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COURSE NOTES

1. COMMUTATIVE RINGS AND FIELDS

1.1. Characteristics of commutative rings.
A commutative ring, denoted by (R, +,-) consists of a set R and two binary operations.

The characteristics of a commutative ring are:
i. Addition and multiplication are commutative and associative.

ii. There exists additive and multiplicative identities.
iii. There exists an additive inverse.
iv. The distributive law holds.

A commutative ring is a field if 1 # 0 and multiplicative inverses exist.

1.2. The integers.
The properties of divisibility for the integers, for a, b, c € Z, are:
i. If a|b and b|c then alc
ii. If a|b and alc then albx + cy for all z,y € Z
iii. If a|b and b|a then a = £b
iv. If alb and a,b € N then b > a

Let a,b,x € N with x > 2.
Then 2% — 1|2 — 1 if and only if a|b

Let a,b,z € N with x > 2.
Then ged(z® — 1,2° — 1) = p9cd(ab) _ 1

2. THE FUNDAMENTAL THEOREM OF ARITHMETIC

2.1. Greatest Common Divisor properties.
Let a,b,q,7r € Z withb=qa +r
Then gcd(a,b) = ged(a, r)

By the GCD characterization theorem, if a,b € Z then d = gcd(a, b) if and only if
i. d=0
ii d|a and d|b
iii. There exist x,y € Z such that ax + by =d
iv. If c|a and ¢|b then c|d

2.2. Linear Diophantine equations.

Let a,b,c € Z
Then az + by = ¢ has an integer solution if and only if ged(a,b)|c
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Let a,b € Z, not both zero.
Then ged(a, b) is the smallest positive integer d for which az + by = d has a solution

Let a,b, ¢, € Z with alb, not both zero.

Let d = ged(a, b) and suppose that d|c

Then, given that a particular solution to the Diophantine equation ax + by = ¢ is (x4, ¥o),
the complete integer solution to this equation is given by:

x:xo+gk s Y=Yo—gk , keZ

2.3. The Fundamental Theorem of Arithmetic.

An integer p > 2 is prime if its only positive divisors are 1 and p. Otherwise p is

composite.

If a,b € Z and p is prime and p|ab, then p|a or p|b.

Every integer n > 2 can be expressed as the product of primes. This is termed the
prime factorization of n. Moreover, this expression is unique up to rearrangement of prime

factors.

Let n,k € Z
Then {/n is either an integer or an irrational.

If a,b € Z with gcd(a,b) = 1, then there are infinitely many primes of the form an + b.

3. CONGRUENCES

3.1. Properties of congruences.
Let n € N be fixed and let a,b € Z
If n|(a — b), then a and b are congruent modulo n, and we write a = b (mod n)

Let n € N be fixed and let a,b,c,d’,b' € Z

i. a=a (mod n) [Reflexivity]

ii. Ifa=0b (mod n), then b =a (mod n) [Symmetry]

iii. If a =0 (mod n) and b = ¢ (mod n), then a = ¢ (mod n) [Transistivity]
If a=b (mod n) and o' =V (mod n), then

iv. a+d =b+b (mod n)

v. ad =bb (mod n)

vi. a—d' =b—1V (mod n)

vii. If k € N, then ¢* = b* (mod n)

Let a € Z and n € N. Then a is congruent modulo n to exactly one of z € [1,n — 1].

The linear congruence az = b (mod n) has a solution if and only if ged(a, n)|b
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The following are equivalent:
i. a=b (modn)
ii. n|(a—0b)
iili. a = b+ kn for some k € Z
iv. a,b leave the same remainder upon division by n
v. la] =[b] in Z,

3.2. Equivalence relations.
A relation on a set S is a subset RC S x S
For a,b € S we write aRb if (a,b) € R.

A relation R on S is an equivalence relation if for all a,b,c € S
i. aRa (Reflexivity)
ii. aRb= bRa (Symmetry)
iii. aRb A bRc = aRc (Transistivity)

Let R be an equivalence relation on S and let a € S. Then the equivalence class of a is
[a] = {z € S : xRa}, where a is called the representative of [a].

Let R be an equivalence relation on S. Then
i. acfaforallaec s
ii. If =(aRD), then [a] N [b] =0
iii. [a] = [b] if and only if aRb
Equivalence classes are either equal or completely disjoint.

3.3. Least Common Multiple.
Let a,b € N

b
Then lem(a, b) = a

ged(a, b)

3.4. The integers modulo n.
The equivalence classes of the relation “congruence mod n” are called “congruence classes
mod n”. The integers mod n (Z,) is the set of all congruence classes mod n.

