
Algebra
COURSE NOTES

Fall 2009, Math 145

Contents

1. Commutative Rings and Fields 1
1.1. Characteristics of commutative rings 1
1.2. The integers 1
2. The Fundamental Theorem of Arithmetic 1
2.1. Greatest Common Divisor properties 1
2.2. Linear Diophantine equations 1
2.3. The Fundamental Theorem of Arithmetic 2
3. Congruences 2
3.1. Properties of congruences 2
3.2. Equivalence relations 3
3.3. Least Common Multiple 3
3.4. The integers modulo n 3
3.5. Fermat’s Little Theorem 4
3.6. Chinese Remainder Theorem 4
4. Cryptography 4
4.1. Background 4
4.2. Primality testing 4
4.3. RSA public-key encryption scheme 5
5. Quadratic Number Domains 6
5.1. Background 6
5.2. Prime Factorization in Z[

√
d ] 7

5.3. Gaussian Integers 8
6. Polynomial Rings 8
6.1. Background 8
6.2. Polynomial factorization 9
6.3. Polynomial congruences 9
6.4. Galois Fields 9
6.5. Irreducible polynomials over Q 10

c© J. Lazovskis

Professor: A. Menezes



COURSE NOTES 1

1. Commutative Rings and Fields

1.1. Characteristics of commutative rings.

A commutative ring, denoted by (R,+, ·) consists of a set R and two binary operations.

The characteristics of a commutative ring are:
i. Addition and multiplication are commutative and associative.
ii. There exists additive and multiplicative identities.
iii. There exists an additive inverse.
iv. The distributive law holds.

A commutative ring is a field if 1 6= 0 and multiplicative inverses exist.

1.2. The integers.

The properties of divisibility for the integers, for a, b, c ∈ Z, are:
i. If a|b and b|c then a|c
ii. If a|b and a|c then a|bx+ cy for all x, y ∈ Z
iii. If a|b and b|a then a = ±b
iv. If a|b and a, b ∈ N then b > a

Let a, b, x ∈ N with x > 2.
Then xa − 1|xb − 1 if and only if a|b

Let a, b, x ∈ N with x > 2.
Then gcd(xa − 1, xb − 1) = xgcd(a,b) − 1

2. The Fundamental Theorem of Arithmetic

2.1. Greatest Common Divisor properties.
Let a, b, q, r ∈ Z with b = qa+ r
Then gcd(a, b) = gcd(a, r)

By the GCD characterization theorem, if a, b ∈ Z then d = gcd(a, b) if and only if
i. d > 0
ii d|a and d|b
iii. There exist x, y ∈ Z such that ax+ by = d
iv. If c|a and c|b then c|d

2.2. Linear Diophantine equations.
Let a, b, c ∈ Z
Then ax+ by = c has an integer solution if and only if gcd(a, b)|c
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Let a, b ∈ Z, not both zero.
Then gcd(a, b) is the smallest positive integer d for which ax+ by = d has a solution

Let a, b, c,∈ Z with a|b, not both zero.
Let d = gcd(a, b) and suppose that d|c
Then, given that a particular solution to the Diophantine equation ax+ by = c is (xo, yo),

the complete integer solution to this equation is given by:
x = xo + b

dk , y = yo − a
dk , k ∈ Z

2.3. The Fundamental Theorem of Arithmetic.
An integer p > 2 is prime if its only positive divisors are 1 and p. Otherwise p is

composite.

If a, b ∈ Z and p is prime and p|ab, then p|a or p|b.

Every integer n > 2 can be expressed as the product of primes. This is termed the
prime factorization of n. Moreover, this expression is unique up to rearrangement of prime
factors.

Let n, k ∈ Z
Then k

√
n is either an integer or an irrational.

If a, b ∈ Z with gcd(a, b) = 1, then there are infinitely many primes of the form an+ b.

