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1. Matrices and Vectors

1.1. Basic principles.

Proposition 1.1.1. If d is a lead column in an augmented matrix [A|d ], then there exists no solution
to Ax = d for a vector x.

Proposition 1.1.2. If d is not a leading column, and all columns of A are leading, we have

[A|d ] =


1 0 · · · 0 d1
0 1 · · · 0 d2
...

...
. . .

...
...

0 0 · · · 1 dn

 =⇒

x1...
xn

 =

d1...
dn


Proposition 1.1.3. For [A|d ], if d = 0, then Ax = 0 is homogeneous.
· If all columns of A are leading, the equation has the trivial solution.
· If some non-leading columns, non-trivial solution.

Proposition 1.1.4. If a homogeneous system Ax = 0 has more unknowns than equations, then the
system has a non-trivial solution.

1.2. The algebra of matrices.

Proposition 1.2.1. If A
row−−→
ops C is reduced echelon format and C 6= I, then A is not invertible.

Proposition 1.2.2. If A is invertible, then A has only one inverse.

Proposition 1.2.3. If A,B have inverses A−1, B−1, then AB has inverse (AB)−1 = A−1B−1.

Proposition 1.2.4. If E ∈Mn(F) is elementary and B is any n× p matrix, then EB is the matrix
obtained by applying to B the same row operations that were applied to I to get E.

Proposition 1.2.5. Elementary matrices are invertible and have elementary matrices as inverses.

Proposition 1.2.6. The following properties for an n× n matrix are equivalent:
· BA = I for some n× n matrix B
· Ax = 0 only has the trivial solution
· A row−−→

ops I
· A is a product of elementary matrices
· A−1 exists

Proposition 1.2.7. If B = A−1, then BA = I = AB.

Definition 1.2.8. The transpose of a matrix A = [aij ] is At = [aji]. Also, (AB)t = BtAt.

Definition 1.2.9. The trace of an n× n matrix A = [aij ] is defined as
∑n

j=1 ajj, or the sum of its
diagonal values. The following properties hold for any equal size matrices A,B:
· trace(AB) = trace(BA)
· trace(A+B) = trace(A) + trace(B)
· trace(λA) = λ·trace(A)
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2. Vector Spaces

2.1. Theory.

Definition 2.1.1. A vector space is a set V closed under the following operations:

·Addition: + : V × V → V
(x, y) 7→ x+ y

·Scaling : · : F× V → V
(λ, x) 7→ λx

Proposition 2.1.2. If W is a subset of V over F with the following three closure properties:
· 0 ∈W
· u, v ∈W =⇒ u+ v ∈W
· u ∈W,λ ∈ F =⇒ λu ∈W

Then W is a vector space over F also, and is termed a subspace of V .

Definition 2.1.3. Let A be any m× n matrix. Then W = {x ∈ Fn : Ax = 0} is a subspace of Fn,
termed the nullspace of A.

Definition 2.1.4. If v1, . . . , vn ∈ V , then the set of all linear combinations of v1, . . . , vn is a subspace
of V , termed the span of v1, . . . , vn. Thus W = span{vi, . . . , vn}.

Proposition 2.1.5. Let V be spanned by v1, . . . , vn and take any list u1, . . . , um in V . If m > n,
there exist scalars λ1, . . . , λm not all zero such that λ1u1, . . . , λmum = 0.

2.2. Linear independence.

Proposition 2.2.1. A list of vectors v1, . . . , vn that has λ1, . . . , λn ∈ F not all zero and λ1v1, . . . , λnvn = 0
is termed linearly dependent. If the only way to have λ1v1, . . . , λnvn = 0 is for all λj = 0 for
1 6 j 6 n, then the list is linearly independent.

Definition 2.2.2. A list x1, . . . , xn is a basis of V provided that
· x1, . . . , xn spans V
· x1, . . . , xn is linearly independent

Proposition 2.2.3. If x1, . . . , xn is a basis for V and x ∈ V , then there is only one way to write
x = λ1x1, . . . , λnxn.

