Linear Algebra CHEAP PROPS

Winter 2010, Math 146

Contents

1.1. Basic principles	1
1.2. The algebra of matrices	1
2. Vector Spaces	2
2.1. Theory	2
2.2. Linear independence	2
2.3. Rank and basis of a space	2
3. Linear Transformations	3
3.1. Kernel and range	3
3.2. Linear operators	4
4. Determinants	4
4.1. Permutations	4
4.2. Properties	5
5. Vector space characteristics	6
5.1. Similarity	6
5.2. Direct sums	6
5.3. Eigenvalues	7
5.4. The characteristic polynomial	7
5.5. T-invariant subspaces	8
6. Proofs	9

© J. Lazovskis 2010 Professor: F. Zorzitto

1. MATRICES AND VECTORS

1.1. Basic principles.

<u>Proposition</u> **1.1.1.** If d is a lead column in an augmented matrix [A|d], then there exists no solution to Ax = d for a vector x.

Proposition 1.1.2. If d is not a leading column, and all columns of A are leading, we have

$$[A|d] = \begin{bmatrix} 1 & 0 & \cdots & 0 & d_1 \\ 0 & 1 & \cdots & 0 & d_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & d_n \end{bmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix}$$

Proposition 1.1.3. For [A|d], if d = 0, then Ax = 0 is homogeneous.

 \cdot If all columns of A are leading, the equation has the trivial solution.

· If some non-leading columns, non-trivial solution.

<u>Proposition</u> 1.1.4. If a homogeneous system Ax = 0 has more unknowns than equations, then the system has a non-trivial solution.

1.2. The algebra of matrices.

Proposition 1.2.1. If $A_{ops}^{row} C$ is reduced echelon format and $C \neq I$, then A is not invertible.

Proposition 1.2.2. If A is invertible, then A has only one inverse.

Proposition 1.2.3. If A, B have inverses A^{-1}, B^{-1} , then AB has inverse $(AB)^{-1} = A^{-1}B^{-1}$.

<u>Proposition</u> 1.2.4. If $E \in M_n(\mathbb{F})$ is elementary and B is any $n \times p$ matrix, then EB is the matrix obtained by applying to B the same row operations that were applied to I to get E.

Proposition 1.2.5. Elementary matrices are invertible and have elementary matrices as inverses.

Proposition 1.2.6. The following properties for an $n \times n$ matrix are equivalent:

- $\cdot BA = I$ for some $n \times n$ matrix B
- $\cdot Ax = 0$ only has the trivial solution
- $\cdot A \xrightarrow{row}{ops} I$
- \cdot A is a product of elementary matrices
- $\cdot A^{-1}$ exists

Proposition 1.2.7. If $B = A^{-1}$, then BA = I = AB.

Definition 1.2.8. The transpose of a matrix $A = [a_{ij}]$ is $A^t = [a_{ji}]$. Also, $(AB)^t = B^t A^t$.

<u>Definition</u> **1.2.9.** The trace of an $n \times n$ matrix $A = [a_{ij}]$ is defined as $\sum_{j=1}^{n} a_{jj}$, or the sum of its diagonal values. The following properties hold for any equal size matrices A, B:

- \cdot trace(AB) = trace(BA)
- $\cdot trace(A+B) = trace(A) + trace(B)$
- $\cdot trace(\lambda A) = \lambda \cdot trace(A)$

2. Vector Spaces

2.1. Theory.

Definition 2.1.1. A vector space is a set V closed under the following operations:

$$\begin{array}{rcl} \cdot Addition: & +: & V \times V & \to & V \\ & & (x,y) & \mapsto & x+y \\ \cdot Scaling: & \cdot: & \mathbb{F} \times V & \to & V \\ & & & (\lambda,x) & \mapsto & \lambda x \end{array}$$

<u>Proposition</u> **2.1.2.** If W is a subset of V over \mathbb{F} with the following three closure properties: $0 \in W$

 $\cdot u, v \in W \Longrightarrow u + v \in W$

$$\cdot u \in W, \lambda \in \mathbb{F} \Longrightarrow \lambda u \in W$$

Then W is a vector space over \mathbb{F} also, and is termed a subspace of V.

Definition 2.1.3. Let A be any $m \times n$ matrix. Then $W = \{x \in \mathbb{F}^n : Ax = 0\}$ is a subspace of \mathbb{F}^n , termed the nullspace of A.

