Definitions & Theorems Math 147, Fall 2009

December 19, 2010

Contents

1	Logic	2
	1.1 Sets	2
	1.2 The Peano axioms	2
	1.3 Properties of numbers	3
	1.4 Functions	3
	1.5 The absolute value	3
2	Sequences	4
	2.1 Limits of sequences	4
	2.2 Series	5
	2.3 Subsequences	5
	2.4 Cauchy sequences	6
3	Limits and continuity	6
	3.1 Limits of functions	6
	3.2 One-sided limits	7
	3.3 Continuity	8
	3.4 Compositions of functions	8
	3.5 Discontinuity	9
	3.6 Value theorems	9
4	Differentiation	10
	4.1 Derivatives	10
	4.2 Inverse functions	10
	4.3 Mean value theorem	11
	4.4 Concavity	12
5	Taylor's Theorem	13
	5.1 Big O notation	13

© J. Lazovskis Professor: B. Forrest

1 Logic

1.1 Sets

Definition 1.1.1. A <u>set</u> is a collection of objects. The universal set is X.

Definition 1.1.2. Let the empty set be the set that contains no elements. Denote this by \emptyset .

Definition 1.1.3. Let $A, B \subset X$. The set difference of B and A is defined as $B \setminus A = \{x \in B : x \notin A\}$.

Definition 1.1.4. Let $A, B \subset X$. The <u>union</u> of A and B is defined as $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

Definition 1.1.5. Let $A, B \subset X$. The <u>intersection</u> of A and B is defined as $A \cap B = \{x : x \in A \text{ and } x \in B\}$. $\cdot If \{A_{\alpha}\}_{\alpha \in I}$ is a collection of sets, then

 $\bigcup_{\alpha \in I} A_{\alpha} = \{ x : x \in A_{\alpha} \text{ for some } \alpha \in I \}$ $\bigcap_{\alpha \in I} A_{\alpha} = \{ x : x \in A_{\alpha} \forall \alpha \in I \}$

Definition 1.1.6. Let $A \subset X$. The complement of A is defined as $A^c = \overline{A} = \{x \in X : x \notin A\}$.

Theorem 1.1.7. [DE MORGAN'S LAWS] Let $A \subset X$. With respect to the above definitions,

$$\cdot \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c}$$
$$\cdot \left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}$$

Definition 1.1.8. Define the following basic sets:

 $\cdot \mathbb{N}$: natural numbers = $\{1, 2, 3, \dots\}$

 $\cdot \mathbb{Z}$: integers = {..., -2, -1, 0, 1, 2, ...}

- $\cdot \mathbb{Q}$: rational numbers = $\{\frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N}, \gcd(a, b) = 1\}$
- $\cdot \ \mathbb{R}: \mathit{real numbers}$

Definition 1.1.9. A subset $S \subset \mathbb{R}$ is termed an <u>interval</u>. For every $x, y \in S$, if $z \in \mathbb{R}$ is such that $x \leq z \leq y$, then $z \in S$. Note that the empty set is an interval.

1.2 The Peano axioms

Axiom 1.2.1. [PRINCIPLE OF MATHEMATICAL INDUCTION] If $S \subset \mathbb{N}$ is such that

1) $1 \in S$ 2) If $n \in S$, then $n + 1 \in S$ Then $S = \mathbb{N}$.

Axiom 1.2.2. [PRINCIPLE OF STRONG MATHEMATICAL INDUCTION] If $S \subset \mathbb{N}$ is such that

1) $1 \in S$ 2) If $\{1, \ldots, n\} \subset S$, then $n + 1 \in S$ Then $S = \mathbb{N}$.

Axiom 1.2.3. [WELL-ORDERING PRINCIPLE] If $S \subset \mathbb{N}$ is non-empty, then S has a least element.

1.3 Properties of numbers

Definition 1.3.1. Let $S \subset \mathbb{R}$.