Let n > 2. Then Z, is a finite commutative ring.
Additive identity: [0]
Multiplicative identity: [1]
Additive inverse: [a] + [—a] =0

If p is prime, then Z, is a finite field. The converse also holds.
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3.5. Fermat’s Little Theorem.
Let p be prime, and let a be any integer with p{a. Then a?~! =1 (mod p)

If p is prime and a € Z with pta, and k € Z, then a* = a* (°d?2=1) (mod p)

3.6. Chinese Remainder Theorem.

Let mq, mo, m3...m; be pairwise relatively prime natural numbers, and ai,a2,as...ar € Z
Then the set of congruences

x =aj (mod my)
x = ay (mod mg)
r =

az (mod mg)

x = ag (mod my,)
has a unique solution modulo my - mgy - mg3...my

Let n € Nyg and a € Z,,
Then [a] ™! exists in Z, if and only if ged(a,n) =1

4. CRYPTOGRAPHY

4.1. Background.
The bit length of n € R is [logan| +1

Let f and g be functions such that f,g: N — Ryg
Then f(n) = O(g(n)) if there exists ¢ > 0 and n, € Z such that f(n) < c-g(n)Vn =n,

Let a,b be k—bit numbers. Then we have the following running time for algorithms:

Operation Running time
a+ba—b O(k) bit operations
a-b O(k?) bit operations
a=bqg+r O(k?) bit operations

ged(a, b) O(k?) bit operations (by EEA)

4.2. Primality testing.

Wilson’s Theorem.
Let n € Nxo
Then p is prime if and only if (p — 1)! = —1 (mod p)



COURSE NOTES 5

Fermat’s test.
Repeat the following ¢ times:

1. Select a at random in [1,n — 1]

2. Compute t = a”~! mod n

3. If t # 1 then output “n is COMPOSITE” and STOP
Output “n is PROBABLY PRIME”

The worst-case running time for Fermat’s test is O(k?) bit operations.

Define Z; ={a:1<a<n-—1, ged(a,n) =1}
= {a:a"! mod n exists }

Let n be composite.
Suppose there exists at least 1 Fermat witness, b € Z;, for n
Then at least half of all n € Z;, are also Fermat witnesses for n

Let n be odd and composite.
Then n is a Carmichael number if ¢! =1 (mod n) for all a € Z}

Miller-Rabin test.
Write n — 1 as 2° - d by factoring powers of 2 from n — 1.
Repeat the following ¢ times:

. Select a at random in [1,n — 1]
. If ged(a,n) > 1 then output “n is COMPOSITE” and STOP
. Compute t =a"! modn. Ift =1 or t =n — 1 then go to the next iteration.

. For j from 0 to s — 1 do:
27d

W N

i. Compute t =a mod n
ii. If t = n — 1 then go to next iteration
5. Output “n is COMPOSITE” and STOP
Output “n is PROBABLY PRIME”

The worst-case running time for the Miller-Rabin test is O(k(logn)?3) bit operations.

Agrawal-Kayal-Saxena test.
Let n,a € Z with n > 2 and ged(a,n) =1
Then n is prime if and only if (z + a)"” = 2" 4+ @™ (mod n)
=2"+a (mod n)
where x is indeterminate.

4.3. RSA public-key encryption scheme.
Used so that two parties can engage in confidential communications over an unsecured
channel, having never before used a secure channel.



6 COURSE NOTES

Created by Ron Rivest, Adi Shamir and Leonard Adleman in 1976.

Key generation works when each user, A and B, does the following;:
1. Randomly select two large distinct primes p and gq.
2. Compute n =pq and ¢(n) = (p—1)(¢ — 1)
3. Select an arbitrary e,1 < e < ¢(n) such that ged(e,p(n)) =1
4. Compute d,1 < d < ¢(n) such that ed =1 (mod ¢(n))

Then the public key of A is (n, e) while the private key of A is d.

To encrypt a message m for Bob, Alice does the following:
1. Obtains an authenticated copy of Bob’s public key.
2. Represents m as an integer in [0,n — 1]
3. Computes ¢ = m® (mod n)
4. Sends c¢ to Bob.

To decrypt a message m from Alice, Bob does the following:
1. Computes r = ¢? (mod n). Then r = m.

To ensure that Alice has an authenticated public key, the following happens:
1. Bob obtains a “certificate” from VeriSign.
2. Bob sends Alice the certificate.
3. Alice verifies VeriSign’s signature, and then is assured she has Bob’s public key.
4. Alice can encrypt any message m to Bob, and only he can decrypt it.