Proposition 2.2.4. Let V be finite dimensional, and W a subspace of V , Then W is finite dimen-
sional and dim(W ) 6 dim(V ).

Proposition 2.2.5. Let dim(V ) = n, and take x1, . . . , xn ∈ V . Then x1, . . . , xn is linearly indepen-
dent if and only if x1, . . . , xn spans V .

2.3. Rank and basis of a space.

Definition 2.3.1. Let A = [x1, . . . , xn] be an m× n matrix. The space spanned by the columns of A
is termed the column space of A, and the dimension of the column space of A is termed the column
rank of A.

Proposition 2.3.2. The row rank of A is the column rank of A. This number is termed the rank.
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Proposition 2.3.3. Suppose x1, . . . , xn is a basis for V and y1, . . . , yn is another list in V . Express

each yj =

n∑
i=1

pijxi for pij ∈ F.

Then the matrix P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 is the matrix that writes y1, . . . , yn in terms of x1, . . . , xn.

Proposition 2.3.4. With regard to above, the list y1, . . . , yn is a basis for V if and only if P−1 exists.

Proposition 2.3.5. Let x1, . . . , xn, y1, . . . , yn, and z1, . . . , zn be 3 bases for V . Let P write the yi in
terms of the xi, and let Q write the zi in terms of the yi. Then PQ writes the zi in terms of the
xi.

Proposition 2.3.6. Let V,W be vector spaces with x1, . . . , xn a basis for V and y1, . . . , yn any list
in W . Then there is exactly one linear map T : V →W such that T (xj) = yj.

Proposition 2.3.7. [Lagrange Interpolation] Suppose V is the vector space of polynomials in
t of degree at most n, so dim(V ) = n+ 1. Given the standard basis 1, t, . . . , tn of V and a list of
distinct scalars a0, a1, . . . , an ∈ F, another basis of V is

{pn(t)} such that pj(t) =
n∏

i=0
i 6=j

(t− ai)
(aj − ai)

where pj(ai) =

{
1 if i = j
0 if i 6= j

Given another list of scalars b0, b1, . . . , bn ∈ F, the unique polynomial of degree at most n− 1 that
satisfies bj = f(aj) is

f(t) = b0p0(t) + b1p1(t) + · · ·+ bnpn(t)

3. Linear Transformations

3.1. Kernel and range.

Definition 3.1.1. Let V,W be vector spaces and T : V →W linear. Then
· ker(T ) = {x ∈ V : T (x) = 0}
· range(T ) = {y ∈W : y = T (x) for some x ∈ V }

Proposition 3.1.2. T : V →W is one-to-one if and only if ker(T ) = {0}.
Definition 3.1.3. A linear transformation that is one-to-one and onto is termed an isomorphism.

Proposition 3.1.4. [Dimension Theorem] Let V,W be vector spaces and T : V →W linear. If V
is finite dimensional, then dim(V ) = dim(ker(T ))+ dim(range(T )).

Proposition 3.1.5. Let V,W be vector spaces and T : V →W linear. If dim(V ) = dim(W ) are
finite, then T is one-to-one if and only if T is onto.

Proposition 3.1.6. Let T : V →W be linear with x1, . . . , xn a basis for V , and y1, . . . , ym a basis
for W . Let A be the matrix of T using these bases.

Let z ∈ V have coordinate vector

λ1...
λn

 using x1, . . . , xn.

Let T (z) ∈W have coordinate vector

µ1
...
µm

 using y1, . . . , ym.


Then A

λ1...
λn

 =

µ1
...
µm

.

3



Proposition 3.1.7. Let T : V →W be linear with x1, . . . , xn a basis for V , and y1, . . . , ym a basis
for W . Let A be the matrix of T using these bases.

· For x ∈ V , x ∈ ker(T )⇐⇒ the coordinate vector

λ1...
λn

 ∈ the nullspace of A.

· For y ∈W , y ∈ range(T )⇐⇒ the coordinate vector

µ1
...
µm

 ∈ the column space of A.