- An element $\alpha \in \mathbb{R}$ is an upper bound for S if $x \leq \alpha \ \forall x \in S$.
- \cdot If S has an upper bound, then S is bounded above.
- An element $\beta \in \mathbb{R}$ is a lower bound for S if $x \ge \beta \forall x \in S$.
- \cdot If S has a lower bound, then S is bounded below.
- \cdot If S is bounded above and below, then S is bounded.

Axiom 1.3.2. [LEAST UPPER BOUND PROPERTY] Every non-empty subset $S \subset \mathbb{R}$ that is bounded above has a least upper bound.

Corollary 1.3.3. [GREATEST LOWER BOUND PROPERTY] Every non-empty subset $S \subset \mathbb{R}$ that is bounded below has a greatest lower bound.

Theorem 1.3.4. [ARCHIMEDEAN PROPERTY I] \mathbb{N} is not bounded above.

Theorem 1.3.5. [ARCHIMEDEAN PROPERTY II] Let $\epsilon > 0$. Then there exists an $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.

Corollary 1.3.6. If $x \in \mathbb{R}$, then there exists some $z \in \mathbb{Z}$ such that $z < x \leq z + 1$.

Corollary 1.3.7. If $x, y \in \mathbb{R}$ with x < y, then there exists some $r \in \mathbb{Q}$ and $s \in \mathbb{Q}$ such that $r, s \in (x, y)$.

1.4 Functions

Definition 1.4.1. A function is a rule that assigns to each element in a set X a single value y in a set Y.

Definition 1.4.2. A function f from a set X to a set Y is represented by $f: X \to Y$.

- A function $f: X \to Y$ is 1-1 is for every $x_1, x_2 \in X$ with $x_1 \neq x_2$, we have $f(x_1) \neq f(x_2)$.
- A function $f: X \to Y$ is <u>onto</u> if for every $y \in Y$ there exists an $x \in X$ such that f(x) = y.
- \cdot A function that is both 1-1 and onto is termed a bijection.

Definition 1.4.3. Two sets X, Y are termed <u>equivalent</u> if there exists a bijection $f : X \to Y$. This is expressed $X \sim Y$. Then f is termed an isomorphism.

Remark 1.4.4. $\mathbb{Q} \sim \mathbb{N}$. This is given by $f : \mathbb{Q} \to \mathbb{N}$ defined by $f(\frac{m}{n}) = 2^n 3^m$.

Definition 1.4.5. A set X is <u>finite</u> if $X \sim \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$, or $X \sim \emptyset$. A set X is <u>infinite</u> if it is not finite.

1.5 The absolute value

Definition 1.5.1. The <u>absolute value</u> is a function $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$

Remark 1.5.2. The absolute value has the following properties:

- 1. |x| = |-x|
- **2.** $|x| \ge 0$ and |x| = 0 if and only if |x| = 0
- **3.** |xy| = |x||y|

Theorem 1.5.3. [TRIANGLE INEQUALITY] For every $x, y, z \in \mathbb{R}$, $|x - y| \leq |x - z| + |z - y|$.

Corollary 1.5.4. For every $x, y \in \mathbb{R}$, $|x + y| \leq |x| + |y|$.

Corollary 1.5.5. For every $x, y, z \in \mathbb{R}$, $||x| - |y|| \leq |x - y|$.

Remark 1.5.6. The absolute value has the following inequalities:

1. $|x-a| < \delta \implies x \in (a-\delta, a+\delta)$ 2. $0 < |x-a| < \delta \implies x \in (a-\delta, a+\delta) \setminus \{a\}$ 3. $|x-a| \le \delta \implies x \in [a-\delta, a+\delta]$

2 Sequences

Definition 2.0.1. A sequence is an infinite ordered list of real numbers, denoted $\{a_n\}$.

2.1 Limits of sequences

Definition 2.1.1. A number L is the <u>limit</u> of a sequence $\{a_n\}$ if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - L| < \epsilon$.

