Compact course notes COMBINATORICS AND OPTIMIZATION 749, WINTER 2013

Lecturer: P. Haxell transcribed by: J. Lazovskis University of Waterloo January 21, 2013

Topological Methods in Graph Theory and Combinatorics

Contents

0 Ba	ckground
0.1	Elementary background
0.2	Triangulations
0.3	Abstract simplicial complices
0.4	Basic properties of spheres and boundaries
Index	

0 Background

Definition 0.0.1. Let G be a graph and $P = V_1 \cup \cdots \cup V_m = V(G)$ be a partition of G. Then a set $S = \{v_1, \ldots, v_m\} \subseteq V(G)$ is termed an independent transversal of G with respect to P if:

1. S is independent (i.e. the graph G[S] has no edges)

2. $v_i \in V_i$ for each i

Theorem 0.0.2. Let G be a graph and P a vertex partition of G. Suppose that $|V_i| = 2\Delta$ for all i, where $\Delta = \Delta(G)$, the maximum degree of G. Then G has an independent transversal with respect to P.

0.1 Elementary background

Definition 0.1.1. A set $\{v_0, \ldots, v_k\}$ of points in \mathbb{R}^d is termed affinely dependent iff there exist $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ not all zero, such that $\alpha_0 v_0 + \cdots + \alpha_k v_k = 0$ and $\alpha_0 + \cdots + \alpha_k = 0$.

Example 0.1.2. Using the above definition, it follows that for $\{v_0, \ldots, v_k\}$ affinely dependent,

 $\begin{array}{ll} k=1 & \text{implies } v_0=v_1 \\ k=2 & \text{implies } v_0, v_1, v_2 \text{ are on the same line} \\ k=3 & \text{implies } v_0, v_1, v_2, v_3 \text{ are on the same plane} \end{array}$

A set is affinely independent iff it is not affinely dependent, or equivalently, if

- $\cdot \{v_1 v_0, \dots, v_k v_0\}$ is linearly independent
- $\cdot \{(1, v_0), \dots, (1, v_k)\} \subset \mathbb{R}^{d+1}$ is linearly independent

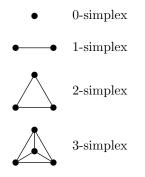
It follows that the maximum size of an affinely independent set in \mathbb{R}^d is d + 1.

Definition 0.1.3. Given a set of points $S = \{v_0, \ldots, v_k\}$, the <u>convex hull</u> of the given set is the set of points

$$\operatorname{conv}(S) = \{\gamma_0 v_0 + \dots + \gamma_k v_k : \gamma_i \ge 0, \sum_{i=0}^k \gamma_i = 1\}$$

Definition 0.1.4. A simplex σ is the convex hull of a set $A = \{v_0, \ldots, v_k\}$ of affinely independent points in \mathbb{R}^d . We say that v_0, \ldots, v_k are the vertices of σ , and k is the dimension of σ .

These are some of the fundamental simplices:



The empty set is termed the (-1)-simplex.

A <u>face</u> of σ is the convex hull of $B \subseteq A$. In particular, every simplex has the empty set as a face.

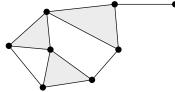
The <u>relative interior</u> of σ is the set of points $\sigma - \bigcup \{\tau : \tau \text{ is a proper face of } \sigma\}$. Hence every point in σ is in the relative interior of exactly one face of σ .

Definition 0.1.5. A set Σ of simplices is termed a geometric simplicial complex if for every $\sigma, \tau \in \Sigma$,

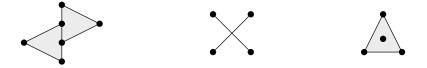
 \cdot every face of σ is in Σ

 $\cdot \ \sigma \cap \tau$ is a face of both σ and τ

Example 0.1.6. This is an example of a geometric simplicial complex in \mathbb{R}^2 . The shaded simplices are 2-simplices.



The following are not examples of geometric simplicial complexes.