Observation 3.1.8. With reference to the above definitions:
· nullity(T ) = dim(ker(T ))
· rank(T ) = dim(range(T ))

Definition 3.1.9. [Composition] Let V
T−→W

S−→Z with T, S linear using bases v1, . . . , vn for V,

w1, . . . , wm for W, and z1, . . . , zp for Z. Let A be the matrix of T using the given bases for V and
W. Let B be the matrix for S using the given bases for W and Z. Then the matrix for S ◦ T is BA.

3.2. Linear operators.

Definition 3.2.1. The set L(V,W ) of linear operators T : V →W is a vector space. Then there
exists a linear isomorphism φ : L(V,W )→Mm×n(F) where m = dim(W ) and n = dim(V ).
· L(V, V ) = L(V ) is a ring (and a vector space).
· Mn×n(F) =Mn(F) is a ring.

Definition 3.2.2. The space L(V,F) = V ∗ of linear operators is termed the dual space of V . The
linear maps α : V → F are termed linear functionals. Then the dual space is the space of linear
functionals on V .
· A basis α1, . . . , αn of V ∗ is dual to a basis x1, . . . , xn of V .

Proposition 3.2.3. Let V be a vector space with bases x1, . . . , xn and y1, . . . , yn, and let T : V → V .

Let A be the matrix of T using x1, . . . , xn.
Let B be the matrix of T using y1, . . . , yn.
Let P be the matrix that writes y1, . . . , yn in terms of x1, . . . , xn.

 Then B = P−1AP .

Definition 3.2.4. A linear operator T : V → V is nilpotent of order n if Tn(x) = 0 but Tn−1(x) 6= 0
for any vector x ∈ V .

Definition 3.2.5. A linear operator T : V → V is termed a projection when T 2 = T .

Proposition 3.2.6. Every linear operator on a finite-dimensional space V over F is the root of some
polynomial in F[t].

4. Determinants

4.1. Permutations.

Definition 4.1.1. Let Ln = {1, 2, . . . , n} be the set of n letters. A permutation of Ln is a bijection

σ : Ln → Ln. A full description is

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.
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Definition 4.1.2. Every permutation can be factored into distinct cycles. Also, every permutation
can be factored into 2-cycles, known as transpositions, which are not unique.

Definition 4.1.3. With reference to the permutation σ on p =
∏

16i<j6n

(xi − xj), the parity of σ is

even if σ(p) = p, and odd if σ(p) = −p.

Definition 4.1.4. The sign of σ is denoted as sgn(σ) =

{
1 if σ is even
−1 if σ is odd

This function has the following properties:
· sgn(σ ◦ τ) = sgn(σ) ◦ sgn(τ)
· sgn(σk) = (sgn(σ))k

Proposition 4.1.5. Every transposition is odd.

Proposition 4.1.6. If An (an alternating group) is the set of all even permutations on Ln, and Bn
is the set of all odd permutations on Ln, the number of elements in An is the number of elements
in Bn, with n > 1. Also, An +Bn = Sn, the set of all permutations on n letters.

Definition 4.1.7. If σ is a permutation on n letters, then the signed σ-product for some n× n
matrix A is sgn(σ) = a1σ(1), a2σ(2), . . . , anσ(n). Then det(A) =

∑
σ∈Sn

sgn(σ)a1σ(1), a2σ(2), . . . , anσ(n).

4.2. Properties.

Proposition 4.2.1. If an n× n matrix A is upper triangular, then det(A) is the product of all the
elements on the diagonal of A.

Proposition 4.2.2. [Multilinearity] Let r1, r2, . . . , rk−1, rk+1, . . . , rn be fixed row vectors in Fn.

Then Tk : Fn → F, defined by x 7→ det


r1
...

rk−1
x

rk+1

...
rn

 is linear.

Proposition 4.2.3. [Alternating] If two rows of some n× n matrix A are equal, then det(A) = 0.