Definition 2.1.2. If a sequence has such a limit, then the sequence <u>converges</u>. If no such L exists, then the sequence diverges.

Theorem 2.1.3. Let $\{a_n\}$ be a sequence. Let $L, M \in \mathbb{R}$ such that $\lim_{n \to \infty} [a_n] = L$ and $\lim_{n \to \infty} [a_n] = M$. Then M = L.

Theorem 2.1.4. Every convergent sequence is bounded.

Definition 2.1.5. A sequence $\{a_n\}$ is <u>monotonic</u> if and only if it satisfies any one of the following:

- **1.** $\{a_n\}$ is increasing if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$
- **2.** $\{a_n\}$ is non-decreasing if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$
- **3.** $\{a_n\}$ is decreasing if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$
- **4.** $\{a_n\}$ is non-increasing if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$

Theorem 2.1.6. [MONOTONE CONVERGENCE THEOREM] If $\{a_n\}$ is non-decreasing and bounded above, then $\{a_n\}$ converges.

Remark 2.1.7. The Least upper bound property and the Monotone convergence theorem are equivalent.

Corollary 2.1.8. A monotonic sequence $\{a_n\}$ converges if and only if it is bounded.

Remark 2.1.9. If $\{a_n\}$ is non-decreasing, then either

- **1.** $\{a_n\}$ is bounded and hence converges.
- **2.** $\{a_n\}$ diverges to ∞ .

Definition 2.1.10. Given a sequence $\{a_n\}$ and an $N \in \mathbb{N}$, the set $\{a_N, a_{N+1}, a_{N+2}, \dots\}$ is termed a <u>tail</u>.

Remark 2.1.11. The following are equivalent:

1. $\lim_{n \to \infty} \lfloor a_n \rfloor = L$

- **2.** For every $\epsilon > 0$, the open interval $(L \epsilon, L + \epsilon)$ contains a tail of $\{a_n\}$.
- **3.** For every $\epsilon > 0$, The open interval $(L \epsilon, L + \epsilon)$ contains all but finitely many terms of $\{a_n\}$.
- **4.** Every open interval (a, b) containing L contains a tail of $\{a_n\}$.
- **5.** Every open interval (a, b) containing L contains all but finitely many terms of $\{a_n\}$.

2.2Series

Definition 2.2.1. Let $\{a_n\}$ be a sequence. Then a <u>series</u> with terms given by the sequence $\{a_n\}$ is a formal sum of the form

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Definition 2.2.2. For each $k \in \mathbb{N}$, $S_k = \sum_{n=1}^{\infty} a_n$ is termed the <u>kth partial sum</u> of the series $\sum_{n=1}^{\infty} a_n$. The series converges if and only if $\{S_k\}$ converges as $k \to \infty$.

Theorem 2.2.3. If $\{S_k\}$ diverges, then $\{a_n\}$ diverges.

Definition 2.2.4. Let $r \in \mathbb{R}$. A geometric series with radius r is a series of the form

$$1 + r + r^2 + \dots + r^n + \dots = \sum_{n=0}^{\infty} r^n$$

Theorem 2.2.5. If $|r| \ge 1$, then the geometric series with radius r will diverge.

Theorem 2.2.6. The series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$ if and only if |r| < 1.

Theorem 2.2.7. [COMPARISON TEST]

Suppose that $\leq a_n \leq b_n$ for all $n \in \mathbb{N}$.

1. if $\sum_{n=0}^{\infty} a_n$ diverges, then $\sum_{n=0}^{\infty} b_n$ diverges. **2.** If $\sum_{n=0}^{\infty} b_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.

2.3Subsequences

Definition 2.3.1. Given a sequence $\{a_n\}$ and an increasing sequence $n_1 < n_2 < \cdots$ of the natural numbers, the sequence $b_k = a_{n_k} = \{a_{n_1}, a_{n_2}, \dots\}$ is termed a subsequence of $\{a_n\}$.