The first fails because the shared face is not a face of either. The second fails because the intersection of the two 1-simplicies does not form a face. The third fails because the intersection of the 2-simplex and 0-simplex, the 0-simplex, is not a face of the 2-simplex.

Definition 0.1.7. Given a geometric simplicial complex Σ , define the polyhedron and <u>dimension</u> of Σ by

$$\|\Sigma\| = \bigcup \{ \sigma : \sigma \in \Sigma \}$$
$$\dim(\Sigma) = \max \{ \dim(\sigma) : \sigma \in \Sigma \}$$

For $k \leq \dim(\Sigma)$, the subcomplex of Σ consisting of all *r*-dimensional simplices, for $r \leq k$, is termed the <u>k-skeleton</u> of Σ , and denoted by $\Sigma^{\leq k}$.

Example 0.1.8. The 0-skeleton minus the empty set is the set of all vertices of Σ , termed the <u>vertex set</u>, and denoted by $V(\Sigma)$.

Note that a 1-dimensional simplicial complex in \mathbb{R}^2 consists of vertices and line segments, hence it is a plane graph (i.e. a planar graph with a planar embedding).

Definition 0.1.9. Given a simplicial complex Σ , the relative interiors of all simplices in Σ partition $\|\Sigma\|$. For $x \in \|\Sigma\|$, we call the unique σ that contains x in its relative interior, the support of x, denoted supp(x).

Proposition 0.1.10. A simplex $\sigma \in \mathbb{R}^d$ together with all its faces forms a simplicial complex.

v

Proof: Clearly every face of σ is in σ , so it remains to show that the intersection property is satisfied.

Let $A = \{v_0, \ldots, v_k\}$ be the vertex set of σ . Let τ_1, τ_2 be faces of σ with vertex sets $B, C \subseteq A$, respectively. Hence we wish to show that $\operatorname{conv}(B) \cap \operatorname{conv}(C) = \operatorname{conv}(B \cap C)$.

It is clear that $\operatorname{conv}(B \cap C) \subseteq \operatorname{conv}(B) \cap \operatorname{conv}(C)$, so let $x \in \operatorname{conv}(B) \cap \operatorname{conv}(C)$. Therefore there exist β_i, γ_i such that

$$x = \sum_{v_i \in B} \beta_i v_i = \sum_{v_i \in C} \gamma_i v_i \quad \text{for} \quad \sum_i \beta_i = \sum_i \gamma_i = 1$$

It follows that

$$\sum_{i \in B \setminus C} \beta_i v_i - \sum_{v_i \in C} \gamma_i v_i - \sum_{v_i \in B \cap C} (\gamma_i - \beta_i) v_i = 0$$

Note that the index set is $(B \cup C) \subseteq A$, and that A is affinely independent. Since $\sum \beta_i - \sum \gamma_i = 0$, we must have that $\beta_i = \gamma_i = 0$ for all i, unless $v_i \in B \cap C$. Hence $x \in \text{conv}(B \cap C)$.

0.2 Triangulations

Definition 0.2.1. Let X be a set of points in \mathbb{R}^d . A geometric simplicial complex Σ in \mathbb{R}^d is termed a triangulation of X iff $\|\Sigma\| \cong X$, where \cong denotes homeomorphism.

Example 0.2.2. These are examples of triangulations of 2-dimensional objects.

Proposition 0.2.3. Let Σ be a triangulation of a simplex σ in \mathbb{R}^d . Let τ be a (d-1)-simplex of Σ that is not contained in $\partial(\sigma)$, the boundary of σ . Then τ is a proper face of exactly 2 *d*-simplices in Σ . If τ is contained in $\partial\sigma$, then it is a proper face of exactly 1 *d*-simplex in Σ .

0.3 Abstract simplicial complices

Definition 0.3.1. An abstract simplicial complex is a set \mathcal{A} of subsets of a (finite) set V, such that if $B \subset \mathcal{A} \in \mathcal{A}$, then $B \in \mathcal{A}$.

