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1 Logic

1.1 Sets

Definition 1.1.1. A set is a collection of objects. The universal set is X.

Definition 1.1.2. Let the empty set be the set that contains no elements. Denote this by ∅.

Definition 1.1.3. Let A,B ⊂ X. The set difference of B and A is defined as B \A = {x ∈ B : x 6∈ A}.

Definition 1.1.4. Let A,B ⊂ X. The union of A and B is defined as A ∪B = {x : x ∈ A or x ∈ B}.

Definition 1.1.5. Let A,B ⊂ X. The intersection of A and B is defined as A ∩B = {x : x ∈ A and x ∈ B}.
· If {Aα}α∈I is a collection of sets, then⋃

α∈I
Aα = {x : x ∈ Aα for some α ∈ I}⋂

α∈I
Aα = {x : x ∈ Aα ∀ α ∈ I}

Definition 1.1.6. Let A ⊂ X. The complement of A is defined as Ac = A = {x ∈ X : x 6∈ A}.

Theorem 1.1.7. [de Morgan’s Laws]
Let A ⊂ X. With respect to the above definitions,

·

(⋃
α∈I

Aα

)c
=
⋂
α∈I

Acα

·

(⋂
α∈I

Aα

)c
=
⋃
α∈I

Acα

Definition 1.1.8. Define the following basic sets:
· N : natural numbers = {1, 2, 3, . . . }
· Z : integers = {. . . ,−2,−1, 0, 1, 2, . . . }
· Q : rational numbers = {ab : a ∈ Z, b ∈ N, gcd(a, b) = 1}
· R : real numbers

Definition 1.1.9. A subset S ⊂ R is termed an interval. For every x, y ∈ S, if z ∈ R is such that x 6 z 6 y,
then z ∈ S. Note that the empty set is an interval.

1.2 The Peano axioms

Axiom 1.2.1. [Principle of Mathematical Induction]
If S ⊂ N is such that

1) 1 ∈ S
2) If n ∈ S, then n+ 1 ∈ S

Then S = N.

Axiom 1.2.2. [Principle of Strong Mathematical Induction]
If S ⊂ N is such that

1) 1 ∈ S
2) If {1, . . . , n} ⊂ S, then n+ 1 ∈ S

Then S = N.

Axiom 1.2.3. [Well-Ordering Principle]
If S ⊂ N is non-empty, then S has a least element.
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1.3 Properties of numbers

Definition 1.3.1. Let S ⊂ R.
· An element α ∈ R is an upper bound for S if x 6 α ∀ x ∈ S.
· If S has an upper bound, then S is bounded above.
· An element β ∈ R is a lower bound for S if x > β ∀ x ∈ S.
· If S has a lower bound, then S is bounded below.
· If S is bounded above and below, then S is bounded.

Axiom 1.3.2. [Least upper bound property]
Every non-empty subset S ⊂ R that is bounded above has a least upper bound.

Corollary 1.3.3. [Greatest lower bound property]
Every non-empty subset S ⊂ R that is bounded below has a greatest lower bound.

Theorem 1.3.4. [Archimedean property I]
N is not bounded above.

Theorem 1.3.5. [Archimedean property II]
Let ε > 0. Then there exists an n ∈ N such that 0 < 1

n < ε.

Corollary 1.3.6. If x ∈ R, then there exists some z ∈ Z such that z < x 6 z + 1.

Corollary 1.3.7. If x, y ∈ R with x < y, then there exists some r ∈ Q and s ∈ Q such that r, s ∈ (x, y).

1.4 Functions

Definition 1.4.1. A function is a rule that assigns to each element in a set X a single value y in a set Y.

Definition 1.4.2. A function f from a set X to a set Y is represented by f : X → Y .
· A function f : X → Y is 1− 1 is for every x1, x2 ∈ X with x1 6= x2, we have f(x1) 6= f(x2).
· A function f : X → Y is onto if for every y ∈ Y there exists an x ∈ X such that f(x) = y.
· A function that is both 1− 1 and onto is termed a bijection.

Definition 1.4.3. Two sets X,Y are termed equivalent if there exists a bijection f : X → Y . This is
expressed X v Y . Then f is termed an isomorphism.

Remark 1.4.4. Q v N. This is given by f : Q→ N defined by f(mn ) = 2n3m.

Definition 1.4.5. A set X is finite if X v {1, 2, . . . , n} for some n ∈ N, or X v ∅. A set X is infinite if it
is not finite.