Theorem 2.3.2. If $\{a_n\}$ converges to L, then so does every subsequence of $\{a_n\}$.

Definition 2.3.3. A point L is termed a limit point of a sequence if there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that $\{a_{n_k}\}$ converges to L. The set of all limits points of a sequence $\{a_n\}$ is denoted by $\operatorname{Lim}\{a_n\}$.

Definition 2.3.4. Let $\{a_n\}$ be a sequence. An element $n_o \in \mathbb{N}$ is termed a peak point of $\{a_n\}$ if $a_n < a_{n_o}$ for all $n > n_{\circ}$.

Theorem 2.3.5. [PEAK POINT LEMMA] Every sequence $\{a_n\}$ has a monotonic subsequence.

Theorem 2.3.6. [BOLZANO-WEIERSTRASS THEOREM] Every bounded sequence $\{a_n\}$ has a convergent subsequence.

Theorem 2.3.7. Suppose that for sequences $\{a_n\}, \{b_n\}$ we have $\lim_{n \to \infty} [a_n] = L$ and $\lim_{n \to \infty} [b_n] = M$. Then

1. $\lim_{n \to \infty} [c \cdot a_n] = c \cdot L \quad \text{for every } c \in \mathbb{R}$ 2. $\lim_{n \to \infty} [a_n + b_n] = L + M$ 3. $\lim_{n \to \infty} [a_n \cdot b_n] = L \cdot M$ 4. $\lim_{n \to \infty} \left[\frac{1}{b_n} \right] = \frac{1}{M} \quad \text{for } M \neq 0$ 5. $\lim_{n \to \infty} \left[\frac{a_n}{b_n} \right] = \frac{L}{M} \quad \text{for } M \neq 0$

Theorem 2.3.8. Suppose that for sequences $\{a_n\}, \{b_n\}$, the limit $\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right|$ exists, and $\lim_{n \to \infty} \left[b_n \right] = 0$. Then $\lim_{n \to \infty} [a_n] = 0.$

Theorem 2.3.9. [SQUEEZE THEOREM FOR SEQUENCES] Suppose that $\{a_n\}, \{b_n\}, \{c_n\}$ are sequences with $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$. Also suppose that $\lim_{n \to \infty} [a_n] = L = \lim_{n \to \infty} [c_n]. \text{ Then } \lim_{n \to \infty} [b_n] \text{ exists and } \lim_{n \to \infty} [b_n] = L.$

$\mathbf{2.4}$ Cauchy sequences

Definition 2.4.1. A sequence $\{a_n\}$ is Cauchy if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n, m \ge N$, then $|a_n - a_m| < \epsilon$.

Theorem 2.4.2. Every convergent sequence is Cauchy.

Theorem 2.4.3. Every Cauchy sequence is bounded.

Theorem 2.4.4. Suppose $\{a_n\}$ is Cauchy. Suppose that $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$ with $a_{n_k} \to L$. Then $a_n \to L$.

Theorem 2.4.5. [COMPLETENESS THEOREM] Every Cauchy sequence $\{a_n\} \subset \mathbb{R}$ converges.

Theorem 2.4.6. The following are equivalent in \mathbb{R} :

- **1.** Least upper bound property
- **2.** Monotone convergence theorem
- **3.** Bolzano-Weierstrass theorem
- **4.** Completeness theorem

3 Limits and continuity

Limits of functions 3.1

Definition 3.1.1. A number L is the <u>limit</u> of a function f(x) as $x \to a$, if for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$. Then we denote the limit by $\lim_{x \to a} |f(x)| = L$.