<u>Definition</u> **2.1.4.** If $v_1, \ldots, v_n \in V$, then the set of all linear combinations of v_1, \ldots, v_n is a subspace of V, termed the span of v_1, \ldots, v_n . Thus $W = span\{v_i, \ldots, v_n\}$.

<u>Proposition</u> 2.1.5. Let V be spanned by v_1, \ldots, v_n and take any list u_1, \ldots, u_m in V. If m > n, there exist scalars $\lambda_1, \ldots, \lambda_m$ not all zero such that $\lambda_1 u_1, \ldots, \lambda_m u_m = 0$.

2.2. Linear independence.

Proposition 2.2.1. A list of vectors v_1, \ldots, v_n that has $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ not all zero and $\lambda_1 v_1, \ldots, \lambda_n v_n = 0$ is termed linearly dependent. If the only way to have $\lambda_1 v_1, \ldots, \lambda_n v_n = 0$ is for all $\lambda_j = 0$ for $1 \leq j \leq n$, then the list is linearly independent.

Definition 2.2.2. A list x_1, \ldots, x_n is a basis of V provided that

 $\cdot x_1, \ldots, x_n \text{ spans } V$

 $\cdot x_1, \ldots, x_n$ is linearly independent

<u>Proposition</u> 2.2.3. If x_1, \ldots, x_n is a basis for V and $x \in V$, then there is only one way to write $\overline{x = \lambda_1 x_1, \ldots, \lambda_n x_n}$.

<u>Proposition</u> **2.2.4.** Let V be finite dimensional, and W a subspace of V, Then W is finite dimensional and $\dim(W) \leq \dim(V)$.

Proposition 2.2.5. Let dim(V) = n, and take $x_1, \ldots, x_n \in V$. Then x_1, \ldots, x_n is linearly independent if and only if x_1, \ldots, x_n spans V.

2.3. Rank and basis of a space.

<u>Definition</u> **2.3.1.** Let $A = [x_1, \ldots, x_n]$ be an $m \times n$ matrix. The space spanned by the columns of A is termed the column space of A, and the dimension of the column space of A is termed the column rank of A.

Proposition 2.3.2. The row rank of A is the column rank of A. This number is termed the rank.

 $\underline{Proposition} \ \mathbf{2.3.3.} \ Suppose \ x_1, \dots, x_n \ is \ a \ basis \ for \ V \ and \ y_1, \dots, y_n \ is \ another \ list \ in \ V. \ Express \\ each \ y_j = \sum_{i=1}^n p_{ij} x_i \ for \ p_{ij} \in \mathbb{F}. \\ Then \ the \ matrix \ P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \ is \ the \ matrix \ that \ writes \ y_1, \dots, y_n \ in \ terms \ of \ x_1, \dots, x_n.$

<u>Proposition</u> **2.3.4.** With regard to above, the list y_1, \ldots, y_n is a basis for V if and only if P^{-1} exists.

<u>Proposition</u> **2.3.5.** Let $x_1, \ldots, x_n, y_1, \ldots, y_n$, and z_1, \ldots, z_n be 3 bases for V. Let P write the y_i in terms of the x_i , and let Q write the z_i in terms of the y_i . Then PQ writes the z_i in terms of the x_i .

<u>Proposition</u> 2.3.6. Let V, W be vector spaces with x_1, \ldots, x_n a basis for V and y_1, \ldots, y_n any list in W. Then there is exactly one linear map $T: V \to W$ such that $T(x_j) = y_j$.

<u>Proposition</u> 2.3.7. [LAGRANGE INTERPOLATION] Suppose V is the vector space of polynomials in \overline{t} of degree at most n, so $\dim(V) = n + 1$. Given the standard basis $1, t, \ldots, t^n$ of V and a list of distinct scalars $a_0, a_1, \ldots, a_n \in \mathbb{F}$, another basis of V is

$$\{p_n(t)\} \quad such that \quad p_j(t) = \prod_{\substack{i=0\\i\neq j}}^n \frac{(t-a_i)}{(a_j-a_i)} \quad where \quad p_j(a_i) = \begin{cases} 1 & \text{if } i=j\\ 0 & \text{if } i\neq j \end{cases}$$

Given another list of scalars $b_0, b_1, \ldots, b_n \in \mathbb{F}$, the unique polynomial of degree at most n-1 that satisfies $b_j = f(a_j)$ is

$$f(t) = b_0 p_0(t) + b_1 p_1(t) + \dots + b_n p_n(t)$$

3. Linear Transformations

3.1. Kernel and range.

Definition 3.1.1. Let V, W be vector spaces and $T: V \to W$ linear. Then

 $\cdot ker(T) = \{x \in V : T(x) = 0\}$

 $\cdot range(T) = \{ y \in W : y = T(x) \text{ for some } x \in V \}$

Proposition 3.1.2. $T: V \to W$ is one-to-one if and only if $ker(T) = \{0\}$.