1.5 The absolute value

Definition 1.5.1. The absolute value is a function |x| =
{

x if x > 0
−x if x < 0

Remark 1.5.2. The absolute value has the following properties:
1. |x| = | − x|
2. |x| > 0 and |x| = 0 if and only if |x| = 0
3. |xy| = |x||y|

Theorem 1.5.3. [Triangle Inequality]
For every x, y, z ∈ R, |x− y| 6 |x− z|+ |z − y|.

Corollary 1.5.4. For every x, y ∈ R, |x+ y| 6 |x|+ |y|.
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Corollary 1.5.5. For every x, y, z ∈ R, ||x| − |y|| 6 |x− y|.

Remark 1.5.6. The absolute value has the following inequalities:
1. |x− a| < δ =⇒ x ∈ (a− δ, a+ δ)
2. 0 < |x− a| < δ =⇒ x ∈ (a− δ, a+ δ) \ {a}
3. |x− a| 6 δ =⇒ x ∈ [a− δ, a+ δ]

2 Sequences

Definition 2.0.1. A sequence is an infinite ordered list of real numbers, denoted {an}.

2.1 Limits of sequences

Definition 2.1.1. A number L is the limit of a sequence {an} if for every ε > 0, there exists an N ∈ N such
that if n > N , then |an − L| < ε.

Definition 2.1.2. If a sequence has such a limit, then the sequence converges. If no such L exists, then the
sequence diverges.

Theorem 2.1.3. Let {an} be a sequence. Let L,M ∈ R such that lim
n→∞

[
an
]
= L and lim

n→∞

[
an
]
=M .

Then M = L.

Theorem 2.1.4. Every convergent sequence is bounded.

Definition 2.1.5. A sequence {an} is monotonic if and only if it satisfies any one of the following:
1. {an} is increasing if an < an+1 for all n ∈ N
2. {an} is non-decreasing if an 6 an+1 for all n ∈ N
3. {an} is decreasing if an > an+1 for all n ∈ N
4. {an} is non-increasing if an > an+1 for all n ∈ N

Theorem 2.1.6. [Monotone Convergence Theorem]
If {an} is non-decreasing and bounded above, then {an} converges.

Remark 2.1.7. The Least upper bound property and the Monotone convergence theorem are equivalent.

Corollary 2.1.8. A monotonic sequence {an} converges if and only if it is bounded.

Remark 2.1.9. If {an} is non-decreasing, then either
1. {an} is bounded and hence converges.
2. {an} diverges to ∞.

Definition 2.1.10. Given a sequence {an} and an N ∈ N , the set {aN , aN+1, aN+2, . . . } is termed a tail.

Remark 2.1.11. The following are equivalent:
1. lim

n→∞

[
an
]
= L

2. For every ε > 0, the open interval (L− ε, L+ ε) contains a tail of {an}.
3. For every ε > 0, The open interval (L− ε, L+ ε) contains all but finitely many terms of {an}.
4. Every open interval (a, b) containing L contains a tail of {an}.
5. Every open interval (a, b) containing L contains all but finitely many terms of {an}.
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2.2 Series

Definition 2.2.1. Let {an} be a sequence. Then a series with terms given by the sequence {an} is a formal
sum of the form

a1 + a2 + a3 + · · ·+ an + · · · =
∞∑
n=1

an

Definition 2.2.2. For each k ∈ N, Sk =
∑∞
n=1 an is termed the kth partial sum of the series

∑∞
n=1 an.

The series converges if and only if {Sk} converges as k →∞.

Theorem 2.2.3. If {Sk} diverges, then {an} diverges.

Definition 2.2.4. Let r ∈ R. A geometric series with radius r is a series of the form

1 + r + r2 + · · ·+ rn + · · · =
∞∑
n=0

rn

Theorem 2.2.5. If |r| > 1, then the geometric series with radius r will diverge.

Theorem 2.2.6. The series

∞∑
n=0

arn converges to
a

1− r
if and only if |r| < 1.

Theorem 2.2.7. [Comparison Test]
Suppose that 6 an 6 bn for all n ∈ N.

1. if
∑∞
n=0 an diverges, then

∑∞
n=0 bn diverges.

2. If
∑∞
n=0 bn converges, then

∑∞
n=0 an converges.

2.3 Subsequences

Definition 2.3.1. Given a sequence {an} and an increasing sequence n1 < n2 < · · · of the natural numbers,
the sequence bk = ank

= {an1
, an2

, . . . } is termed a subsequence of {an}.

Theorem 2.3.2. If {an} converges to L, then so does every subsequence of {an}.

