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0 Background

Definition 0.0.1. Let G be a graph and P = V; U--- UV, = V(G) be a partition of G. Then a set
S ={v1,...,vm} C V(G) is termed an independent transversal of G with respect to P if:

1. S is independent (i.e. the graph G[S] has no edges)

2. v; € V; for each ¢

Theorem 0.0.2. Let G be a graph and P a vertex partition of G. Suppose that |V;| = 2A for all 4, where
A = A(G), the maximum degree of G. Then G has an independent transversal with respect to P.

0.1 Elementary background

Definition 0.1.1. A set {vg, ..., vz} of points in R? is termed affinely dependent iff there exist aq, ..., ar € R
not all zero, such that agvg + -+ 4+ arvy =0 and ag+ - -+ ax = 0.

Example 0.1.2. Using the above definition, it follows that for {vo, ..., v} affinely dependent,

k=1 1implies vo = vy
k=2 implies vy, v1, v are on the same line
k=3 implies vy, v1,v2,vs are on the same plane

A set is affinely independent iff it is not affinely dependent, or equivalently, if
-{v1 —wg,..., vk — vg} is linearly independent
A1, v0), ..., (1,05)} C R4 is linearly independent

It follows that the maximum size of an affinely independent set in R? is d + 1.

Definition 0.1.3. Given a set of points S = {vy, ..., vt }, the convex hull of the given set is the set of points

conv(S) = {yovo + -+ + kv : Vi = O,Z% =1}

Definition 0.1.4. A simplex o is the convex hull of a set A = {vy, ..., v} of affinely independent points in
R?. We say that vy, ..., v) are the vertices of o, and k is the dimension of o.

These are some of the fundamental simplices:

0-simplex

1-simplex

°
—+o
A 2-simplex

3-simplex

The empty set is termed the (—1)-simplex.
A face of ¢ is the convex hull of B C A. In particular, every simplex has the empty set as a face.

The relative interior of ¢ is the set of points o — | J{7 : 7 is a proper face of o}. Hence every point in o is
in the relative interior of exactly one face of o.

Definition 0.1.5. A set ¥ of simplices is termed a geometric simplicial complex if for every o,7 € %,
- every face of g is in X
-0 Nt is a face of both ¢ and 7




Example 0.1.6. This is an example of a geometric simplicial complex in R2. The shaded simplices are
2-simplices.

The following are not examples of geometric simplicial complexes.

XA

The first fails because the shared face is not a face of either. The second fails because the intersection of the
two 1-simplicies does not form a face. The third fails because the intersection of the 2-simplex and 0-simplex,
the O-simplex, is not a face of the 2-simplex.

Definition 0.1.7. Given a geometric simplicial complex ¥, define the polyhedron and dimension of ¥ by

191=Ute : o€y
dim(¥) = max{dim(o) : o € ¥}

For k£ < dim(X), the subcomplex of ¥ consiting of all r-dimensional simplices, for r < k, is termed the
k-skeleton of ¥, and denoted by ¥,

Example 0.1.8. The 0-skeleton minus the empty set is the set of all vertices of 3, termed the vertex set,
and denoted by V(X).

Note that a 1-dimensional simplicial complex in R? consists of vertices and line segments, hence it is a plane
graph (i.e. a planar graph with a planar embedding).

Definition 0.1.9. Given a simplicial complex 3, the relative interiors of all simplices in ¥ partition ||X||.
For x € ||X||, we call the unique o that contains z in its relative interior, the support of x, denoted supp(x).

Proposition 0.1.10. A simplex o € R? together with all its faces forms a simplicial complex.

Proof: Clearly every face of ¢ is in 0, so it remains to show that the intersection property is satisfied.

Let A = {vg,...,v} be the vertex set of o. Let 71,72 be faces of o with vertex sets B,C C A, respectively.
Hence we wish to show that conv(B) N conv(C) = conv(B N C').

It is clear that conv(B N C) C conv(B) Nconv(C), so let x € conv(B) Nconv(C'). Therefore there exist B3;,;

such that
x = Z Biv; = Z viv; for Zﬂi ZZ%‘ =1

v, €B v;eC i

Y Bwi= D> vwi— Y, (i—B)vi=0

’U,;EB\C v; €C v, €BNC

It follows that

Note that the index set is (BUC) C A, and that A is affinely independent. Since Y 3; — > 7; = 0, we must
have that 8; = ~; = 0 for all 4, unless v; € BN C. Hence = € conv(BNC). [ |



0.2 Triangulations

Definition 0.2.1. Let X be a set of points in R?. A geometric simplicial complex ¥ in R? is termed a
triangulation of X iff ||X|| & X, where & denotes homeomorphism.

Example 0.2.2. These are examples of triangulations of 2-dimensional objects.

1
1

Proposition 0.2.3. Let ¥ be a triangulation of a simplex ¢ in R?. Let 7 be a (d — 1)-simplex of ¥ that
is not contained in d(o), the boundary of . Then 7 is a proper face of exactly 2 d-simplices in X. If 7 is
contained in do, then it is a proper face of exactly 1 d-simplex in X.

0.3 Abstract simplicial complices

Definition 0.3.1. An abstract simplicial complex is a set A of subsets of a (finite) set V', such that if
BCc A€ A, then B € A.

- The sets A € A are termed simplices
- The dimension of A € Ais |A] — 1
- A is termed pure iff every maximal simplex in A has the same dimension.

Unless A = ), # € A. Moreover, §) is the unique simplex of dimension —1.

Example 0.3.2.

- If ¥ is a geometric simplical complex, then all sets of the vertices of simplices in ¥ form an abstract
simplicial complex.

- A simple graph G with no isolated vertices is a pure simplicial complex of dimension 1

- A matroid is a pure simplicial complex (with more restrictions)

Remark 0.3.3. Note that a pure simplicial complex A of dimension d is determined by the set A% of all
d-dimensional simplices in A. Here, A is the (d + 1)-uniform hypergraph on V, meaning its elements are
(d + 1)-subsets of V.

Moreover, A is termed the (downward) closure of A<

The boundary of a pure simplicial complex A of dimension d, expressed as d.A, is the closure of
{(BcV : |Bl=d,|{Ac A" : BCA}|=1 (mod 2)}
If OA = (), then A is termed a d-sphere.

Example 0.3.4. A set of vertices of even size is a 0-sphere. This folows as we need () to be contained is an
even number of them.

A convenient way to define 0 A is to create a matrix A[d, d + 1], with rows indexed by the set of all d-subsets
of V, and columns indexed by A?. Then the (B, A)-entry is 1 if B C A, and 0 otherwise. Moreover, 9.4 is
the closure of the d-uniform hypergraph whose characteristic vector contains elements that are all A[d, d + 1]
over Fs.



0.4 Basic properties of spheres and boundaries

Lemma 0.4.1. Let A be a pure simplicial complex of dimension d. Then 9(A) is a (d — 1)-sphere.

Proof: Let v = Ald,d + 1] - 1. Then v is the characteristic vector of (9(.A))4~!, the (d — 1)-simplices of
the boundary of A. Let K denote the pure simplicial complex of dimension d — 1 that is the closure of the
complete d-uniform hypergraph on V = V(A). Consider K[d — 1,d] - v, which is represented as

all (d —1)-
subsets
of V

Lemma 0.4.2. [HOLE-FILLING LEMMA] Let B be a pure siplicial complex of dimension d + 1, and let
B € B\ 9B be a simplex. Let £ = L(B), and set b = |B|. Note that £ is a (d — b+ 1)-sphere. Let C be a
pure simplicial complex of dimension d — b+ 2 with 9C = L.
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