Definition **3.1.3.** A linear transformation that is one-to-one and onto is termed an isomorphism.

<u>Proposition</u> **3.1.4.** [DIMENSION THEOREM] Let V, W be vector spaces and $T: V \to W$ linear. If V is finite dimensional, then $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{range}(T))$.

Proposition 3.1.5. Let V, W be vector spaces and $T: V \to W$ linear. If dim(V) = dim(W) are finite, then T is one-to-one if and only if T is onto.

Proposition **3.1.6.** Let $T: V \to W$ be linear with x_1, \ldots, x_n a basis for V, and y_1, \ldots, y_m a basis for W. Let A be the matrix of T using these bases.

<u>Proposition</u> **3.1.7.** Let $T: V \to W$ be linear with x_1, \ldots, x_n a basis for V, and y_1, \ldots, y_m a basis for W. Let A be the matrix of T using these bases.

• For
$$x \in V$$
, $x \in ker(T) \iff$ the coordinate vector $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in$ the nullspace of A .
• For $y \in W$, $y \in range(T) \iff$ the coordinate vector $\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix} \in$ the column space of A

<u>Observation</u> **3.1.8.** With reference to the above definitions:

 \cdot nullity(T) = dim(ker(T))

 $\cdot \operatorname{rank}(T) = \operatorname{dim}(\operatorname{range}(T))$

<u>Definition</u> **3.1.9.** [COMPOSITION] Let $V \xrightarrow{T} W \xrightarrow{S} Z$ with T, S linear using bases v_1, \ldots, v_n for V, w_1, \ldots, w_m for W, and z_1, \ldots, z_p for Z. Let A be the matrix of T using the given bases for V and W. Let B be the matrix for S using the given bases for W and Z. Then the matrix for $S \circ T$ is BA.

3.2. Linear operators.

<u>Definition</u> **3.2.1.** The set $\mathcal{L}(V, W)$ of linear operators $T : V \to W$ is a vector space. Then there exists a linear isomorphism $\phi : \mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})$ where $m = \dim(W)$ and $n = \dim(V)$.

- $\cdot \mathcal{L}(V, V) = \mathcal{L}(V)$ is a ring (and a vector space).
- $\cdot M_{n \times n}(\mathbb{F}) = M_n(\mathbb{F})$ is a ring.

<u>Definition</u> **3.2.2.** The space $\mathcal{L}(V, \mathbb{F}) = V^*$ of linear operators is termed the dual space of V. The linear maps $\alpha : V \to \mathbb{F}$ are termed linear functionals. Then the dual space is the space of linear functionals on V.

• A basis $\alpha_1, \ldots, \alpha_n$ of V^* is dual to a basis x_1, \ldots, x_n of V.

 $\begin{array}{c} \underline{Proposition} \ \textbf{3.2.3.} \ Let \ V \ be \ a \ vector \ space \ with \ bases \ x_1, \dots, x_n \ and \ y_1, \dots, y_n, \ and \ let \ T : V \to V. \\ \hline \underline{Let \ A \ be \ the \ matrix \ of \ T \ using \ x_1, \dots, x_n.} \\ \underline{Let \ B \ be \ the \ matrix \ of \ T \ using \ y_1, \dots, y_n.} \\ \underline{Let \ P \ be \ the \ matrix \ that \ writes \ y_1, \dots, y_n \ in \ terms \ of \ x_1, \dots, x_n.} \end{array} \right\} \ Then \ B = P^{-1}AP.$

Definition **3.2.4.** A linear operator $T: V \to V$ is nilpotent of order n if $T^n(x) = 0$ but $T^{n-1}(x) \neq 0$ for any vector $x \in V$.

<u>Definition</u> **3.2.5.** A linear operator $T: V \to V$ is termed a projection when $T^2 = T$.

Proposition 3.2.6. Every linear operator on a finite-dimensional space V over \mathbb{F} is the root of some polynomial in $\mathbb{F}[t]$.