Definition 2.3.3. A point L is termed a limit point of a sequence if there exists a subsequence {ank
} of

{an} such that {ank
} converges to L. The set of all limits points of a sequence {an} is denoted by Lim{an}.

Definition 2.3.4. Let {an} be a sequence. An element n◦ ∈ N is termed a peak point of {an} if an < an◦

for all n > n◦.

Theorem 2.3.5. [Peak Point Lemma]
Every sequence {an} has a monotonic subsequence.

Theorem 2.3.6. [Bolzano-Weierstrass Theorem]
Every bounded sequence {an} has a convergent subsequence.

Theorem 2.3.7. Suppose that for sequences {an}, {bn} we have lim
n→∞

[
an
]
= L and lim

n→∞

[
bn
]
=M . Then

1. lim
n→∞

[
c · an

]
= c · L for every c ∈ R

2. lim
n→∞

[
an + bn

]
= L+M

3. lim
n→∞

[
an · bn

]
= L ·M

4. lim
n→∞

[
1

bn

]
=

1

M
for M 6= 0

5. lim
n→∞

[
an
bn

]
=

L

M
for M 6= 0
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Theorem 2.3.8. Suppose that for sequences {an}, {bn}, the limit lim
n→∞

[
an
bn

]
exists, and lim

n→∞

[
bn
]
= 0.

Then lim
n→∞

[
an
]
= 0.

Theorem 2.3.9. [Squeeze Theorem for Sequences]
Suppose that {an}, {bn}, {cn} are sequences with an 6 bn 6 cn for all n ∈ N. Also suppose that
lim
n→∞

[
an
]
= L = lim

n→∞

[
cn
]
. Then lim

n→∞

[
bn
]

exists and lim
n→∞

[
bn
]
= L.

2.4 Cauchy sequences

Definition 2.4.1. A sequence {an} is Cauchy if for every ε > 0, there exists an N ∈ N such that if n,m > N ,
then |an − am| < ε.

Theorem 2.4.2. Every convergent sequence is Cauchy.

Theorem 2.4.3. Every Cauchy sequence is bounded.

Theorem 2.4.4. Suppose {an} is Cauchy. Suppose that {ank
} is a subsequence of {an} with ank

→ L.
Then an → L.

Theorem 2.4.5. [Completeness Theorem]
Every Cauchy sequence {an} ⊂ R converges.

Theorem 2.4.6. The following are equivalent in R:
1. Least upper bound property
2. Monotone convergence theorem
3. Bolzano-Weierstrass theorem
4. Completeness theorem

3 Limits and continuity

3.1 Limits of functions

Definition 3.1.1. A number L is the limit of a function f(x) as x→ a, if for every ε > 0, there exists a
δ > 0 such that if 0 < |x− a| < δ, then |f(x)− L| < ε. Then we denote the limit by lim

x→a

[
f(x)

]
= L.

Theorem 3.1.2. [Sequential Characterization of Limits]
The following are equivalent:

1. lim
x→a

[
f(x)

]
= L

2. Whenever {xn} is a sequence with xn → a and xn 6= a, then f(xn)→ L.

Theorem 3.1.3. Suppose that for function f(x), g(x) we have lim
x→a

[
f(x)

]
= L and lim

x→a

[
g(x)

]
=M . Then

1. lim
x→a

[
c · f(x)

]
= c · L for every c ∈ R

2. lim
x→a

[
f(x) + g(x)

]
= L+M

3. lim
x→a

[
f(x) · g(x)

]
= L ·M

4. lim
x→a

[
1

g(x)

]
=

1

M
for M 6= 0

5. lim
x→a

[
f(x)

g(x)

]
=

L

M
for M 6= 0

6



Theorem 3.1.4. Suppose that for functions f(x), g(x), the limit lim
x→a

[
f(x)

g(x)

]
exists, and lim

x→a

[
g(x)

]
= 0.

Then lim
x→a

[
f(x)

]
= 0.

Definition 3.1.5. A rational function is a function f(x) = p(x)
q(x) , where p(x), q(x) are polynomials.

Theorem 3.1.6. [Algorithm for Rational Functions]

Let f(x) = p(x)
q(x) . Then

1. If q(a) 6= 0, then lim
x→a

[
f(x)

]
=

lim
x→a

[
p(x)

]
lim
x→a

[
q(x)

] =
p(a)

q(a)
= f(a)

2. If q(a) = 0 and p(a) 6= 0, then lim
x→a

[
f(x)

]
does not exist.