Proposition 4.2.4. If A
row−−→
ops B, then for each row operation:

· If Ri ↔ Rj, then det(A) = −detB.
· If λRi → Ri, then det(A) = 1

λdet(B).
· Else det(A) = det(B).

Proposition 4.2.5. A is invertible if and only if det(A) 6= 0.

Proposition 4.2.6. For two square matrices A and B, det(AB) = det(A)det(B)

det(A) = det(At)

Definition 4.2.7. The (ij)-minor of some n× n matrix A is defined to be the (n− 1)× (n− 1)
matrix obtained by deleting the i-th row and j-th column.

Definition 4.2.8. For some matrix A, the classical adjoint is Aadj = [αij ] such that αij = (−1)i+jdet((At)ij),
where Aij denotes the (ij) minor of A. Then we have

· A−1 = 1

det(A)
Aadj

5



Proposition 4.2.9. [Laplace Expansion] To find the determinant of an n× n matrix A, we can
deconstruct it into smaller (n− 1)× (n− 1) determinants by the following formula:

· det(A) =
n∑
i=1

(−1)i+jaijdet(Aij)

Proposition 4.2.10. If B =


b11 · · · b1(n−1) b1n
...

. . .
...

...
bn−1 · · · b(n−1)(n−1) b(n−1)n
0 · · · 0 1

, then det(B) = det(Bnn).

Proposition 4.2.11. If two matrices A,B both represent some linear operator T , then
det(XI −A) = det(XI −B).

5. Vector space characteristics

5.1. Similarity.

Definition 5.1.1. A matrix A is similar to a matrix B if there exists some invertible matrix P such

that B = P−1AP .

Proposition 5.1.2. Similar matrices share the following properties:

· Determinant · Rank · Characteristic polynomial
· Eigenvalues · Trace · Minimal polynomial
· Eigenspace dimension of a common eigenvalue

Proposition 5.1.3. Similar matrices represent the same linear operator with different bases.

Proposition 5.1.4. Every n× n matrix over C is similar to an upper triangular matrix.

5.2. Direct sums.

Definition 5.2.1. A vector space V is called the direct sum of U and W if U and W are subspaces
of V such that U ∩W = {0} and U +W = V . Then V as the direct sum of U and W is denoted
by V = U ⊕W .

Definition 5.2.2. A set W is a sum of W1,W2, . . . ,Wk provided for each x ∈W there are unique
xj ∈Wj such that x = x1 + · · ·+ xk.

Proposition 5.2.3. A sum W =W1 +W2 + · · ·+Wk of subspaces of some vector space V is direct
if and only the only way to obtain 0 = w1 + · · ·+ wk for wi ∈Wi is by having all wi = 0.

Proposition 5.2.4. If W =W1 ⊕ · · · ⊕Wk, and if the Wi have bases βi, then the set β1, . . . , βk is a
basis for W .

Proposition 5.2.5. Let T : V → V be linear with V over F, and λ1, . . . , λk be distinct scalars in F.
then the sum W = ker(T − λ1I) + · · ·+ker(T − λkI) is direct.
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5.3. Eigenvalues.

Definition 5.3.1. Given a linear operator T : V →W , an eigenvalue for T is a scalar λ ∈ F such
that T − λI has no inverse.

Definition 5.3.2. If V is finite-dimensional over C, and T : V → V is linear, then some matrix

V =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


that is upper triangular, will represent T using somes basis for V . That is, there is a basis x1, . . . , xn
of V such that
T (x1) = a11
T (x2) = a12x1 + a22x2
T (x3) = a13x1 + a23x2 + a33x3 etc.

Definition 5.3.3. The trace of a matrix is the sum of its eigenvalues.

Proposition 5.3.4. Given T : V → V linear, and A the matrix representation of T , the following
statements are equivalent:
· λ is an eigenvalue of T
· ker(T − λI) is non-zero
· The nullspace of T − λI is non-zero
· TλI is not one-to-one
· T − λI has no inverse
· A− λI has no inverse
· det(A− λI) = 0

Definition 5.3.5. For an eigenvalue λ of T , ker(T − λI) is termed the eigenspace of λ.

