Algebra COURSE NOTES

Fall 2009, Math 145

Contents

1. Commutative Rings and Fields	1
1.1. Characteristics of commutative rings	1
1.2. The integers	1
2. The Fundamental Theorem of Arithmetic	1
2.1. Greatest Common Divisor properties	1
2.2. Linear Diophantine equations	1
2.3. The Fundamental Theorem of Arithmetic	2
3. Congruences	2
3.1. Properties of congruences	2
3.2. Equivalence relations	3
3.3. Least Common Multiple	3
3.4. The integers modulo n	3
3.5. Fermat's Little Theorem	4
3.6. Chinese Remainder Theorem	4
4. Cryptography	4
4.1. Background	4
4.2. Primality testing	4
4.3. RSA public-key encryption scheme	5
5. Quadratic Number Domains	6
5.1. Background	6
5.2. Prime Factorization in $\mathbb{Z}[\sqrt{d}]$	7
5.3. Gaussian Integers	8
6. Polynomial Rings	8
6.1. Background	8
6.2. Polynomial factorization	9
6.3. Polynomial congruences	9
6.4. Galois Fields	9
6.5. Irreducible polynomials over \mathbb{Q}	10

© J. Lazovskis Professor: A. Menezes

COURSE NOTES

1. Commutative Rings and Fields

1.1. Characteristics of commutative rings.

A commutative ring, denoted by $(R, +, \cdot)$ consists of a set R and two binary operations.

The characteristics of a commutative ring are:

- i. Addition and multiplication are commutative and associative.
- ii. There exists additive and multiplicative identities.
- iii. There exists an additive inverse.
- iv. The distributive law holds.

A commutative ring is a field if $1 \neq 0$ and multiplicative inverses exist.

1.2. The integers.

The properties of divisibility for the integers, for $a, b, c \in \mathbb{Z}$, are:

- i. If a|b and b|c then a|c
- ii. If a|b and a|c then a|bx + cy for all $x, y \in \mathbb{Z}$
- **iii.** If a|b and b|a then $a = \pm b$
- iv. If a|b and $a, b \in \mathbb{N}$ then $b \ge a$

Let $a, b, x \in \mathbb{N}$ with $x \ge 2$. Then $x^a - 1|x^b - 1$ if and only if a|b

Let $a, b, x \in \mathbb{N}$ with $x \ge 2$. Then $gcd(x^a - 1, x^b - 1) = x^{gcd(a,b)} - 1$

2. The Fundamental Theorem of Arithmetic

2.1. Greatest Common Divisor properties.

Let $a, b, q, r \in \mathbb{Z}$ with b = qa + rThen gcd(a, b) = gcd(a, r)

By the GCD characterization theorem, if $a, b \in \mathbb{Z}$ then d = gcd(a, b) if and only if

- i. $d \ge 0$
- ii d|a and d|b
- **iii.** There exist $x, y \in \mathbb{Z}$ such that ax + by = d
- iv. If c|a and c|b then c|d

2.2. Linear Diophantine equations.

Let $a, b, c \in \mathbb{Z}$

Then ax + by = c has an integer solution if and only if gcd(a, b)|c

Let $a, b \in \mathbb{Z}$, not both zero.

Then gcd(a, b) is the smallest positive integer d for which ax + by = d has a solution

Let $a, b, c \in \mathbb{Z}$ with a|b, not both zero.

Let d = gcd(a, b) and suppose that d|c

Then, given that a particular solution to the Diophantine equation ax + by = c is (x_o, y_o) , the complete integer solution to this equation is given by:

 $x = x_o + \frac{b}{d}k$, $y = y_o - \frac{a}{d}k$, $k \in \mathbb{Z}$

2.3. The Fundamental Theorem of Arithmetic.

An integer $p \ge 2$ is prime if its only positive divisors are 1 and p. Otherwise p is composite.

If $a, b \in \mathbb{Z}$ and p is prime and p|ab, then p|a or p|b.

Every integer $n \ge 2$ can be expressed as the product of primes. This is termed the prime factorization of n. Moreover, this expression is unique up to rearrangement of prime factors.