3. If q(a) = 0 and p(a) = 0, then p(x)
q(x) = (x−a)p1(x)

(x−a)q1(x) , and repeat 1. with p1(x)
q1(x)

.

Theorem 3.1.7. [Squeeze Theorem for Functions]
Suppose that f(x), g(x), h(x) are functions with f(x) 6 g(x) 6 h(x) for all x in an open interval I containing
x = a, except possibly at x = a. Also suppose that lim

x→a

[
f(x)

]
= L = lim

x→a

[
h(x)

]
. Then lim

x→a

[
g(x)

]
exists and

lim
x→a

[
g(x)

]
= L.

3.2 One-sided limits

Definition 3.2.1. A number L is the limit of a function f(x) as x→ a from above (the right), if for every
ε > 0, there exists a δ > 0 such that if 0 < x− a < δ, then |f(x)− a| < ε. This implies that x ∈ (a, a+ δ).
This limit is denoted by lim

x→a+

[
f(x)

]
= L.

Definition 3.2.2. A number L is the limit of a function f(x) as x→ a from below (the left), if for every
ε > 0, there exists a δ > 0 such that if 0 < x− a < δ, then |f(x)− a| < ε. This implies that x ∈ (a− δ, a).
This limit is denoted by lim

x→a−

[
f(x)

]
= L.

Theorem 3.2.3. The following are equivalent:
1. lim

x→a

[
f(x)

]
= L

1. lim
x→a+

[
f(x)

]
= lim
x→a−

[
f(x)

]
= L

Remark 3.2.4. One-sided limits have the same arithmetic rules , sequential characterization, and satisfy
the squeeze theorem just as the two-sided limits.

Definition 3.2.5. A function f : R→ R is termed even if
· f(x) = f(−x)
· The graph of f is symmetric about the y-axis.

Definition 3.2.6. A function f : R→ R is termed odd if
· f(x) = −f(−x)
· The graph of f is symmetric about the origin.

Remark 3.2.7. With respect to the above definitions,
· If f(x) is even, then lim

x→0

[
f(x)

]
exists if and only if lim

x→a+

[
f(x)

]
exists or lim

x→a−

[
f(x)

]
exists.

· If f(x) is odd, then lim
x→0

[
f(x)

]
exists if and only if lim

x→a+

[
f(x)

]
= lim
x→a−

[
f(x)

]
.

Theorem 3.2.8. [Fundamental Trigonometric Limit]

lim
x→0

[
sin(x)

x

]
= 1
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Corollary 3.2.9. If x is ”small”, i.e. |x| � 1, then sin(x) ≈ x ≈ tan(x).

Definition 3.2.10.
· lim
x→a+

[
f(x)

]
=∞ if for every m > 0, there exists a δ > 0 such that if 0 < x− a < δ, then f(x) > m.

· lim
x→a+

[
f(x)

]
= −∞ if for every m < 0, there exists a δ > 0 such that if 0 < x− a < δ, then f(x) < m.

· lim
x→a−

[
f(x)

]
=∞ if for every m > 0, there exists a δ > 0 such that if 0 < a− x < δ, then f(x) > m.

· lim
x→a−

[
f(x)

]
= −∞ if for every m < 0, there exists a δ > 0 such that if 0 < a− x < δ, then f(x) < m.

Definition 3.2.11. A function f(x) has a vertical asymptote at x = a if either one of the following hold:

lim
x→a+

[
f(x)

]
= ±∞ or lim

x→a−

[
f(x)

]
= ±∞

3.3 Continuity

Definition 3.3.1. A function f(x) is continuous at x = a if
1. lim

x→a

[
f(x)

]
exists

2. lim
x→a

[
f(x)

]
= f(a)

Otherwise f(x) is termed discontinuous.

Definition 3.3.2. A function f(x) is continuous at x = a if for every ε > 0, there exists a δ > 0 such that
if |x− a| < δ, then |f(x)− f(a)| < ε.

Theorem 3.3.3. [Sequential Characterization of Continuity]
The following are equivalent:

1. f(x) is continuous at x = a
2. Whenever {xn} is a sequence with xn → a, then f(xn)→ f(a).