- · The sets $A \in \mathcal{A}$ are termed simplices
- The dimension of $A \in \mathcal{A}$ is $|\overline{A|-1}|$
- \cdot $\mathcal A$ is termed pure iff every maximal simplex in $\mathcal A$ has the same dimension.

Unless $\mathcal{A} = \emptyset$, $\emptyset \in \mathcal{A}$. Moreover, \emptyset is the unique simplex of dimension -1.

Example 0.3.2.

· If Σ is a geometric simplical complex, then all sets of the vertices of simplices in Σ form an abstract simplicial complex.

 \cdot A simple graph G with no isolated vertices is a pure simplicial complex of dimension 1

 \cdot A matroid is a pure simplicial complex (with more restrictions)

Remark 0.3.3. Note that a pure simplicial complex \mathcal{A} of dimension d is determined by the set \mathcal{A}^d of all d-dimensional simplices in \mathcal{A} . Here, \mathcal{A}^d is the (d+1)-uniform hypergraph on V, meaning its elements are (d+1)-subsets of V.

Moreover, \mathcal{A} is termed the (downward) closure of \mathcal{A}^d .

The boundary of a pure simplicial complex \mathcal{A} of dimension d, expressed as $\partial \mathcal{A}$, is the closure of

 $\{B \subset V : |B| = d, |\{A \in \mathcal{A}^d : B \subset A\}| = 1 \pmod{2}\}$

If $\partial \mathcal{A} = \emptyset$, then \mathcal{A} is termed a *d*-sphere.

Example 0.3.4. A set of vertices of even size is a 0-sphere. This follows as we need \emptyset to be contained is an even number of them.

A convenient way to define $\partial \mathcal{A}$ is to create a matrix $\mathcal{A}[d, d+1]$, with rows indexed by the set of all *d*-subsets of *V*, and columns indexed by \mathcal{A}^d . Then the (B, A)-entry is 1 if $B \subset A$, and 0 otherwise. Moreover, $\partial \mathcal{A}$ is the closure of the *d*-uniform hypergraph whose characteristic vector contains elements that are all $\mathcal{A}[d, d+1]$ over \mathbb{F}_2 .

0.4 Basic properties of spheres and boundaries

Lemma 0.4.1. Let \mathcal{A} be a pure simplicial complex of dimension d. Then $\partial(\mathcal{A})$ is a (d-1)-sphere.

<u>Proof:</u> Let $v = \mathcal{A}[d, d+1] \cdot \mathbb{1}$. Then v is the characteristic vector of $(\partial(\mathcal{A}))^{d-1}$, the (d-1)-simplices of the boundary of \mathcal{A} . Let \mathcal{K} denote the pure simplicial complex of dimension d-1 that is the closure of the complete d-uniform hypergraph on $V = V(\mathcal{A})$. Consider $\mathcal{K}[d-1,d] \cdot v$, which is represented as

all
$$(d-1)$$
-
subsets
of V

Lemma 0.4.2. [HOLE-FILLING LEMMA] Let \mathcal{B} be a pure siplicial complex of dimension d + 1, and let $B \in \mathcal{B} \setminus \partial \mathcal{B}$ be a simplex. Let $\mathcal{L} = \mathcal{L}_{\mathcal{B}}(B)$, and set b = |B|. Note that \mathcal{L} is a (d - b + 1)-sphere. Let \mathcal{C} be a pure simplicial complex of dimension d - b + 2 with $\partial \mathcal{C} = \mathcal{L}$.

Index

 $\begin{array}{c} \Delta, \ 2\\ \Sigma^{\leqslant k}, \ 3 \end{array}$ closure, 4 relative interior, 2 convex hull, 2 $\operatorname{conv}(S), 2$ simplex, 2, 4downward closure, 4 $\partial(\cdot), 4$ $\mathcal{A}^d, 4$ simplicial complex face, 2 abstract, 4 $\operatorname{supp}(\sigma),\,3$ pure, 4 k-skeleton, 3 independent transversal, 2geometric, 2sphere, 4 lemmaaffinely dependent, 2support, 3hole-filling, 5boundary, 4 polyhedron, 3 triangulation, 4