Let $n, k \in \mathbb{Z}$ Then $\sqrt[k]{n}$ is either an integer or an irrational.

If $a, b \in \mathbb{Z}$ with gcd(a, b) = 1, then there are infinitely many primes of the form an + b.

3. Congruences

3.1. Properties of congruences.

Let $n \in \mathbb{N}$ be fixed and let $a, b \in \mathbb{Z}$

If n|(a-b), then a and b are congruent modulo n, and we write $a \equiv b \pmod{n}$

Let $n \in \mathbb{N}$ be fixed and let $a, b, c, a', b' \in \mathbb{Z}$

i. $a \equiv a \pmod{n}$ [Reflexivity]

ii. If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$ [Symmetry]

iii. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$ [Transistivity]

If $a \equiv b \pmod{n}$ and $a' \equiv b' \pmod{n}$, then

iv. $a + a' \equiv b + b' \pmod{n}$

v. $aa' \equiv bb' \pmod{n}$

vi. $a - a' \equiv b - b' \pmod{n}$

vii. If $k \in \mathbb{N}$, then $a^k \equiv b^k \pmod{n}$

Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then a is congruent modulo n to exactly one of $x \in [1, n-1]$.

The linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if gcd(a, n)|b

 $\mathbf{2}$

The following are equivalent:

- i. $a \equiv b \pmod{n}$
- **ii.** n|(a-b)
- iii. a = b + kn for some $k \in \mathbb{Z}$
- iv. a, b leave the same remainder upon division by n
- **v.** [a] = [b] in \mathbb{Z}_n

3.2. Equivalence relations.

A relation on a set S is a subset $R \subseteq S \times S$ For $a, b \in S$ we write aRb if $(a, b) \in R$.

A relation R on S is an equivalence relation if for all $a, b, c \in S$

- i. *aRa* (Reflexivity)
- ii. $aRb \Rightarrow bRa$ (Symmetry)
- iii. $aRb \wedge bRc \Rightarrow aRc$ (Transistivity)

Let R be an equivalence relation on S and let $a \in S$. Then the equivalence class of a is $[a] = \{x \in S : xRa\}$, where a is called the representative of [a].

Let R be an equivalence relation on S. Then

i. $a \in [a]$ for all $a \in S$

ii. If $\neg(aRb)$, then $[a] \cap [b] = \emptyset$

iii. [a] = [b] if and only if aRb

Equivalence classes are either equal or completely disjoint.

3.3. Least Common Multiple.

Let $a, b \in \mathbb{N}$ Then $\operatorname{lcm}(a, b) = \frac{ab}{\operatorname{gcd}(a, b)}$

3.4. The integers modulo n.

The equivalence classes of the relation "congruence mod n" are called "congruence classes mod n". The integers mod n (\mathbb{Z}_n) is the set of all congruence classes mod n.

Let $n \ge 2$. Then \mathbb{Z}_n is a finite commutative ring. Additive identity: [0] Multiplicative identity: [1] Additive inverse: [a] + [-a] = 0

If p is prime, then \mathbb{Z}_p is a finite field. The converse also holds.

3.5. Fermat's Little Theorem.

Let p be prime, and let a be any integer with $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$

If p is prime and $a \in \mathbb{Z}$ with $p \nmid a$, and $k \in \mathbb{Z}$, then $a^k \equiv a^k \pmod{p-1} \pmod{p}$

3.6. Chinese Remainder Theorem.

Let $m_1, m_2, m_3 \dots m_k$ be pairwise relatively prime natural numbers, and $a_1, a_2, a_3 \dots a_k \in \mathbb{Z}$ Then the set of congruences

 $x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$ $x \equiv a_3 \pmod{m_3}$ \vdots $x \equiv a_k \pmod{m_k}$ has a unique solution modulo $m_1 \cdot m_2 \cdot m_3 \dots m_k$

Let $n \in \mathbb{N}_{\geq 2}$ and $a \in \mathbb{Z}_n$ Then $[a]^{-1}$ exists in \mathbb{Z}_n if and only if gcd(a, n) = 1