Theorem 3.3.4. Suppose that f(x), g(x) are continuous at x = a. Then
1. c · f(x) is continuous at x = a for all c ∈ R
2. f(x) + g(x) is continuous at x = a
3. f(x) · g(x) is continuous at x = a

4. f(x)
g(x) is continuous at x = a if g(a) 6= 0

Definition 3.3.5. A function f(x) is continuous on [a, b] if
1. f(x) is continuous at each x◦ ∈ [a, b]
2. lim

x→a+

[
f(x)

]
= f(a)

3. lim
x→b−

[
f(x)

]
= f(b)

Definition 3.3.6. Let f : S → R with S ⊂ R. Then f(x) is continuous on S (relative to S) if whenever
{xn} ⊂ S with xn → x◦ for x◦ ∈ S, then f(xn)→ f(x◦).

3.4 Compositions of functions

Definition 3.4.1. If the range of a function f is the subset of the domain of a function g, then define the
composition of f and g by h(x) = g(f(x)).
· If f : X → Y and g : Y → Z, then h : X → Z.

Theorem 3.4.2. Suppose that f(x) is continuous at x = a, and that g(y) is continuous at y = f(a). Then
the function g(f(x)) = g ◦ f is continuous at x = a.

Remark 3.4.3. If lim
x→a

[
f(x)

]
= L and lim

y→L

[
g(y)

]
=M , then it is not necessarily true that lim

x→a

[
g ◦ f(x)

]
=M .

However, if lim
x→a

[
f(x)

]
= L and g(y) is continuous at y = L, then lim

x→a

[
g ◦ f(x)

]
= g(L).
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3.5 Discontinuity

Definition 3.5.1. A function f(x) has a discontinuity at x = a of f(x) is defined on an open interval I
containing a except possibly at x = a, and f(x) is not continuous at x = a. Let D(f) denote the collection
of all points of discontinuity of f .

Definition 3.5.2. There are two types of discontinuities:
1. If lim

x→a

[
f(x)

]
exists, but either f(a) is not defined, or f(a) = lim

x→a

[
f(x)

]
, then x = a is termed a

removable discontinuity.
2. If a ∈ D(f)such that lim

x→a

[
f(x)

]
does not exist, then a is termed an essential discontinuity of f .

· Jump discontinuity
· Vertical asymptote discontinuity
· Oscillatory discontinuity

 These are the types of essential discontinuities

Remark 3.5.3. A function with a removable (non-essential) discontinuity may be redefined at the point of
discontinuity to create a continuous function, but a function with an essential discontinuity cannot be made
continuous by redefining the function at the point of discontinuity.

3.6 Value theorems

Theorem 3.6.1. [Intermediate Value Theorem]
Suppose that f(x) is continuous on [a, b] such that f(a) < 0 and f(b) > 0. Then there exists some c ∈ (a, b)
such that f(c) = 0.

Corollary 3.6.2. Suppose that f(x) is continuous on [a, b]. If f(a) < α < f(b), then there exists some
c ∈ (a, b) such that f(c) = α.

Corollary 3.6.3. Suppose that f(x) is continuous on an interval I. Then f(I) = {f(x) : x ∈ I} is an
interval.

Definition 3.6.4. A function f(x) is termed uniformly continuous on S ⊂ R if for every ε > 0, there exists
a δ > 0 such that for xa, x2 ∈ S if |x1 − x2| < δ, then |f(x1)− f(x2)| < ε.

Theorem 3.6.5. [Sequential Characterization of Uniform Continuity]
Let S ⊂ R and f : S → R. Then the following are equivalent:

1. f(x) is uniformly continuous on S.
1. If {xn}, {yn} are sequences in S, and lim

n→∞

[
xn − yn

]
= 0, then lim

n→∞

[
f(xn)− f(yn)

]
= 0.

Theorem 3.6.6. Suppose that f(x) is uniformly continuous on S ⊂ R. If {xn} ⊂ S is Cauchy, then {f(xn)}
is Cauchy.

Theorem 3.6.7. Suppose that f(x) is continuous on [a, b]. Then f(x) is uniformly continuous on [a, b].

Theorem 3.6.8. Suppose that f(x) is continuous on (a, b). Then f(x) is uniformly continuous on (a, b) if
and only if lim

x→a+

[
f(x)

]
and lim

x→b−

[
f(x)

]
exist.

Theorem 3.6.9. [Extreme Value Theorem]
Suppose that f(x) is continuous on [a, b]. Then there exist c, d ∈ [a, b] such that f(x) 6 f(x) 6 f(d) for all
x ∈ [a, b].

Corollary 3.6.10. If f(x) is continuous on [a, b], then f([a, b]) = {f(x); s ∈ [a, b]} is a closed interval. This
is equal to f(c), f(d).
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4 Differentiation

4.1 Derivatives

Definition 4.1.1. Given f(x) and a point x = a ∈ R, the quantity f(x)−f(a)
x−a is termed Newton’s quotient

for f(x) centered at x = a.