5. QUADRATIC NUMBER DOMAINS

5.1. Background.
Let d # 1 be a square free integer. Then Q(v/d) := {a + bV/d |a,b € Q}

Z[Vd] = {a+bVd|a,bc 7}

Properties of Q(v/d) and Z[v/d ]:
i. ZCZ[Vd]and Q Z[Vd] < Q(d)
i, If r + s1Vd, ro + sov/d € Q(Vd),
then r1 + s1V/d = 79 + s9V/d if and only if r1 = ro and s1 = $o.
iii. If d > 0, then Q(v/d) CRC C
iv. If d < 0, then Q(v/d) ¢ R, but Q(v/d) C C

Q(+d) is a field.

Z[\/d] is a commutative ring.
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Let a + bVd € Z[Vd ].
Then a + bv/d is a unit if there exists 4+ yv/d € Z[v/d | such that (a + bvVd)(z + yvd) = 1.

Let z =r+sVde Q(\/&)
Then the conjugate of z is T = r — sv/d
Then the norm of z is N(x) = zZ.

Properties of the norm:
i. N@z)=0<=z=0
ii. (14+y)=7+7
iii. (xy)=2-y
iv. N(zy) = N(z)N(y)

Let z € Z[V/d]. Then
i. N(z)eZ
ii. x is a unit if and only if N(x) = £1

A commutative ring R is an integral domain if
i. 1#0
ii. ab=0, with a,b € R, implies a =0 or b = 0.

5.2. Prime Factorization in Z[V/d ].

Every nonzero x € Z[ﬂ ] can be expressed as the product of a unit and finitely many primes.

If d =1 (mod 4), then Z[v/d ] is not a unique factorization domain (UFD).
If d < 0, then Z[\/&] is a unique factorization domain only if d = —1 or d = —2.
Ifd > 0andd # 1 (mod 4), Z[v/d ] is a UFD for (at least) d = {2,3,6,7,11,14,19,22,23,31...}.

Let x,y € Z[v/d]. Then x|y if y = 2z for some z € Z[Vd ]

An element z € Z[v/d ] is prime if
i. x is not a unit
ii. If z = yz for y, z € Z[v/d ], then either y or z is a unit.

Let = € Z[Vd ].
If |N(x)| is prime, then z is prime.
Note that the converse is not true in general.

Let z,y € Z[Vd ].
Then z is an associate of y if 2 = yu for some unit u € Z[v/d ].
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Properties of the associate:
i. The relation “z is an associate of 3” is an equivalence relation of Z[v/d |
ii. If z and y are associates, then N(z) = =N (y)
iii. If x|z, then y|z for all associates y of z.
iv. If p € Z[v/d] is prime and v € Z[v/d ] is a unit, then pu is prime.

5.3. Gaussian Integers.

The Gaussian integers are a quadratic number domain with d = —1
i) ={x +yi|x,y € Z}
"Nz +yi)=22+y>>0
- Units in Z[i] are £1, £

By convention, ged(a,b) for a,b € Z[i] must have an argument in the first quadrant.

If p=3 (mod 4) is an integer prime, then it is also a Gaussian prime.

If p=1 (mod 4) then there exists a unique expression p = a? + b? for a,b € Z.

The Gaussian primes are:
i. 144
ii. p € Z such that p is prime, p =3 (mod 4)
iii. a =+ bi, where a® + b? = p for p prime and p = 3 (mod 4).

6. POLYNOMIAL RINGS

6.1. Background.
Let R be a commutative ring. Then a polynomial in z over R is an expression
f(a:):adxd+...a2x2+a1x+ao where d > 0 and a; € R

The set of all such polynomials is denoted by R[x]
If the leading coefficient is 1, then f is said to be monic.

The degree of f € R[z], denoted by deg(f), is the highest power of any variable in f.
The degree of the zero polynomial is —oo
If f,g are polynomials in R[x], then deg(f + ¢g) < max{deg(f),deg(g)}

Associations between polynomial rings and other domains:
i. If Ris a commutative ring, then R[x] is a commutative ring.
ii. If R is an integral domain, then R[x] is an integral domain.
iii. If F'is a field, then then only invertible elements in F[z] are are the
constant polynomials (for which the degree is 0), denoted by F*
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6.2. Polynomial factorization.
Note that Z[x] has no division algorithm.

If d is a ged of f,g € F[z], then d must be monic.
Also the ged of any two polynomials is unique.

Let p € Fz]. Then p is irreducible over F if

i. deg(p) =1
ii. p cannot be expressed as p = fg where f, g € Flz|, with 1 < deg(f),deg(g) < deg(p)

The factor theorem states that:
i. (z—a)|f(z)if and only if f(a) =0
ii. a€ Fisarootof fe Flx]if f(a) =0

Let F be a field. Then F[z] is a UFD. More precisely, every nonzero polynomial f € F[x]
has a unique factorization f = ap7'p5?...p;* where p;’s are distinct monic irreducible poly-
nomials in F'[z], and a is some nonzero constant in F, and e; € N.