4. Determinants

4.1. Permutations.

 $\underbrace{Definition}_{\sigma: L_n \to L_n.} \text{ A full description is } \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}.$

<u>Definition</u> **4.1.2.** Every permutation can be factored into distinct cycles. Also, every permutation can be factored into 2-cycles, known as transpositions, which are not unique.

<u>Definition</u> **4.1.3.** With reference to the permutation σ on $p = \prod_{1 \leq i < j \leq n} (x_i - x_j)$, the parity of σ is

even if $\sigma(p) = p$, and odd if $\sigma(p) = -p$.

 $\underline{Definition}_{\sigma} \textbf{4.1.4.} \text{ The sign of } \sigma \text{ is denoted as } sgn(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$

This function has the following properties: $\cdot sgn(\sigma \circ \tau) = sgn(\sigma) \circ sgn(\tau)$ $\cdot sgn(\sigma^k) = (sgn(\sigma))^k$

Proposition 4.1.5. Every transposition is odd.

Proposition 4.1.6. If A_n (an alternating group) is the set of all even permutations on L_n , and B_n is the set of all odd permutations on L_n , the number of elements in A_n is the number of elements in B_n , with n > 1. Also, $A_n + B_n = S_n$, the set of all permutations on n letters.

 $\underbrace{Definition}_{matrix A is sgn(\sigma) = a_{1\sigma(1)}, a_{2\sigma(2)}, \dots, a_{n\sigma(n)}}_{\sigma(n)}. \text{ then det}(A) = \sum_{\sigma \in S_n} sgn(\sigma)a_{1\sigma(1)}, a_{2\sigma(2)}, \dots, a_{n\sigma(n)}.$

4.2. Properties.

<u>Proposition</u> 4.2.1. If an $n \times n$ matrix A is upper triangular, then det(A) is the product of all the elements on the diagonal of A.

<u>Proposition</u> 4.2.2. [MULTILINEARITY] Let $r_1, r_2, \ldots, r_{k-1}, r_{k+1}, \ldots, r_n$ be fixed row vectors in \mathbb{F}^n .

Then $T_k : \mathbb{F}^n \to \mathbb{F}$, defined by $x \mapsto det \begin{bmatrix} \ddots & \ddots & \ddots \\ \vdots & \ddots & z_{k+1} \\ \vdots & \ddots & z_n \end{bmatrix}$ is linear.

Proposition 4.2.3. [ALTERNATING] If two rows of some $n \times n$ matrix A are equal, then det(A) = 0.

<u>Proposition</u> **4.2.4.** If $A \xrightarrow{row}{ops} B$, then for each row operation:

- $\overline{If R_i \leftrightarrow R_i}$, then det(A) = -detB.
- If $\lambda R_i \to R_i$, then $det(A) = \frac{1}{\lambda} det(B)$.
- \cdot Else det(A) = det(B).

Proposition 4.2.5. A is invertible if and only if $det(A) \neq 0$.

<u>Proposition</u> **4.2.6.** For two square matrices A and B, det(AB) = det(A)det(B) $det(A) = det(A^{t})$

<u>Definition</u> **4.2.7.** The (ij)-minor of some $n \times n$ matrix A is defined to be the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*-th row and *j*-th column.

<u>Definition</u> **4.2.8.** For some matrix A, the classical adjoint is $A^{adj} = [\alpha_{ij}]$ such that $\alpha_{ij} = (-1)^{i+j} det((A^t)_{ij})$, where A_{ij} denotes the (ij) minor of A. Then we have

$$\cdot A^{-1} = \frac{1}{\det(A)} A^{adj}$$

<u>Proposition</u> **4.2.9.** [LAPLACE EXPANSION] To find the determinant of an $n \times n$ matrix A, we can deconstruct it into smaller $(n-1) \times (n-1)$ determinants by the following formula:

$$\cdot det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

$$\underline{Proposition} \ \mathbf{4.2.10.} \ If \ B = \begin{bmatrix} b_{11} & \cdots & b_{1(n-1)} & b_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ b_{n-1} & \cdots & b_{(n-1)(n-1)} & b_{(n-1)n} \\ 0 & \cdots & 0 & 1 \end{bmatrix}, \ then \ det(B) = det(B_{nn}).$$

<u>Proposition</u> **4.2.11.** If two matrices A, B both represent some linear operator T, then $\overline{det(XI - A)} = det(XI - B)$.