Definition 4.1.2. A function f(x) is termed differentiable at x = a if lim
x→a

[
f(x)− f(a)

x− a

]
exists. Then it is

expressed as f ′(a) = lim
x→a

[
f(x)− f(a)

x− a

]
. If the limit does not exist, then the function is not differentiable at

x = a.

Definition 4.1.3. If a function f(x) is differentiable at x = a, then the line y = f(a) + f ′(a)(x− a) is
termed the tangent line to the graph of f(x) through (a, f(a)). This is also termed the linear approximation
of f(x) at x = a, and denoted by La(x).

Theorem 4.1.4. If f(x) is differentiable at x = a, then f(x) is continuous at x = a.

Theorem 4.1.5. Suppose that f(x), g(x) are differentiable at x = a. Then
1. c · f(x) is differentiable at x = a for all c ∈ R with d

dxc · f(x) = c · ddxf(x)
2. If h(x) = f(x) + g(x), then h(x) is differentiable at x = a with h′(a) = f ′(a) + g′(a)
3. If h(x) = f(x)g(x), then h(x) is differentiable at x = a with h′(a) = f ′(a)g(a) + f(a)g′(a)

Theorem 4.1.6. [Chain Rule]
Suppose f(x) is defined upon an open interval I containing x = a, and g(y) is defined upon an open interval
J with f(I) ⊂ J . Suppose that f(x) is differentiable at x = a, and that g(y) is differentiable at y = f(a).
Then h(x) = g ◦ f(x) is differentiable at x = a with h′(a) = g′(f(a))f ′(a).

Definition 4.1.7. For a function f(x), an element x = c is termed a local maximum if there exists an
open interval I = (a, b) containing c such that f(x) 6 f(c) for all x ∈ (a, b). SImilarly, an element x = d is
termed a local minimum if there exists an open interval I = (a, b) containing d such that f(d) 6 f(x) for all
x ∈ (a, b). The two together are termed local extrema.

Theorem 4.1.8. Suppose that x = c is either a local extremum for f(x). If f ′(c) exists, then f ′(c) = 0.

Definition 4.1.9. A point x = c is termed a critical point of f(x) if f(x) is defined upon an open interval
I containing c, and either

1. f ′(c) = 0
2. f(x) is not differentiable at x = c.

Remark 4.1.10. If f(x) is continuous on [a, b], then each of the global extrema (max/min) will be either at
1. an endpoint
2. a critical point in (a, b), i.e. an interior critical point

4.2 Inverse functions

Definition 4.2.1. Suppose that f : X → Y is a bijection. Define a function g : Y → X by g(y) = x if and
only if y = g(x). Then the function g(y) is termed the inverse of f(x) and is denoted by f−1(x).

Definition 4.2.2. If f : S → R with S ⊂ R, then f(x) is invertible on S if f is one-to-one on S. Then
define g : f(S)→ S by g(y) = x if and only if x ∈ S and f(x) = y.

Definition 4.2.3. A function f : S → R is said to be (strictly) increasing on S if whenever x1, x2 ∈ S
with x1 < x2, then

(
f(x1) < f(x2)

)
f(x1) 6 f(x2). Similarly, f is (strictly) decreasing on S if whenever

x1, x2 ∈ S with x1 < x2, then
(
f(x1) > f(x2)

)
f(x1) > f(x2). If f is either (strictly) increasing or (strictly)

decreasing on S, then f is monotonic on S.
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Remark 4.2.4. If f(x) is strictly increasing/decreasing on S, then f is 1− 1 on S, and hence invertible.

Theorem 4.2.5. Suppose that f(x) is continuous on an interval I and also 1− 1 on I. Then either
1. f(x) is strictly increasing on I
2. f(x) is strictly decreasing on I

Thus continuous functions tend to be precisely 1− 1 when they are monotonic.

Theorem 4.2.6. Suppose that f(x) is strictly increasing/decreasing on [a, b]. Then f(x) is continuous on
[a, b] if and only if f([a, b]) = [f(a), f(b)], i.e. if and only if f([a, b]) is an interval.

Remark 4.2.7. Suppose that f : S → R is strictly increasing/ decreasing. Let T = f(S). Then f is invertible
on S. Let g : T → S be the inverse of f . Then g(y) is strictly increasing/decreasing.

Corollary 4.2.8. Let I be an interval and f : I → R be strictly increasing/decreasing with J = f(I). Then
f(x) is continuous on I if and only if g : J → I (where g = f−1) is also continuous.

