-called “exterier point methods,” which involve approaching the feasible region from
the outside.

3.1 Barrier functions

Definition 3.1.1. It at optimization problem, a barrier function is added to the objective function to pre-
vent it from going near the boundary of the feasible region. We may define such a function in several ways:

· inverse barrier function: B̂(x) :=


∑
i∈I

1

ci(x)
if ci(x) > 0 ∀ i ∈ I

∞ else

· log barrier function: B(x) :=


∑
i∈I

log(ci(x)) if ci(x) > 0 ∀ i ∈ I

∞ else

Note that the log barrier function, while extended-real valued, is continuous.

The general barrier method algorithm works as follows:

· start with µ0 > 0
· for k = 0, 1, . . .
· find xk ∈ arg min

x
{f(x) + µkB(x) | ci(x) = 0 ∀ i ∈ E}

· choose µk+1 ∈ (0, µk)
· end

Proposition 3.1.2. Let Ω = cl
{
x | ci(x)=0 ∀ i∈E

cj(x)>0 ∀i∈I

}
= cl(Ω̂). Then every limit point x of (xk)k∈N generated

by the general barrier method with (µk)k∈N and µk
k→∞−−−−−→ 0 is a global solution of (NLP).
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Proof: Let y ∈ Ω,

Then there exists a sequence (y`)
∞
`=1 ⊂ Ω̂ such that y`

`→∞−−−−→ y,
This implies that for all ` and for all k,

f(xk) + µkβ(xk) 6 f(y`) + µkβ(y`)

Taking the limit as k →∞,

f(x) 6 lim
k→∞

[f(xk) + µkβ(xk)] 6 f(y`)

Then taking the limit as `→∞, we find that f(x) 6 f(y). �

Theorem 3.1.3. [Fundamental theorem of LPs]
A linear program (LP) is exactly one of the following:

1. infeasible
2. unbounded
3. solvable (implying strong duality)

The (LP) may be solved by the interior point method with

(pµ) min
x

fp(x) = cTx− µ
n∑
i=1

log(xi)

s.t. Ax = b

Remark 3.1.4. For such a problem, (pµ) has a unique solution x(µ) for each µ > 0 if Ax = b is consistent.

Definition 3.1.5. The set {x(µ) | µ > 0} is termed the central path. The analytic center of the set of
optimal solutions is defined by

x∞ := arg min
x

{
−

n∑
i=1

log(xi) | Ax = b, x > 0

}

The general primal/dual interior point method works as follows:

· Initialize:
x0 > 0
y0

s0 > 0
0 6 σmin < σmax 6 1

tol > 0

· for k = 0, 1, . . . :
· µk ← (xTk sk)/n
· if µk < tol and ‖rd‖ < tol and ‖rp‖ < tol:

break
· else:
· pick σk ∈ [σmin, σmax]
· solve the system 0 AT I

A 0 0
S 0 X

∆x
∆y
∆s

 =

 −rd
−rp

−xk ◦ sk + σkµke



11



where S = diag(s) and X = diag(x)
· pick αk ∈ (0, 1) such that

(xk+1, yk+1, sk+1) = (kk + α∆x, yk + α∆y, sk + α∆s)

satisfying xk+1 > 0 and sk+1 > 0 and the centrality criterion
· end

The centrality criterion is a restriction on θ ∈ [0, 1) and γ ∈ (0, 1] so that every iterate is not be too far from

the central path C in terms of some neighborhood of C. We define the centrality measure to be µ = xT s/n.
We speak in terms of the neighborhoods

N2(θ) = {(x, y, s) | AT y + s = c, Ax = b, x > 0, s > 0, ‖x ◦ s− µe‖2 6 θµ}
N−∞(γ) = {(x, y, s) | AT y + s = c, Ax = b, x > 0, s > 0, xisi > γµ for all i}

Then if θ ∈ (0, 1) for all (x, y, s) ∈ N2(θ), we will have that for all i,

|xisi − µ| 6 ‖x ◦ s− µe‖2 6 θµ =⇒ xisi > µ− θµ = (1− θ)µ and N2(θ) ⊂ N−∞(1− θ)

3.2 Long-step IPM

Remark 3.2.1. For all ε > 0 with initial duality measure µ0, the long-step interior point method takes
k = O(n| log(ε)|) steps to reduce the duality measure by a factor of ε, i.e. to find (xk, yk, sk) such that

µk =
xTk sk
n
6 εµ0

Lemma 3.2.2. For all u, v ∈ Rn with uT v > 0,

‖u ◦ v‖2 6 2−3/2‖u+ v‖22

where ◦ is the Hadamard product, for which (u ◦ v)i = uivi.

Lemma 3.2.3. If (x, y, s) ∈ N−∞(γ) for γ ∈ (0, 1] fixed, and (∆x,∆y,∆s) solves0 AT I
A 0 0
S 0 X

∆x
∆y
∆s

 =

 0
0

−x ◦ s+ σµe


then we have the following three results:

1. ‖∆x ◦∆s‖2 6 2−3/2
(

1 + 1
γ

)
nµ

2. ∆xT∆s = 0
3. (x(α), y(α), s(α)) ∈ N−∞(γ) where

x(α) = x+ α∆x
y(α) = y + α∆y
s(α) = s+ α∆s

for any α ∈
[
0, 23/2 · γ(1−γ)1+γ ·

σ
n

]
Theorem 3.2.4. Given γ, σmin, σmax in the long-step IPM path for each k, setting

αk = 23/2 · γ(1− γ)

1 + γ
· σk
n

there exists δ > 0, independent of n, such that

µk+1 6
(
1− δ

n

)
µk
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Proof: Performing routine calculations we get the result.

µk+1 = µkαk

=

(
1− 23/2

γ(1− γ)

1 + γ
· 1

n
· σ(1− σ)

)
µk

6

1− 1

n
· 23/2 · γ(1− γ)

1 + γ
·min

{
σmin(1−σmin),
σmax(1−σmax)

}
︸ ︷︷ ︸

∼δ

µk

�

Theorem 3.2.5. Fix ε ∈ [0, 1], γ ∈ (0, 1), 0 6 δmin 6 δmax 6 1, an initial point (x0, y0, s0) ∈ N−∞(γ).
Then for δ as in the above proof,

µk 6 εµ0 for all k > δ
n | log(ε)|

3.3 Extending IPM to SDP

Definition 3.3.1. In graph theory, a common problem is the max-cut problem. Given a graph G = (V,E)
with weighted edges e ∈ E, what is the cut of maximum size?

· a cut of G is a partition {U1, U2} of V such that U1 ·∪ U2 = V
· the size of a cut {U1, U2} is the sum of edge weights of edges that are not completely within U1 or U2

Here we will consider the problem with unweighted edges, that is, where all edges have an equal weight of 1.

Definition 3.3.2. For A the adjacency matrix of G, define the Laplacian matrix of G to be

L = diag(Ae)−A

This matrix is positive semi-definite (PSD) and singular.

Now we may formulate the max-cut problem in an optimization manner. Here the vector x is basically the
set of vertices V of G arranged in a vector.

max
x

1
2x

TLx

s.t. x2i = 1 for all i

The SDP relaxation of this problem is given by

max
X

〈L,X〉
s.t. diag(X) = e

X > 0

The dual to the original problem is given by

min
λ

λT e

s.t. diag(λ)− 1
4L > 0

Remark 3.3.3. In a more general setting, an SDP program and its dual are given by

(P ) inf
X
〈C,X〉

s.t. 〈Ai, X〉 = bi for all i
X > 0

(D) sup
y

bT y

s.t. C −
∑
i yiAi > 0
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