Theorem 3.1.2. [SEQUENTIAL CHARACTERIZATION OF LIMITS]

The following are equivalent:

1. $\lim_{x \to x} [f(x)] = L$

2. Whenever $\{x_n\}$ is a sequence with $x_n \to a$ and $x_n \neq a$, then $f(x_n) \to L$.

Theorem 3.1.3. Suppose that for function f(x), g(x) we have $\lim_{x \to a} [f(x)] = L$ and $\lim_{x \to a} [g(x)] = M$. Then

- 1. $\lim_{x \to a} [c \cdot f(x)] = c \cdot L$ for every $c \in \mathbb{R}$
- **2.** $\lim_{x \to a} [f(x) + g(x)] = L + M$ **3.** $\lim_{x \to a} \left[f(x) \cdot g(x) \right] = L \cdot M$ 4. $\lim_{x \to a} \left[\frac{1}{g(x)} \right] = \frac{1}{M} \quad \text{for } M \neq 0$ 5. $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{M} \quad \text{for } M \neq 0$

Theorem 3.1.4. Suppose that for functions f(x), g(x), the limit $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$ exists, and $\lim_{x \to a} \left[g(x) \right] = 0$. Then $\lim_{x \to a} \left[f(x) \right] = 0$.

Definition 3.1.5. A <u>rational function</u> is a function $f(x) = \frac{p(x)}{q(x)}$, where p(x), q(x) are polynomials.

Theorem 3.1.6. [ALGORITHM FOR RATIONAL FUNCTIONS] Let $f(x) = \frac{p(x)}{q(x)}$. Then

1. If $q(a) \neq 0$, then $\lim_{x \to a} [f(x)] = \frac{\lim_{x \to a} [p(x)]}{\lim_{x \to a} [q(x)]} = \frac{p(a)}{q(a)} = f(a)$ 2. If q(a) = 0 and $p(a) \neq 0$, then $\lim_{x \to a} [f(x)]$ does not exist. 3. If q(a) = 0 and p(a) = 0, then $\frac{p(x)}{q(x)} = \frac{(x-a)p_1(x)}{(x-a)q_1(x)}$, and repeat 1. with $\frac{p_1(x)}{q_1(x)}$.

Theorem 3.1.7. [SQUEEZE THEOREM FOR FUNCTIONS]

Suppose that f(x), g(x), h(x) are functions with $f(x) \leq g(x) \leq h(x)$ for all x in an open interval I containing x = a, except possibly at x = a. Also suppose that $\lim_{x \to a} [f(x)] = L = \lim_{x \to a} [h(x)]$. Then $\lim_{x \to a} [g(x)]$ exists and $\lim_{x \to a} [g(x)] = L$.

3.2 One-sided limits

Definition 3.2.1. A number L is the limit of a function f(x) as $x \to a$ from above (the right), if for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < x - a < \delta$, then $|f(x) - a| < \epsilon$. This implies that $x \in (a, a + \delta)$. This limit is denoted by $\lim_{x \to a^+} [f(x)] = L$.

Definition 3.2.2. A number L is the limit of a function f(x) as $x \to a$ from below (the left), if for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < x - a < \delta$, then $|f(x) - a| < \epsilon$. This implies that $x \in (a - \delta, a)$. This limit is denoted by $\lim_{x \to a^-} [f(x)] = L$.

Theorem 3.2.3. The following are equivalent:

- $1. \lim_{x \to a} \left[f(x) \right] = L$
- 1. $\lim_{x \to a^+} [f(x)] = \lim_{x \to a^-} [f(x)] = L$

Remark 3.2.4. One-sided limits have the same arithmetic rules, sequential characterization, and satisfy the squeeze theorem just as the two-sided limits.

Definition 3.2.5. A function $f : \mathbb{R} \to \mathbb{R}$ is termed <u>even</u> if

 $\cdot f(x) = f(-x)$

 \cdot The graph of f is symmetric about the y-axis.

Definition 3.2.6. A function $f : \mathbb{R} \to \mathbb{R}$ is termed <u>odd</u> if

$$\cdot f(x) = -f(-x)$$

 \cdot The graph of f is symmetric about the origin.