Remark 4.2.9. The graph of f(x) and its inverse are essentially the same, as (x, f(x))→ (g(y), y). To
graph g(y) in the usual orientation, we ”switch” x and y.

Theorem 4.2.10. [Inverse Function Theorem]
Suppose that f(x) is defined on a continuous and open interval I containing x◦. Suppose that f(x) is either
strictly increasing or strictly decreasing on I with inverse g : J = f(I)→ I. Then if f(x) is differentiable at
x◦ with f ′(x◦) 6= 0, then g(y) is differentiable at y◦ = f(x◦) with

g′(y◦) =
1

f ′(x◦)

Definition 4.2.11. Let e be the unique base such that lim
n→0

[
en − 1

n

]
= 1. Then f(x) = ex = f−1(x).

4.3 Mean value theorem

Theorem 4.3.1. [Rolle’s Theorem]
If f(x) is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b), then there exists a c ∈ (a, b) with
f ′(c) = 0.

Theorem 4.3.2. [Mean value theorem]

If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists a c ∈ (a, b) with f ′(c) =
f(b)− f(a)

b− a
.

Theorem 4.3.3. Suppose that f(x), g(x) are continuous on some closed interval [a, b] and differentiable on
(a, b). If f ′(x) = g′(x) for all x ∈ (a, b), then there exists some m ∈ R such that g(x) = f(x) +m for all
x ∈ [a, b].

Theorem 4.3.4. [Increasing Function Theorem]
Suppose that f(x), g(x) are continuous on some closed interval [a, b] and differentiable on (a, b) with f ′(x) > 0
for all x ∈ (a, b). Then f(x) is strictly increasing on [a, b].

Remark 4.3.5. The increasing function theorem holds on the interval [a, b] if there exist at most finitely
many points x1, . . . , xn ∈ [a, b] such that f(xi) = 0 for 1 6 i 6 n.

Theorem 4.3.6. Suppose that f(x), g(x) are continuous on [a, b] and differentiable on (a, b). Also suppose
that m 6 f ′(x) 6M for all x ∈ (a, b). Then f(a) +m(x− a) 6 f(x) 6 f(a) +M(x− a) for all x ∈ (a, b).

Theorem 4.3.7. Suppose that f(x) is defined on an interval I with |f(x)| 6M for all x ∈ I. Then f(x) is
uniformly continuous on I.
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Theorem 4.3.8. [First Derivative Test]
Suppose that c is a critical point of f(x)., and f(x) is continuous at x = c.

1. Suppose that there exists an open interval (a, b) containing c such that f ′(x) 6 0 for all x ∈ (a, c) and
f ′(x) 6 0 for all x ∈ (c, b). Then c is a local min of f(x).

2. Suppose that there exists an open interval (a, b) containing c such that f ′(x) > 0 for all x ∈ (a, c) and
f ′(x) 6 0 for all x ∈ (c, b). Then c is a local max of f(x).

4.4 Concavity

Definition 4.4.1. Let I ⊂ R be an interval.
1. A function f(x) is concave upward on I if for each a, b ∈ I with a < b, the secant line joining (a, f(a))

and (b, f(b)) sits above the graph of f(x) on [a, b].
2. A function f(x) is concave downward on I if for each a, b ∈ I with a < b, the secant line joining

(a, f(a)) and (b, f(b)) sits below the graph of f(x) on [a, b].

Definition 4.4.2. Suppose that f(x) is differentiable on I with derivative function f ′(x). If a ∈ I and f ′(x)
differentiable at x = a, then the quantity

lim
x→a

[
f ′(x)− f ′(a)

x− a

]
= f ′′(x)

is termed the second derivative at x = a. In general, f (n)(x) := d
dxf

n−1(x).

Theorem 4.4.3. Suppose that f(x) is such that f ′′(x) > 0 for all x ∈ I. Then f(x) is concave upward on
I. If f ′′(x) < 0 on I, then f(x) is concave downward on I.

Theorem 4.4.4. [Second Derivative Test]
Suppose that c is a critical point of f(x), and f(x) is continuous at x = c.

1. Suppose that f ′′(x) is continuous at x = c and f ′′(c) > 0. Then c is a local min for f(x).
2. Suppose that f ′′(x) is continuous at x = c and f ′′(c) < 0. Then c is a local max for f(x).