3. Congruences

3.1. Properties of congruences.
Let n ∈ N be fixed and let a, b ∈ Z
If n|(a− b), then a and b are congruent modulo n, and we write a ≡ b (mod n)

Let n ∈ N be fixed and let a, b, c, a′, b′ ∈ Z
i. a ≡ a (mod n) [Reflexivity]
ii. If a ≡ b (mod n), then b ≡ a (mod n) [Symmetry]
iii. If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) [Transistivity]

If a ≡ b (mod n) and a′ ≡ b′ (mod n), then
iv. a+ a′ ≡ b+ b′ (mod n)
v. aa′ ≡ bb′ (mod n)
vi. a− a′ ≡ b− b′ (mod n)
vii. If k ∈ N, then ak ≡ bk (mod n)

Let a ∈ Z and n ∈ N. Then a is congruent modulo n to exactly one of x ∈ [1, n− 1].

The linear congruence ax ≡ b (mod n) has a solution if and only if gcd(a, n)|b
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The following are equivalent:
i. a ≡ b (mod n)
ii. n|(a− b)
iii. a = b+ kn for some k ∈ Z
iv. a, b leave the same remainder upon division by n
v. [a] = [b] in Zn

3.2. Equivalence relations.
A relation on a set S is a subset R ⊆ S × S
For a, b ∈ S we write aRb if (a, b) ∈ R.

A relation R on S is an equivalence relation if for all a, b, c ∈ S
i. aRa (Reflexivity)
ii. aRb⇒ bRa (Symmetry)
iii. aRb ∧ bRc⇒ aRc (Transistivity)

Let R be an equivalence relation on S and let a ∈ S. Then the equivalence class of a is
[a] = {x ∈ S : xRa}, where a is called the representative of [a].

Let R be an equivalence relation on S. Then
i. a ∈ [a] for all a ∈ S
ii. If ¬(aRb), then [a] ∩ [b] = ∅
iii. [a] = [b] if and only if aRb

Equivalence classes are either equal or completely disjoint.

3.3. Least Common Multiple.
Let a, b ∈ N
Then lcm(a, b) =

ab

gcd(a, b)

3.4. The integers modulo n.
The equivalence classes of the relation “congruence mod n” are called “congruence classes

mod n”. The integers mod n (Zn) is the set of all congruence classes mod n.

Let n > 2. Then Zn is a finite commutative ring.
Additive identity: [0]
Multiplicative identity: [1]
Additive inverse: [a] + [−a] = 0

If p is prime, then Zp is a finite field. The converse also holds.
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3.5. Fermat’s Little Theorem.
Let p be prime, and let a be any integer with p - a. Then ap−1 ≡ 1 (mod p)

If p is prime and a ∈ Z with p - a, and k ∈ Z, then ak ≡ ak (mod p−1) (mod p)

3.6. Chinese Remainder Theorem.

Let m1,m2,m3 . . .mk be pairwise relatively prime natural numbers, and a1, a2, a3 . . . ak ∈ Z
Then the set of congruences
x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
x ≡ a3 (mod m3)

...
x ≡ ak (mod mk)

has a unique solution modulo m1 ·m2 ·m3 . . .mk

Let n ∈ N>2 and a ∈ Zn
Then [a]−1 exists in Zn if and only if gcd(a, n) = 1

4. Cryptography

4.1. Background.
The bit length of n ∈ R is blog2 nc+ 1

Let f and g be functions such that f, g : N→ R>0

Then f(n) = O(g(n)) if there exists c > 0 and no ∈ Z such that f(n) 6 c · g(n) ∀ n > no

Let a, b be k−bit numbers. Then we have the following running time for algorithms:

Operation Running time
a+ b, a− b O(k) bit operations
a · b O(k2) bit operations
a = bq + r O(k2) bit operations
gcd(a, b) O(k2) bit operations (by EEA)

4.2. Primality testing.

Wilson’s Theorem.
Let n ∈ N>2

Then p is prime if and only if (p− 1)! ≡ −1 (mod p)
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Fermat’s test.
Repeat the following ` times:

1. Select a at random in [1, n− 1]
2. Compute t = an−1 mod n
3. If t 6= 1 then output “n is COMPOSITE” and STOP

Output “n is PROBABLY PRIME”

The worst-case running time for Fermat’s test is O(k2) bit operations.