5. Vector space characteristics

5.1. Similarity.

<u>Definition</u> **5.1.1.** A matrix A is similar to a matrix B if there exists some invertible matrix P such that $B = P^{-1}AP$.

Proposition 5.1.2. Similar matrices share the following properties:

- Determinant
 Rank
 Characteristic polynomial
- Eigenvalues
 Trace
 Minimal polynomial
- · Eigenspace dimension of a common eigenvalue

Proposition 5.1.3. Similar matrices represent the same linear operator with different bases.

Proposition 5.1.4. Every $n \times n$ matrix over \mathbb{C} is similar to an upper triangular matrix.

5.2. Direct sums.

Definition 5.2.1. A vector space V is called the direct sum of U and W if U and W are subspaces of V such that $U \cap W = \{0\}$ and U + W = V. Then V as the direct sum of U and W is denoted by $V = U \oplus W$.

Definition 5.2.2. A set W is a sum of W_1, W_2, \ldots, W_k provided for each $x \in W$ there are unique $x_j \in W_j$ such that $x = x_1 + \cdots + x_k$.

Proposition 5.2.3. A sum $W = W_1 + W_2 + \cdots + W_k$ of subspaces of some vector space V is direct if and only the only way to obtain $0 = w_1 + \cdots + w_k$ for $w_i \in W_i$ is by having all $w_i = 0$.

Proposition 5.2.4. If $W = W_1 \oplus \cdots \oplus W_k$, and if the W_i have bases β_i , then the set β_1, \ldots, β_k is a basis for W.

<u>Proposition</u> 5.2.5. Let $T: V \to V$ be linear with V over \mathbb{F} , and $\lambda_1, \ldots, \lambda_k$ be distinct scalars in \mathbb{F} . then the sum $W = ker(T - \lambda_1 I) + \cdots + ker(T - \lambda_k I)$ is direct.

5.3. Eigenvalues.

Definition 5.3.1. Given a linear operator $T: V \to W$, an eigenvalue for T is a scalar $\lambda \in \mathbb{F}$ such that $T - \lambda I$ has no inverse.

Definition 5.3.2. If V is finite-dimensional over \mathbb{C} , and $T: V \to V$ is linear, then some matrix

$$V = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

that is upper triangular, will represent T using somes basis for V. That is, there is a basis x_1, \ldots, x_n of V such that

 $T(x_1) = a_{11}$ $T(x_2) = a_{12}x_1 + a_{22}x_2$ $T(x_3) = a_{13}x_1 + a_{23}x_2 + a_{33}x_3 \text{ etc.}$

Definition 5.3.3. The trace of a matrix is the sum of its eigenvalues.

<u>Proposition</u> **5.3.4.** Given $T: V \to V$ linear, and A the matrix representation of T, the following statements are equivalent:

- $\cdot \lambda$ is an eigenvalue of T
- $\cdot ker(T \lambda I)$ is non-zero
- The nullspace of $T \lambda I$ is non-zero
- $\cdot T_{\lambda}I$ is not one-to-one
- $\cdot T \lambda I$ has no inverse
- $\cdot A \lambda I$ has no inverse
- $\cdot det(A \lambda I) = 0$

Definition 5.3.5. For an eigenvalue λ of T, $ker(T - \lambda I)$ is termed the eigenspace of λ .

Proposition 5.3.6. If dim(V) = n, and $T: V \to V$ linear, and $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues for T, then $k \leq n$.

<u>Proposition</u> 5.3.7. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of $T: V \to V$. Then the following are equivalent:

- \cdot T has diagonal representation
- $\cdot V = ker(T \lambda_1 I) \oplus \cdots \oplus ker(T \lambda_k I)$
- $\cdot dim(V) = dim(ker(T \lambda_1 I)) + \cdots + dim(ker(T \lambda_k I))$

Proposition 5.3.8. If $T: V \to V$ has dim(V) distinct eigenvalues, then T is diagonalizable.

<u>Proposition</u> **5.3.9.** Some operator $T: V \to V$ has diagonal representation if and only if the following two conditions hold:

- $\cdot det(XI T)$ is a product of linear factors
- for each eigenvalue λ , the geometric multiplicity equals the algebraic multiplicity

<u>Proposition</u> 5.3.10. An $n \times n$ matrix A over \mathbb{F} is similar to a diagonal matrix D if and only if \mathbb{F}^n has a basis made up of eigenvectors of A.