4. Cryptography

4.1. Background.

The bit length of $n \in \mathbb{R}$ is $\lfloor \log_2 n \rfloor + 1$

Let f and g be functions such that $f, g : \mathbb{N} \to \mathbb{R}_{>0}$ Then f(n) = O(g(n)) if there exists c > 0 and $n_o \in \mathbb{Z}$ such that $f(n) \leq c \cdot g(n) \ \forall \ n \geq n_o$

Let a, b be k-bit numbers. Then we have the following running time for algorithms:

Operation	Running time
a+b, a-b	O(k) bit operations
$a \cdot b$	$O(k^2)$ bit operations
a = bq + r	$O(k^2)$ bit operations
gcd(a, b)	$O(k^2)$ bit operations (by EEA)

4.2. Primality testing.

Wilson's Theorem.

Let $n \in \mathbb{N}_{\geq 2}$ Then p is prime if and only if $(p-1)! \equiv -1 \pmod{p}$

4

Fermat's test.

Repeat the following ℓ times:

- 1. Select a at random in [1, n-1]2. Compute $t = a^{n-1} \mod n$
- **3.** If $t \neq 1$ then output "*n* is COMPOSITE" and STOP

Output "n is PROBABLY PRIME"

The worst-case running time for Fermat's test is $O(k^2)$ bit operations.

Define $\mathbb{Z}_n^* = \{a : 1 \leq a \leq n-1, \ \gcd(a, n) = 1\}$ = $\{a : a^{-1} \mod n \text{ exists } \}$

Let n be composite.

Suppose there exists at least 1 Fermat witness, $b \in \mathbb{Z}_n^*$ for nThen at least half of all $n \in \mathbb{Z}_n^*$ are also Fermat witnesses for n

Let n be odd and composite.

Then n is a Carmichael number if $a^{n-1} \equiv 1 \pmod{n}$ for all $a \in \mathbb{Z}_n^*$

Miller-Rabin test.

Write n-1 as $2^s \cdot d$ by factoring powers of 2 from n-1. Repeat the following ℓ times:

- **1.** Select a at random in [1, n-1]
- **2.** If gcd(a, n) > 1 then output "n is COMPOSITE" and STOP
- **3.** Compute $t = a^{n-1} \mod n$. If t = 1 or t = n-1 then go to the next iteration.
- 4. For j from 0 to s 1 do:

i. Compute $t = a^{2^j d} \mod n$

ii. If t = n - 1 then go to next iteration

5. Output "n is COMPOSITE" and STOP

Output "n is PROBABLY PRIME"

The worst-case running time for the Miller-Rabin test is $O(k(\log n)^3)$ bit operations.

Aqrawal-Kayal-Saxena test.

Let $n, a \in \mathbb{Z}$ with $n \ge 2$ and gcd(a, n) = 1Then n is prime if and only if $(x+a)^n \equiv x^n + a^n \pmod{n}$ $\equiv x^n + a \pmod{n}$

where x is indeterminate.

4.3. **RSA** public-key encryption scheme.

Used so that two parties can engage in confidential communications over an unsecured channel, having never before used a secure channel.

COURSE NOTES

Created by Ron Rivest, Adi Shamir and Leonard Adleman in 1976.

Key generation works when each user, A and B, does the following:

- **1.** Randomly select two large distinct primes p and q.
- **2.** Compute n = pq and $\phi(n) = (p-1)(q-1)$
- **3.** Select an arbitrary $e, 1 < e < \phi(n)$ such that $gcd(e, \phi(n)) = 1$
- **4.** Compute $d, 1 < d < \phi(n)$ such that $ed \equiv 1 \pmod{\phi(n)}$

Then the public key of A is (n, e) while the private key of A is d.

To encrypt a message m for Bob, Alice does the following:

- 1. Obtains an authenticated copy of Bob's public key.
- **2.** Represents m as an integer in [0, n-1]
- **3.** Computes $c \equiv m^e \pmod{n}$
- **4.** Sends *c* to Bob.