Define Z∗n = {a : 1 6 a 6 n− 1 , gcd(a, n) = 1}
= {a : a−1 mod n exists }

Let n be composite.
Suppose there exists at least 1 Fermat witness, b ∈ Z∗n for n
Then at least half of all n ∈ Z∗n are also Fermat witnesses for n

Let n be odd and composite.
Then n is a Carmichael number if an−1 ≡ 1 (mod n) for all a ∈ Z∗n

Miller-Rabin test.
Write n− 1 as 2s · d by factoring powers of 2 from n− 1.
Repeat the following ` times:

1. Select a at random in [1, n− 1]
2. If gcd(a, n) > 1 then output “n is COMPOSITE” and STOP
3. Compute t = an−1 mod n. If t = 1 or t = n− 1 then go to the next iteration.
4. For j from 0 to s− 1 do:

i. Compute t = a2
jd mod n

ii. If t = n− 1 then go to next iteration
5. Output “n is COMPOSITE” and STOP

Output “n is PROBABLY PRIME”

The worst-case running time for the Miller-Rabin test is O(k(log n)3) bit operations.

Agrawal-Kayal-Saxena test.
Let n, a ∈ Z with n > 2 and gcd(a, n) = 1
Then n is prime if and only if (x+ a)n ≡ xn + an (mod n)

≡ xn + a (mod n)
where x is indeterminate.

4.3. RSA public-key encryption scheme.
Used so that two parties can engage in confidential communications over an unsecured

channel, having never before used a secure channel.
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Created by Ron Rivest, Adi Shamir and Leonard Adleman in 1976.

Key generation works when each user, A and B, does the following:
1. Randomly select two large distinct primes p and q.
2. Compute n = pq and φ(n) = (p− 1)(q − 1)
3. Select an arbitrary e, 1 < e < φ(n) such that gcd(e, φ(n)) = 1
4. Compute d, 1 < d < φ(n) such that ed ≡ 1 (mod φ(n))

Then the public key of A is (n, e) while the private key of A is d.

To encrypt a message m for Bob, Alice does the following:
1. Obtains an authenticated copy of Bob’s public key.
2. Represents m as an integer in [0, n− 1]
3. Computes c ≡ me (mod n)
4. Sends c to Bob.

To decrypt a message m from Alice, Bob does the following:
1. Computes r ≡ cd (mod n). Then r = m.

To ensure that Alice has an authenticated public key, the following happens:
1. Bob obtains a “certificate” from VeriSign.
2. Bob sends Alice the certificate.
3. Alice verifies VeriSign’s signature, and then is assured she has Bob’s public key.
4. Alice can encrypt any message m to Bob, and only he can decrypt it.

5. Quadratic Number Domains

5.1. Background.
Let d 6= 1 be a square free integer. Then Q(

√
d) := {a+ b

√
d |a, b ∈ Q}

Z[
√
d ] := {a+ b

√
d |a, b ∈ Z}

Properties of Q(
√
d) and Z[

√
d ]:

i. Z ⊆ Z[
√
d ] and Q,Z[

√
d ] ⊆ Q(

√
d)

ii. If r1 + s1
√
d, r2 + s2

√
d ∈ Q(

√
d),

then r1 + s1
√
d = r2 + s2

√
d if and only if r1 = r2 and s1 = s2.

iii. If d > 0, then Q(
√
d) ⊆ R ⊆ C

iv. If d < 0, then Q(
√
d) * R, but Q(

√
d) ⊆ C

Q(
√
d) is a field.

Z[
√
d ] is a commutative ring.
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Let a+ b
√
d ∈ Z[

√
d ].

Then a+ b
√
d is a unit if there exists x+ y

√
d ∈ Z[

√
d ] such that (a+ b

√
d)(x+ y

√
d) = 1.

Let x = r + s
√
d ∈ Q(

√
d).

Then the conjugate of x is x̃ = r − s
√
d

Then the norm of x is N(x) = xx̃.

Properties of the norm:
i. N(x) = 0⇐⇒ x = 0

ii. (x̃+ y) = x̃+ ỹ
iii. (x̃y) = x̃ · ỹ
iv. N(xy) = N(x)N(y)

Let x ∈ Z[
√
d ]. Then

i. N(x) ∈ Z
ii. x is a unit if and only if N(x) = ±1

A commutative ring R is an integral domain if
i. 1 6= 0
ii. ab = 0, with a, b ∈ R, implies a = 0 or b = 0.