Proposition 5.3.6. If dim(V ) = n, and T : V → V linear, and λ1, . . . , λk are distinct eigenvalues
for T , then k 6 n.

Proposition 5.3.7. Let λ1, . . . , λk be the distinct eigenvalues of T : V → V . Then the following are
equivalent:
· T has diagonal representation
· V = ker(T − λ1I)⊕ · · ·⊕ ker(T − λkI)
· dim(V ) = dim(ker(T − λ1I)) + · · ·+ dim(ker(T − λkI))

Proposition 5.3.8. If T : V → V has dim(V ) distinct eigenvalues, then T is diagonalizable.

Proposition 5.3.9. Some operator T : V → V has diagonal representation if and only if the following
two conditions hold:
· det(XI − T ) is a product of linear factors
· for each eigenvalue λ, the geometric multiplicity equals the algebraic multiplicity

Proposition 5.3.10. An n× n matrix A over F is similar to a diagonal matrix D if and only if Fn
has a basis made up of eigenvectors of A.

5.4. The characteristic polynomial.

Definition 5.4.1. Let A be an n× n matrix over F. Let X be indeterminate. Then the characteristic
polynomial of A is det(XI −A).
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Proposition 5.4.2. If matrices A and B both represent some operator T : V → V that is linear,
then det(XI −B) = det(XI −A).

Proposition 5.4.3. If T : V → V is linear and has characteristic polynomial det(XI − T ) = (X − λ)`g(X),
where ` > 1 and g(λ) 6= 0, then dim(ker(T − λI)) 6 `.
· dim(ker(T − λI)) is the geometric multiplicity of λ
· ` is the algebraic multiplicity of λ

Proposition 5.4.4. [Cayley-Hamilton Theorem] If A is an n× n matrix over C, and f(X) =det(XI −A),
then f(A) = 0.

5.5. T-invariant subspaces.

Definition 5.5.1. If T : V → V is linear and W is a subspace of V , then W is T−invariant when
x ∈W =⇒ T (x) ∈W .

Proposition 5.5.2. If S ◦ T = T ◦ S, then ker(T ) and range(S) are T−invariant.

Proposition 5.5.3. If W is a T−invariant subspace of T : V → V , then the restriction of T to W
is the operation T |W = S :W →W defined by x 7→ T (x).

Proposition 5.5.4. If T : V → V is linear and W is T−invariant, and T |W = S :W →W , then
det(XI − S) divides det(XI − T ). That is, the characteristic polynomial of the restriction divides
the characteristic polynomial of the operator that it restricts.

Proposition 6.0.0. The following diagram commutes.

Where:
T : V →W is linear
x1, . . . , xn is a basis for V
y1, . . . , ym is a basis for W
A = [aij ] is the matrix for T using the given bases
ϕ,ψ are coordinate isomorphisms
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6. Proofs

Theorem 6.1. [Dimension Theorem] If V over F is finite-dimensional and T : V →W is linear,
then dim(V ) = dim(ker(T )) + dim(range(T )).

Proof:
Let x1, . . . xn be a basis for ker(T ).
Extend this to a basis for V , x1, . . . , xn, y1, . . . , ym. Then dim(V ) = n+m.
Check that T (y1), . . . , T (ym) is a basis for range(T ).
Check that T (y1), . . . , T (ym) is linearly independent.
Let λ1T (y1) + · · ·+ λmT (ym) = 0 for λi ∈ F for 1 6 i 6 m.