To decrypt a message m from Alice, Bob does the following:

1. Computes $r \equiv c^d \pmod{n}$. Then r = m.

To ensure that Alice has an *authenticated* public key, the following happens:

- 1. Bob obtains a "certificate" from VeriSign.
- **2.** Bob sends Alice the certificate.
- 3. Alice verifies VeriSign's signature, and then is assured she has Bob's public key.
- 4. Alice can encrypt any message m to Bob, and only he can decrypt it.

5. Quadratic Number Domains

5.1. Background.

Let $d \neq 1$ be a square free integer. Then $\mathbb{Q}(\sqrt{d}) := \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$ $\mathbb{Z}[\sqrt{d}] := \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$

Properties of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Z}[\sqrt{d}]$:

- i. $\mathbb{Z} \subseteq \mathbb{Z}[\sqrt{d}]$ and $\mathbb{Q}, \mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}(\sqrt{d})$
- ii. If $r_1 + s_1\sqrt{d}$, $r_2 + s_2\sqrt{d} \in \mathbb{Q}(\sqrt{d})$,

then $r_1 + s_1\sqrt{d} = r_2 + s_2\sqrt{d}$ if and only if $r_1 = r_2$ and $s_1 = s_2$.

- iii. If d > 0, then $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{R} \subseteq \mathbb{C}$
- iv. If d < 0, then $\mathbb{Q}(\sqrt{d}) \nsubseteq \mathbb{R}$, but $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{C}$

 $\mathbb{Q}(\sqrt{d})$ is a field.

 $\mathbb{Z}[\sqrt{d}]$ is a commutative ring.

Let $a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$. Then $a + b\sqrt{d}$ is a unit if there exists $x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ such that $(a + b\sqrt{d})(x + y\sqrt{d}) = 1$.

Let $x = r + s\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. Then the conjugate of x is $\tilde{x} = r - s\sqrt{d}$ Then the norm of x is $N(x) = x\tilde{x}$.

Properties of the norm:

i. $N(x) = 0 \iff x = 0$ ii. $(\widetilde{x+y}) = \widetilde{x} + \widetilde{y}$ iii. $(\widetilde{xy}) = \widetilde{x} \cdot \widetilde{y}$ iv. N(xy) = N(x)N(y)

Let $x \in \mathbb{Z}[\sqrt{d}]$. Then i. $N(x) \in \mathbb{Z}$ ii. x is a unit if and only if $N(x) = \pm 1$

A commutative ring R is an *integral domain* if **i.** $1 \neq 0$

ii. ab = 0, with $a, b \in R$, implies a = 0 or b = 0.

5.2. Prime Factorization in $\mathbb{Z}[\sqrt{d}]$.

Every nonzero $x \in \mathbb{Z}[\sqrt{d}]$ can be expressed as the product of a unit and finitely many primes.

If $d \equiv 1 \pmod{4}$, then $\mathbb{Z}[\sqrt{d}]$ is not a unique factorization domain (UFD). If d < 0, then $\mathbb{Z}[\sqrt{d}]$ is a unique factorization domain only if d = -1 or d = -2. If d > 0 and $d \neq 1 \pmod{4}$, $\mathbb{Z}[\sqrt{d}]$ is a UFD for (at least) $d = \{2, 3, 6, 7, 11, 14, 19, 22, 23, 31 \dots\}$.

Let $x, y \in \mathbb{Z}[\sqrt{d}]$. Then x|y if y = xz for some $z \in \mathbb{Z}[\sqrt{d}]$

An element $x \in \mathbb{Z}[\sqrt{d}]$ is prime if

i. x is not a unit

ii. If x = yz for $y, z \in \mathbb{Z}[\sqrt{d}]$, then either y or z is a unit.

Let $x \in \mathbb{Z}[\sqrt{d}]$.

If |N(x)| is prime, then x is prime.

Note that the converse is not true in general.

Let $x, y \in \mathbb{Z}[\sqrt{d}]$. Then x is an associate of y if x = yu for some unit $u \in \mathbb{Z}[\sqrt{d}]$.