Definition 4.4.5. A point x = c is termed a point of inflection for f(x) is f(x) is continuous at x = c and
if there exists an open interval (a, b) containing c such that either

1. f(x) is concave upward on (a, c) and concave downward on (c, b)
2. f(x) is concave downward on (a, c) and concave upward on (c, b)

Definition 4.4.6. An extended real number is an element in the set of numbers R∗ = R ∪ {±∞}.

Theorem 4.4.7. [L’Hôpital’s Rule]
Suppose that f, g : (a, b)→ R for extended real numbers a, b and a < b. Suppose that f, g are differentiable
on (a, b) with g(x) 6= 0 and g′(x) 6= 0 for all x ∈ (a, b).

1. Suppose that lim
x→a+

[
f(x)

]
= 0 = lim

x→a+

[
g(x)

]
. Then if lim

x→a+

[
f ′(x)

g′(x)

]
= L for L ∈ R∗, then lim

x→a+

[
f(x)

g(x)

]
= L

2. Suppose that lim
x→b−

[
f(x)

]
= 0 = lim

x→b−

[
g(x)

]
. Then if lim

x→b−

[
f ′(x)

g′(x)

]
= L for L ∈ R∗, then lim

x→b−

[
f(x)

g(x)

]
= L

3. Suppose that lim
x→a+

[
f(x)

]
= ±∞ and lim

x→a+

[
g(x)

]
= ±∞.

Then if lim
x→a+

[
f ′(x)

g′(x)

]
= L for L ∈ R∗, then lim

x→a+

[
f(x)

g(x)

]
= L

4. Suppose that lim
x→b−

[
f(x)

]
= ±∞ and lim

x→b−

[
g(x)

]
= ±∞.

Then if lim
x→b−

[
f ′(x)

g′(x)

]
= L for L ∈ R∗, then lim

x→b−

[
f(x)

g(x)

]
= L

Theorem 4.4.8. [Cauchy Mean Value Theorem]
Assume that f(x), g(x) are continuous on [a, b] and differentiable on (a, b) with g(x) 6= 0 for all x ∈ (a, b).

Then there exists a c ∈ (a, b) such that
f ′(c)

g′(c)
=
f(b)− f(a)

b− a
.
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5 Taylor’s Theorem

Definition 5.0.1. Suppose that f(x) is n times differentiable at x = a. Then the n-th degree Taylor polynomial
for f(x) centered at x = a is

Pn,a(x) =

n∑
k=0

fk(a)

k!
(x− a)k

Definition 5.0.2. Suppose that f(x) is n times differentiable at x = a. Then the error term in approximating
f(x) using the n-th degree Taylor polynomial is

Rn,a(x) = f(x)− Pn,a(x)

Theorem 5.0.3. [Taylor’s Theorem]
Suppose that f(x) is n times differentiable on an open interval I containing x = a. Then for every x ∈ I
and x 6= a, there exists some c ∈ (x, a) such that

Rn,a(x) = f(x)− Pn,a(x) =
f (n+1)(c)

n+ 1
(x− a)n−1

5.1 Big O notation

Definition 5.1.1. A function f(x) is big O of g(x) as x→ a if there exists a δ > 0 and m > 0 such that
|f(x)| 6M |g(x)| for all x ∈ (a− δ, a+ δ), except possibly at x = a. This is expressed as f(x) = O(g(x)) as
x→ a.

Definition 5.1.2. For functions f(x), g(x), the equation f(x) = g(x) +O(xn) holds if f(x)− g(x) = O(xn).

Theorem 5.1.3. Suppose that f(x) = O(xn) and g(x) = O(xm). Then
1. c · f(x) = O(xn) =⇒ c · O(xn) = O(xn)
2. f(x) + g(x) = O(xn) +O(xm) = O(xk) such that k = min{n,m}
3. f(x)g(x) = O(xn)O(xm) = O(xn+m)
4. xkf(x) = xkO(xn) = O(xk+n)
5. If n 6 m, then g(x) = O(xn)
6. If n > 1, then 1

xf(x) =
1
xO(x

n) = O(xn−1)

Theorem 5.1.4. Suppose that f (n+1)(x) is continuous on [−δ, δ]. Then f(x) = Pn,a(x) +O(xn+1).

Theorem 5.1.5. If f (n+1)(x) is continuous on [−δ, δ] and if p(x) is a polynomial of degree n or less with
f(x) = p(x) +O(xn+1), then p(x) = Pn,0(x).

Theorem 5.1.6. If p(x) is a polynomial of degree 6 n for n ∈ N ∪ {0} and p(x) = O(xn+1), then p(x) = 0
for all x.
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