Remark 3.2.7. With respect to the above definitions,

$$\begin{array}{l} \cdot \ If \ f(x) \ is \ even, \ then \ \lim_{x \to 0} \left[f(x) \right] \ exists \ if \ and \ only \ if \ \lim_{x \to a^+} \left[f(x) \right] \ exists \ or \ \lim_{x \to a^-} \left[f(x) \right] \ exists. \\ \cdot \ If \ f(x) \ is \ odd, \ then \ \lim_{x \to 0} \left[f(x) \right] \ exists \ if \ and \ only \ if \ \lim_{x \to a^+} \left[f(x) \right] = \lim_{x \to a^-} \left[f(x) \right]. \end{array}$$

Theorem 3.2.8. [FUNDAMENTAL TRIGONOMETRIC LIMIT] $\lim_{x\to 0} \left[\frac{\sin(x)}{x} \right] = 1$ **Corollary 3.2.9.** If x is "small", i.e. $|x| \ll 1$, then $\sin(x) \approx x \approx \tan(x)$.

Definition 3.2.10.

- · $\lim [f(x)] = \infty$ if for every m > 0, there exists a $\delta > 0$ such that if $0 < x a < \delta$, then f(x) > m.
- · $\lim_{x \to \infty} [f(x)] = -\infty$ if for every m < 0, there exists a $\delta > 0$ such that if $0 < x a < \delta$, then f(x) < m.
- · $\lim [f(x)] = \infty$ if for every m > 0, there exists a $\delta > 0$ such that if $0 < a x < \delta$, then f(x) > m.
- · $\lim [f(x)] = -\infty$ if for every m < 0, there exists a $\delta > 0$ such that if $0 < a x < \delta$, then f(x) < m.

Definition 3.2.11. A function f(x) has a vertical asymptote at x = a if either one of the following hold: $\lim_{x \to \infty} [f(x)] = \pm \infty \text{ or } \lim_{x \to \infty} [f(x)] = \pm \infty$

3.3Continuity

Definition 3.3.1. A function f(x) is <u>continuous</u> at x = a if

- **1.** $\lim |f(x)|$ exists
- **2.** $\lim [f(x)] = f(a)$

Otherwise f(x) is termed <u>discontinuous</u>.

Definition 3.3.2. A function f(x) is <u>continuous</u> at x = a if for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x-a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

Theorem 3.3.3. [SEQUENTIAL CHARACTERIZATION OF CONTINUITY]

The following are equivalent:

- **1.** f(x) is continuous at x = a
- **2.** Whenever $\{x_n\}$ is a sequence with $x_n \to a$, then $f(x_n) \to f(a)$.

Theorem 3.3.4. Suppose that f(x), g(x) are continuous at x = a. Then

- **1.** $c \cdot f(x)$ is continuous at x = a for all $c \in \mathbb{R}$
- **2.** f(x) + g(x) is continuous at x = a
- **3.** $f(x) \cdot g(x)$ is continuous at x = a **4.** $\frac{f(x)}{g(x)}$ is continuous at x = a if $g(a) \neq 0$

Definition 3.3.5. A function f(x) is continuous on [a, b] if

- **1.** f(x) is continuous at each $x_{\circ} \in [a, b]$
- **2.** $\lim_{x \to a^+} [f(x)] = f(a)$
- **3.** $\lim_{x \to b^{-}} [f(x)] = f(b)$

 $x \rightarrow b$

Definition 3.3.6. Let $f: S \to \mathbb{R}$ with $S \subset \mathbb{R}$. Then f(x) is continuous on S (relative to S) if whenever $\{x_n\} \subset S \text{ with } x_n \to x_\circ \text{ for } x_\circ \in S, \text{ then } f(x_n) \to f(x_\circ).$

Compositions of functions $\mathbf{3.4}$

Definition 3.4.1. If the range of a function f is the subset of the domain of a function q, then define the composition of f and g by h(x) = g(f(x)).