If f € F[x] is of degree n # 0, then f has at most n roots in F.

6.3. Polynomial congruences.

The basic properties of congruences over polynomial fields are:
i. Congruence modulo f is an equivalence relation on F'.
ii. The equivalence class of g € F[x] is denoted by {h € Flz] : h =g (mod f)}.
iii. The set of all equivalence classes is denoted by F[z]/(f).
iv. Addition and multiplication in F'[x]/(f) is denoted in the usual way.

F[z]/(f) is a commutative ring,.
If f € Flz], deg(f) > 1, is irreducible over F', then F[z]/(f) is a field; the converse also holds.

6.4. Galois Fields.
The order of a finite field is the number of elements in the field.

Let F be a finite field of order ¢q. Let f € Fx] of degree n > 1 be irreducible over F.
Then Fx]/(f) is a finite field of order ¢" .

Two fields F} and F3 are isomorphic if there exists a bijection ¢ : F} — F5 such that
¢la+B) =¢(a)+ ¢(B) for all o, 8 € Fy. Similarly, ¢(af) = ¢(a)p(B).
N—_—— N—————

addition in I} addition in Fb
Any two fields of the same order are isomorphic.
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The finite field of order ¢ is denoted by GF'(q), where GF indicates a Galois Field.

Fermat’s Little Theorem for finite fields.

Let F be any finite field of order q.
Then when « is a nonzero element in F, a4~! =1 (mod q) for all ¢ € F* = F\ {0}.

Corollary:

al =qforall o € F
Corollary:

In Flz], 21— 2 = H(:c—a)

aceF

Let F be a field.
Then the characteristic of F' is denoted by m = char(F'), such that m is the smallest pos-
itive integer such that 1 +1+ 1+ ---+ 1 = 0. If no such m exists, we define char(F') = 0.

m

If char(F) = 0, then F' is an infinite field.
Let F be a finite field with char(F) = m. Then m is prime.
If F is an infinite field with char(F) = m # 0, then m is prime.

Freshman’s Dream.
If F is a field with char(F) = p, then (o + B)P" = oP" 4 7" for all o, € F and n > 1.

Every finite field F' with char(F') = p has Z,, as a subfield.

Vector space corollaries for finite fields.

Every finite field has p™ elements, where p is the (prime) characteristic of the field, and n > 1.

If F' is a finite field of order ¢, where ¢ is a prime power, and n > 2, there exists a finite
field of order ¢".
Hence if p is prime and n > 1, then there exists a finite field of order ¢".

6.5. Irreducible polynomials over Q.
It is much easier to determine if polynomials with integer coefficients are irreducible, so
we have to devise a way to convert polynomials in Q to polynomials in Z.

There exists an efficient (polynomial time) algorithm for deciding whether f € Qx| is
irreducible.



COURSE NOTES 11

An efficient (polynomial time) deterministic algorithm for deciding irreducibility of
f € Zy,x] is not known.

Gauss’s Lemma.

Let f(x) be a polynomial such that f € Q.
Let A be the lem of all denominators of the nonzero coefficients of f.

Then let f(z) = Af(x)
Gauss’s Lemma states that f is irreducible over Q if and only if f is irreducible over Z.

Rational Root Theorem.
Let f(z) = apz™ + an—12" 1 ... a1x + ag € Z[x] such that deg(f) =n > 1
Then if ¢ = §, where s,t € Z,t > 0,5 # 0,gcd(t, s) = 1 is a root of f, then s|ag and t|ay,.

FEisenstein’s Criterion.
n

Let f(x) = Z a;x’ € Z[x], with deg(f) = n.
i=0

Suppose p is prime such that:
i. pla; such that 0 <i<n—1
ii. ptay
iii. p?1ao

Then f is irreducible over Q.

Factoring modulo primes.
Let f(x) € Z[z] and let p be a prime.
Let f(x) € Z[z] be obtained from f by reducing it coefficients modulo p.
Then if f is irreducible over Zy, then f is irreducible over Q.

Number domains.

Rings: M (n,R)

Commutative Rings: Z1g |

Unique Factorization Domains: Z[z]

V=14 +1 . . .
Principal Ideal Domains: Z [24—} Euclidean Domains: Z, Z[i], F'[z], Z[\/ —2}

_| Factorization Domains: Z[\/éfﬂ , Z[\/—47} Fields: R, @, Q(\/&),Zp, Flal/ ()
_l | Integral Domains: B