5.2. Prime Factorization in Z[
√
d ].

Every nonzero x ∈ Z[
√
d ] can be expressed as the product of a unit and finitely many primes.

If d ≡ 1 (mod 4), then Z[
√
d ] is not a unique factorization domain (UFD).

If d < 0, then Z[
√
d ] is a unique factorization domain only if d = −1 or d = −2.

If d > 0 and d 6= 1 (mod 4), Z[
√
d ] is a UFD for (at least) d = {2, 3, 6, 7, 11, 14, 19, 22, 23, 31 . . . }.

Let x, y ∈ Z[
√
d ]. Then x|y if y = xz for some z ∈ Z[

√
d ]

An element x ∈ Z[
√
d ] is prime if

i. x is not a unit

ii. If x = yz for y, z ∈ Z[
√
d ], then either y or z is a unit.

Let x ∈ Z[
√
d ].

If |N(x)| is prime, then x is prime.
Note that the converse is not true in general.

Let x, y ∈ Z[
√
d ].

Then x is an associate of y if x = yu for some unit u ∈ Z[
√
d ].
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Properties of the associate:

i. The relation “x is an associate of y” is an equivalence relation of Z[
√
d ]

ii. If x and y are associates, then N(x) = ±N(y)
iii. If x|z, then y|z for all associates y of x.

iv. If p ∈ Z[
√
d ] is prime and u ∈ Z[

√
d ] is a unit, then pu is prime.

5.3. Gaussian Integers.

The Gaussian integers are a quadratic number domain with d = −1
· Z[i] = {x+ yi | x, y ∈ Z}
· N(x+ yi) = x2 + y2 > 0
· Units in Z[i] are ±1,±i

By convention, gcd(a, b) for a, b ∈ Z[i] must have an argument in the first quadrant.

If p ≡ 3 (mod 4) is an integer prime, then it is also a Gaussian prime.

If p ≡ 1 (mod 4) then there exists a unique expression p = a2 + b2 for a, b ∈ Z.

The Gaussian primes are:
i. 1 + i
ii. p ∈ Z such that p is prime, p ≡ 3 (mod 4)
iii. a± bi, where a2 + b2 = p for p prime and p ≡ 3 (mod 4).

6. Polynomial Rings

6.1. Background.
Let R be a commutative ring. Then a polynomial in x over R is an expression

f(x) = adx
d + . . . a2x

2 + a1x+ a0 where d > 0 and ai ∈ R

The set of all such polynomials is denoted by R[x]
If the leading coefficient is 1, then f is said to be monic.

The degree of f ∈ R[x], denoted by deg(f), is the highest power of any variable in f .
The degree of the zero polynomial is −∞
If f, g are polynomials in R[x], then deg(f + g) 6 max{deg(f), deg(g)}

Associations between polynomial rings and other domains:
i. If R is a commutative ring, then R[x] is a commutative ring.
ii. If R is an integral domain, then R[x] is an integral domain.
iii. If F is a field, then then only invertible elements in F [x] are are the

constant polynomials (for which the degree is 0), denoted by F ∗



COURSE NOTES 9

6.2. Polynomial factorization.

Note that Z[x] has no division algorithm.

If d is a gcd of f, g ∈ F [x], then d must be monic.
Also the gcd of any two polynomials is unique.

Let p ∈ F [x]. Then p is irreducible over F if
i. deg(p) > 1
ii. p cannot be expressed as p = fg where f, g ∈ F [x], with 1 6 deg(f), deg(g) < deg(p)

The factor theorem states that:
i. (x− a)|f(x) if and only if f(a) = 0
ii. a ∈ F is a root of f ∈ F [x] if f(a) = 0

Let F be a field. Then F [x] is a UFD. More precisely, every nonzero polynomial f ∈ F [x]
has a unique factorization f = ape11 p

e2
2 . . . pekk where pi’s are distinct monic irreducible poly-

nomials in F [x], and a is some nonzero constant in F , and ei ∈ N.

If f ∈ F [x] is of degree n 6= 0, then f has at most n roots in F .