T (λ1y1 + · · ·+ λmym) = 0
λ1y1 + · · ·+ λmym ∈ ker(T )

Hence we can write λ1y1 + · · ·+ λmym = µ1x1 + · · ·+ µnxn for some µi ∈ F for 1 6 i 6 n.
Then λ1y1 + · · ·+ λmym − µ1x1 − · · · − µnxn = 0
Since x1, . . . , xn, y1, . . . , ym is a basis for V , all λi = 0 and all µi = 0.
Hence T (y1), . . . , T (ym) is linearly independent.
Check that T (y1), . . . , T (ym) spans range(T ).
Let z ∈ range(T ).
Then z = T (x) for some x ∈ V .
Then x = λ1y1 + · · ·+ λmym + µ1x1 + · · ·+ µnxn
Then z = T (x)

= λ1T (y1) + · · ·+ λmT (ym) + T (µ1x1 + · · ·+ µnxn)
= λ1T (y1) + · · ·+ λmT (ym)

Theorem 6.2. Let V
T−→W

S−→Z with T, S linear using bases v1, . . . , vn for V, w1, . . . , wm for W,

and z1, . . . , zp for Z. Let A = [aij ] be the matrix of T using the given bases for V and W.
Let B = [bki] be the matrix of S using the given bases for W and Z.

Then the matrix for S ◦ T is BA.

Proof:

S ◦ T (vj) = S(T (vj)) for 1 6 j 6 n

= S

(
m∑
i=1

aijwi

)

=
m∑
i=1

aij (S(wi))

=
m∑
i=1

aij

(
p∑

k=1

bkizk

)

=

p∑
k=1

(
m∑
i=1

aijbki

)
zk

This is then the matrix for S ◦ T using the given bases for V,Z.
Then we see that BA is the matrix for S ◦ T .
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Theorem 6.3. [Alternating] If two rows of some n× n matrix A are equal, then det(A) = 0.

Proof:
For sanity of notation, say row 1 = row 2.

Let A =


b1 b2 · · · bn
b1 b2 · · · bn
a31 a32 · · · a3n

...
...

. . .
...

an1 an2 · · · ann


Let An be the set of even permutations, of which there are n!

2 .
Let τ = (1 2).
As σ runs over An, σ ◦ τ runs over the odd permutations.

So det(A) =

(∑
σ∈An

bσ(1)bσ(2)a3σ(3) · · · anσ(n)

)
−

∑
σ/∈An

bσ(1)bσ(2)a3σ(3) · · · anσ(n)


=

(∑
σ∈An

bσ(1)bσ(2)a3σ(3) · · · anσ(n)

)
−

(∑
σ∈An

bσ(τ(1))bσ(τ(2))a3σ(τ(3)) · · · anσ(τ(n))

)
=

∑
σ∈An

bσ(1)bσ(2)a3σ(3) · · · anσ(n) −
∑
σ∈An

bσ(2)bσ(1)a3σ(3) · · · anσ(n)

= 0

Theorem 6.4. An n× n matrix A is invertible if and only if its determinant is nonzero.

Proof:

If A is invertible, then A
row−−→
ops I.

Since det(I) = 1 6= 0, then det(A) 6= 0.

If A is not invertible, then A
row−−→
ops B, where B is upper triangular such that its last row is 0.

Since det(B) = 0, det(A) = 0.

Theorem 6.5. Let T : V → V be linear and λ1, . . . , λn be distinct scalars in F. Then the sum
W = ker(T − λ1I) + · · ·+ ker(T − λnI) is direct.

Proof:
This proof is by induction on n.
Evidently, this works for n = 1.
Suppose that the sum of ker(T − λjI)’s is direct when fewer than k distinct λj’s are used.
Let W = ker(T − λ1I) + · · ·+ ker(T − λkI).
Let 0 = x1 + · · ·+ xk for xj ∈ ker(T − λjI) for all j such that 1 6 j 6 k.
Apply T to the above equation: 0 = T (x1) + · · ·+ T (xk)

= λ1x1 + · · ·+ λkxk
Multiply the equation two lines above by λ1 to get: 0 = λ1x1 + · · ·+ λ1xk
Subtract to get (λ2 − λ1)x2 + · · ·+ (λk − λ1)xk = 0.
By the induction hypothesis, conclude that all (λj − λ1)xj = 0 for j = 2, 3, . . . , k.
Since the λj’s are distinct, conclude that xj = 0 for j = 2, 3, . . . , k.
Look at the initial equation to deduce that x1 = 0.
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