5.4. The characteristic polynomial.

<u>Definition</u> **5.4.1.** Let A be an $n \times n$ matrix over \mathbb{F} . Let X be indeterminate. Then the characteristic polynomial of A is det(XI - A).

<u>Proposition</u> 5.4.2. If matrices A and B both represent some operator $T: V \to V$ that is linear, then det(XI - B) = det(XI - A).

<u>Proposition</u> **5.4.3.** If $T: V \to V$ is linear and has characteristic polynomial $det(XI - T) = (X - \lambda)^{\ell}g(X)$, where $\ell \ge 1$ and $g(\lambda) \ne 0$, then $dim(ker(T - \lambda I)) \le \ell$.

 $\cdot dim(ker(T - \lambda I))$ is the geometric multiplicity of λ

· ℓ is the algebraic multiplicity of λ

<u>Proposition</u> 5.4.4. [CAYLEY-HAMILTON THEOREM] If A is an $n \times n$ matrix over \mathbb{C} , and f(X) = det(XI - A), then f(A) = 0.

5.5. T-invariant subspaces.

<u>Definition</u> 5.5.1. If $T: V \to V$ is linear and W is a subspace of V, then W is T-invariant when $x \in W \Longrightarrow T(x) \in W$.

Proposition 5.5.2. If $S \circ T = T \circ S$, then ker(T) and range(S) are T-invariant.

<u>Proposition</u> 5.5.3. If W is a T-invariant subspace of $T: V \to V$, then the restriction of T to W is the operation $T|_W = S: W \to W$ defined by $x \mapsto T(x)$.

<u>Proposition</u> 5.5.4. If $T: V \to V$ is linear and W is T-invariant, and $T|_W = S: W \to W$, then $\overline{\det(XI-S)}$ divides $\det(XI-T)$. That is, the characteristic polynomial of the restriction divides the characteristic polynomial of the operator that it restricts.

Proposition 6.0.0. The following diagram commutes.

6. Proofs

Theorem 6.1. [DIMENSION THEOREM] If V over \mathbb{F} is finite-dimensional and $T: V \to W$ is linear, then $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{range}(T))$.

Proof:

Let $x_1, \ldots x_n$ be a basis for ker(T). Extend this to a basis for $V, x_1, \ldots, x_n, y_1, \ldots, y_m$. Then dim(V) = n + m. Check that $T(y_1), \ldots, T(y_m)$ is a basis for range(T). Check that $T(y_1), \ldots, T(y_m)$ is linearly independent. Let $\lambda_1 T(y_1) + \dots + \lambda_m T(y_m) = 0$ for $\lambda_i \in \mathbb{F}$ for $1 \leq i \leq m$. $T(\lambda_1 y_1 + \dots + \lambda_m y_m) = 0$ $\lambda_1 y_1 + \dots + \lambda_m y_m \in ker(T)$ Hence we can write $\lambda_1 y_1 + \cdots + \lambda_m y_m = \mu_1 x_1 + \cdots + \mu_n x_n$ for some $\mu_i \in \mathbb{F}$ for $1 \leq i \leq n$. Then $\lambda_1 y_1 + \dots + \lambda_m y_m - \mu_1 x_1 - \dots - \mu_n x_n = 0$ Since $x_1, \ldots, x_n, y_1, \ldots, y_m$ is a basis for V, all $\lambda_i = 0$ and all $\mu_i = 0$. Hence $T(y_1), \ldots, T(y_m)$ is linearly independent. Check that $T(y_1), \ldots, T(y_m)$ spans range(T). Let $z \in range(T)$. Then z = T(x) for some $x \in V$. Then $x = \lambda_1 y_1 + \dots + \lambda_m y_m + \mu_1 x_1 + \dots + \mu_n x_n$ Then z = T(x) $= \lambda_1 T(y_1) + \dots + \lambda_m T(y_m) + T(\mu_1 x_1 + \dots + \mu_n x_n)$ $=\lambda_1 T(y_1) + \dots + \lambda_m T(y_m)$

Theorem 6.2. Let $V \xrightarrow{T} W \xrightarrow{S} Z$ with T, S linear using bases v_1, \ldots, v_n for V, w_1, \ldots, w_m for W, and z_1, \ldots, z_p for Z. Let $A = [a_{ij}]$ be the matrix of T using the given bases for V and W. Let $B = [b_{ki}]$ be the matrix of S using the given bases for W and Z.