6.3. Polynomial congruences.

The basic properties of congruences over polynomial fields are:
i. Congruence modulo f is an equivalence relation on F .
ii. The equivalence class of g ∈ F [x] is denoted by {h ∈ F [x] : h ≡ g (mod f)}.
iii. The set of all equivalence classes is denoted by F [x]/(f).
iv. Addition and multiplication in F [x]/(f) is denoted in the usual way.

F [x]/(f) is a commutative ring.
If f ∈ F [x], deg(f) > 1, is irreducible over F , then F [x]/(f) is a field; the converse also holds.

6.4. Galois Fields.
The order of a finite field is the number of elements in the field.

Let F be a finite field of order q. Let f ∈ F [x] of degree n > 1 be irreducible over F .
Then F [x]/(f) is a finite field of order qn .

Two fields F1 and F2 are isomorphic if there exists a bijection φ : F1 → F2 such that
φ(α+ β)︸ ︷︷ ︸

addition in F1

= φ(α) + φ(β)︸ ︷︷ ︸
addition in F2

for all α, β ∈ F1. Similarly, φ(αβ) = φ(α)φ(β).

Any two fields of the same order are isomorphic.
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The finite field of order q is denoted by GF (q), where GF indicates a Galois Field.

Fermat’s Little Theorem for finite fields.

Let F be any finite field of order q.
Then when α is a nonzero element in F , αq−1 ≡ 1 (mod q) for all q ∈ F ∗ = F \ {0}.

Corollary:
αq = α for all α ∈ F

Corollary:

In F [x], xq − x =
∏
α∈F

(x− α)

Let F be a field.
Then the characteristic of F is denoted by m = char(F ), such that m is the smallest pos-

itive integer such that 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
m

= 0. If no such m exists, we define char(F ) = 0.

If char(F ) = 0, then F is an infinite field.

Let F be a finite field with char(F ) = m. Then m is prime.

If F is an infinite field with char(F ) = m 6= 0, then m is prime.

Freshman’s Dream.

If F is a field with char(F ) = p, then (α+ β)p
n

= αp
n

+ βp
n

for all α, β ∈ F and n > 1.

Every finite field F with char(F ) = p has Zp as a subfield.

Vector space corollaries for finite fields.

Every finite field has pn elements, where p is the (prime) characteristic of the field, and n > 1.

If F is a finite field of order q, where q is a prime power, and n > 2, there exists a finite
field of order qn.

Hence if p is prime and n > 1, then there exists a finite field of order qn.

6.5. Irreducible polynomials over Q.
It is much easier to determine if polynomials with integer coefficients are irreducible, so

we have to devise a way to convert polynomials in Q to polynomials in Z.

There exists an efficient (polynomial time) algorithm for deciding whether f ∈ Q[x] is
irreducible.



COURSE NOTES 11

An efficient (polynomial time) deterministic algorithm for deciding irreducibility of
f ∈ Zp[x] is not known.

Gauss’s Lemma.

Let f(x) be a polynomial such that f ∈ Q.
Let λ be the lcm of all denominators of the nonzero coefficients of f .

Then let f̃(x) = λf(x)

Gauss’s Lemma states that f̃ is irreducible over Q if and only if f̃ is irreducible over Z.

Rational Root Theorem.

Let f(x) = anx
n + an−1x

n−1 . . . a1x+ a0 ∈ Z[x] such that deg(f) = n > 1
Then if c = s

t , where s, t ∈ Z, t > 0, s 6= 0, gcd(t, s) = 1 is a root of f , then s|a0 and t|an.

Eisenstein’s Criterion.

Let f(x) =

n∑
i=0

aix
i ∈ Z[x], with deg(f) = n.

Suppose p is prime such that:
i. p|ai such that 0 6 i 6 n− 1
ii. p - an
iii. p2 - a0

Then f is irreducible over Q.

Factoring modulo primes.

Let f(x) ∈ Z[x] and let p be a prime.
Let f̄(x) ∈ Z[x] be obtained from f by reducing it coefficients modulo p.
Then if f̄ is irreducible over Zp, then f is irreducible over Q.

Number domains.