COURSE NOTES

Properties of the associate:

- i. The relation "x is an associate of y" is an equivalence relation of $\mathbb{Z}[\sqrt{d}]$
- ii. If x and y are associates, then $N(x) = \pm N(y)$
- iii. If x|z, then y|z for all associates y of x.
- iv. If $p \in \mathbb{Z}[\sqrt{d}]$ is prime and $u \in \mathbb{Z}[\sqrt{d}]$ is a unit, then pu is prime.

5.3. Gaussian Integers.

The Gaussian integers are a quadratic number domain with d = -1

- $\begin{array}{l} \cdot \ \mathbb{Z}[i] = \{x + yi \, | \, x, y \in \mathbb{Z}\} \\ \cdot \ N(x + yi) = x^2 + y^2 \geqslant 0 \end{array}$
- · Units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$

By convention, gcd(a, b) for $a, b \in \mathbb{Z}[i]$ must have an argument in the first quadrant.

If $p \equiv 3 \pmod{4}$ is an integer prime, then it is also a Gaussian prime.

If $p \equiv 1 \pmod{4}$ then there exists a unique expression $p = a^2 + b^2$ for $a, b \in \mathbb{Z}$.

The Gaussian primes are:

i. 1+*i* **ii.** $p \in \mathbb{Z}$ such that p is prime, $p \equiv 3 \pmod{4}$ iii. $a \pm bi$, where $a^2 + b^2 = p$ for p prime and $p \equiv 3 \pmod{4}$.

6. Polynomial Rings

6.1. Background.

Let R be a commutative ring. Then a polynomial in x over R is an expression $f(x) = a_d x^d + \dots a_2 x^2 + a_1 x + a_0$ where $d \ge 0$ and $a_i \in R$

The set of all such polynomials is denoted by R[x]If the leading coefficient is 1, then f is said to be *monic*.

The degree of $f \in R[x]$, denoted by deg(f), is the highest power of any variable in f. The degree of the zero polynomial is $-\infty$ If f, g are polynomials in R[x], then $deg(f+g) \leq max\{deg(f), deg(g)\}$

Associations between polynomial rings and other domains:

- i. If R is a commutative ring, then R[x] is a commutative ring.
- ii. If R is an integral domain, then R[x] is an integral domain.
- iii. If F is a field, then then only invertible elements in F[x] are are the constant polynomials (for which the degree is 0), denoted by F^*

6.2. Polynomial factorization.

Note that $\mathbb{Z}[x]$ has no division algorithm.

If d is a gcd of $f, g \in F[x]$, then d must be monic. Also the gcd of any two polynomials is unique.

Let $p \in F[x]$. Then p is irreducible over F if

i. $deg(p) \ge 1$

ii. p cannot be expressed as p = fg where $f, g \in F[x]$, with $1 \leq deg(f), deg(g) < deg(p)$

The factor theorem states that:

i. (x-a)|f(x) if and only if f(a) = 0ii. $a \in F$ is a root of $f \in F[x]$ if f(a) = 0

Let F be a field. Then F[x] is a UFD. More precisely, every nonzero polynomial $f \in F[x]$ has a unique factorization $f = ap_1^{e_1}p_2^{e_2} \dots p_k^{e_k}$ where p_i 's are distinct monic irreducible polynomials in F[x], and a is some nonzero constant in F, and $e_i \in \mathbb{N}$.

If $f \in F[x]$ is of degree $n \neq 0$, then f has at most n roots in F.

6.3. Polynomial congruences.

The basic properties of congruences over polynomial fields are:

- i. Congruence modulo f is an equivalence relation on F.
- ii. The equivalence class of $g \in F[x]$ is denoted by $\{h \in F[x] : h \equiv g \pmod{f}\}$.
- iii. The set of all equivalence classes is denoted by F[x]/(f).
- iv. Addition and multiplication in F[x]/(f) is denoted in the usual way.

F[x]/(f) is a commutative ring.