Then the matrix for $S \circ T$ is BA.

Proof:

$$S \circ T(v_j) = S(T(v_j)) \quad \text{for } 1 \leq j \leq n$$
$$= S\left(\sum_{i=1}^m a_{ij}w_i\right)$$
$$= \sum_{i=1}^m a_{ij} \left(S(w_i)\right)$$
$$= \sum_{i=1}^m a_{ij} \left(\sum_{k=1}^p b_{ki}z_k\right)$$
$$= \sum_{k=1}^p \left(\sum_{i=1}^m a_{ij}b_{ki}\right) z_k$$

This is then the matrix for $S \circ T$ using the given bases for V, Z. Then we see that BA is the matrix for $S \circ T$. **Theorem 6.3.** [ALTERNATING] If two rows of some $n \times n$ matrix A are equal, then det(A) = 0.

 $\frac{Proof:}{For \ sanity \ of \ notation, \ say \ row \ 1 = row \ 2.}$ Let $A = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \\ b_1 & b_2 & \cdots & b_n \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$

 $\begin{bmatrix} a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$ Let A_n be the set of even permutations, of which there are $\frac{n!}{2}$. Let $\tau = (1 \ 2)$.

As σ runs over A_n , $\sigma \circ \tau$ runs over the odd permutations.

$$So \ det(A) = \left(\sum_{\sigma \in A_n} b_{\sigma(1)} b_{\sigma(2)} a_{3\sigma(3)} \cdots a_{n\sigma(n)}\right) - \left(\sum_{\sigma \notin A_n} b_{\sigma(1)} b_{\sigma(2)} a_{3\sigma(3)} \cdots a_{n\sigma(n)}\right)$$
$$= \left(\sum_{\sigma \in A_n} b_{\sigma(1)} b_{\sigma(2)} a_{3\sigma(3)} \cdots a_{n\sigma(n)}\right) - \left(\sum_{\sigma \in A_n} b_{\sigma(\tau(1))} b_{\sigma(\tau(2))} a_{3\sigma(\tau(3))} \cdots a_{n\sigma(\tau(n))}\right)$$
$$= \sum_{\sigma \in A_n} b_{\sigma(1)} b_{\sigma(2)} a_{3\sigma(3)} \cdots a_{n\sigma(n)} - \sum_{\sigma \in A_n} b_{\sigma(2)} b_{\sigma(1)} a_{3\sigma(3)} \cdots a_{n\sigma(n)}$$
$$= 0$$

Theorem 6.4. An $n \times n$ matrix A is invertible if and only if its determinant is nonzero.

 $\frac{Proof:}{If \ A \ is \ invertible, \ then \ A \xrightarrow{row}{ops} I.}$ Since $det(I) = 1 \neq 0$, then $det(A) \neq 0$.

If A is not invertible, then $A \frac{row}{ops} B$, where B is upper triangular such that its last row is 0. Since det(B) = 0, det(A) = 0.

Theorem 6.5. Let $T: V \to V$ be linear and $\lambda_1, \ldots, \lambda_n$ be distinct scalars in \mathbb{F} . Then the sum $W = ker(T - \lambda_1 I) + \cdots + ker(T - \lambda_n I)$ is direct.

Proof:

This proof is by induction on n. Evidently, this works for n = 1. Suppose that the sum of $ker(T - \lambda_j I)$'s is direct when fewer than k distinct λ_j 's are used. Let $W = ker(T - \lambda_1 I) + \dots + ker(T - \lambda_k I)$. Let $0 = x_1 + \dots + x_k$ for $x_j \in ker(T - \lambda_j I)$ for all j such that $1 \leq j \leq k$. Apply T to the above equation: $0 = T(x_1) + \dots + T(x_k)$ $= \lambda_1 x_1 + \dots + \lambda_k x_k$ Multiply the equation two lines above by λ_1 to get: $0 = \lambda_1 x_1 + \dots + \lambda_1 x_k$ Subtract to get $(\lambda_2 - \lambda_1)x_2 + \dots + (\lambda_k - \lambda_1)x_k = 0$. By the induction hypothesis, conclude that all $(\lambda_j - \lambda_1)x_j = 0$ for $j = 2, 3, \dots, k$. Since the λ_j 's are distinct, conclude that $x_j = 0$ for $j = 2, 3, \dots, k$. Look at the initial equation to deduce that $x_1 = 0$.