If $f \in F[x]$, $deg(f) \ge 1$, is irreducible over F, then F[x]/(f) is a field; the converse also holds.

6.4. Galois Fields.

The *order* of a finite field is the number of elements in the field.

Let F be a finite field of order q. Let $f \in F[x]$ of degree $n \ge 1$ be irreducible over F. Then F[x]/(f) is a finite field of order q^n .

Two fields F_1 and F_2 are isomorphic if there exists a bijection $\phi: F_1 \to F_2$ such that $\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta)$ for all $\alpha, \beta \in F_1$. Similarly, $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta)$.

Any two fields of the same order are isomorphic.

addition in F_1 addition in F_2

The finite field of order q is denoted by GF(q), where GF indicates a Galois Field.

Fermat's Little Theorem for finite fields.

Let F be any finite field of order q.

Then when α is a nonzero element in F, $\alpha^{q-1} \equiv 1 \pmod{q}$ for all $q \in F^* = F \setminus \{0\}$.

Corollary:

 $\alpha^q = \alpha$ for all $\alpha \in F$

Corollary:

In
$$F[x]$$
, $x^q - x = \prod_{\alpha \in F} (x - \alpha)$

Let F be a field.

Then the *characteristic* of F is denoted by m = char(F), such that m is the smallest positive integer such that $\underbrace{1+1+1+\dots+1}_{m} = 0$. If no such m exists, we define char(F) = 0.

If char(F) = 0, then F is an infinite field.

Let F be a finite field with char(F) = m. Then m is prime.

If F is an infinite field with $char(F) = m \neq 0$, then m is prime.

Freshman's Dream.

If F is a field with char(F) = p, then $(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$ for all $\alpha, \beta \in F$ and $n \ge 1$.

Every finite field F with char(F) = p has \mathbb{Z}_p as a subfield.

Vector space corollaries for finite fields.

Every finite field has p^n elements, where p is the (prime) characteristic of the field, and $n \ge 1$.

If F is a finite field of order q, where q is a prime power, and $n \ge 2$, there exists a finite field of order q^n .

Hence if p is prime and $n \ge 1$, then there exists a finite field of order q^n .

6.5. Irreducible polynomials over \mathbb{Q} .

It is much easier to determine if polynomials with integer coefficients are irreducible, so we have to devise a way to convert polynomials in \mathbb{Q} to polynomials in \mathbb{Z} .

There exists an efficient (polynomial time) algorithm for deciding whether $f \in \mathbb{Q}[x]$ is irreducible.

10

An efficient (polynomial time) deterministic algorithm for deciding irreducibility of $f \in \mathbb{Z}_p[x]$ is not known.

Gauss's Lemma.

Let f(x) be a polynomial such that $f \in \mathbb{Q}$. Let λ be the lcm of all denominators of the nonzero coefficients of f. Then let $\tilde{f}(x) = \lambda f(x)$ Gauss's Lemma states that \tilde{f} is irreducible over \mathbb{Q} if and only if \tilde{f} is irreducible over \mathbb{Z} .

Rational Root Theorem.

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} \dots a_1 x + a_0 \in \mathbb{Z}[x]$ such that $deg(f) = n \ge 1$ Then if $c = \frac{s}{t}$, where $s, t \in \mathbb{Z}, t > 0, s \ne 0, \gcd(t, s) = 1$ is a root of f, then $s|a_0$ and $t|a_n$.

Eisenstein's Criterion. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$, with deg(f) = n. Suppose p is prime such that: i. $p | a_i$ such that $0 \leq i \leq n-1$ ii. $p \nmid a_n$ iii. $p^2 \nmid a_0$

Then f is irreducible over \mathbb{Q} .

Factoring modulo primes.

Let $f(x) \in \mathbb{Z}[x]$ and let p be a prime. Let $\overline{f}(x) \in \mathbb{Z}[x]$ be obtained from f by reducing it coefficients modulo p. Then if \overline{f} is irreducible over \mathbb{Z}_p , then f is irreducible over \mathbb{Q} .

Number domains.