• If $f: X \to Y$ and $g: Y \to Z$, then $h: X \to Z$.

Theorem 3.4.2. Suppose that f(x) is continuous at x = a, and that g(y) is continuous at y = f(a). Then the function $q(f(x)) = q \circ f$ is continuous at x = a.

Remark 3.4.3. If $\lim_{x \to a} \left[f(x) \right] = L$ and $\lim_{y \to L} \left[g(y) \right] = M$, then it is not necessarily true that $\lim_{x \to a} \left[g \circ f(x) \right] = M$. However, if $\lim_{x \to a} [f(x)] = L$ and g(y) is continuous at y = L, then $\lim_{x \to a} [g \circ f(x)] = g(L)$.

3.5Discontinuity

Definition 3.5.1. A function f(x) has a discontinuity at x = a of f(x) is defined on an open interval I containing a except possibly at x = a, and $\overline{f(x)}$ is not continuous at x = a. Let D(f) denote the collection of all points of discontinuity of f.

Definition 3.5.2. There are two types of discontinuities:

1. If $\lim_{x \to a} [f(x)]$ exists, but either f(a) is not defined, or $f(a) = \lim_{x \to a} [f(x)]$, then x = a is termed a $\underline{removable} \ \underline{lscontinuity}.$

- **2.** If $a \in D(f)$ such that $\lim_{x \to a} [f(x)]$ does not exist, then a is termed an <u>essential</u> discontinuity of f.

 - Jump discontinuity
 Vertical asymptote discontinuity
 Oscillatory discontinuity

 These are the types of essential discontinuities

Remark 3.5.3. A function with a removable (non-essential) discontinuity may be redefined at the point of discontinuity to create a continuous function, but a function with an essential discontinuity cannot be made continuous by redefining the function at the point of discontinuity.

Value theorems 3.6

Theorem 3.6.1. [INTERMEDIATE VALUE THEOREM]

Suppose that f(x) is continuous on [a,b] such that f(a) < 0 and f(b) > 0. Then there exists some $c \in (a,b)$ such that f(c) = 0.

Corollary 3.6.2. Suppose that f(x) is continuous on [a,b]. If $f(a) < \alpha < f(b)$, then there exists some $c \in (a, b)$ such that $f(c) = \alpha$.

Corollary 3.6.3. Suppose that f(x) is continuous on an interval I. Then $f(I) = \{f(x) : x \in I\}$ is an interval.

Definition 3.6.4. A function f(x) is termed uniformly continuous on $S \subset \mathbb{R}$ if for every $\epsilon > 0$, there exists $a \delta > 0$ such that for $x_a, x_2 \in S$ if $|x_1 - x_2| < \delta$, then $|f(x_1) - f(x_2)| < \epsilon$.

Theorem 3.6.5. [Sequential Characterization of Uniform Continuity]

Let $S \subset \mathbb{R}$ and $f: S \to \mathbb{R}$. Then the following are equivalent:

1. f(x) is uniformly continuous on S.

1. If $\{x_n\}, \{y_n\}$ are sequences in S, and $\lim_{n \to \infty} [x_n - y_n] = 0$, then $\lim_{n \to \infty} [f(x_n) - f(y_n)] = 0$.

Theorem 3.6.6. Suppose that f(x) is uniformly continuous on $S \subset \mathbb{R}$. If $\{x_n\} \subset S$ is Cauchy, then $\{f(x_n)\}$ is Cauchy.

Theorem 3.6.7. Suppose that f(x) is continuous on [a,b]. Then f(x) is uniformly continuous on [a,b].

Theorem 3.6.8. Suppose that f(x) is continuous on (a,b). Then f(x) is uniformly continuous on (a,b) if and only if $\lim_{x \to a^+} [f(x)]$ and $\lim_{x \to b^-} [f(x)]$ exist.

Theorem 3.6.9. [EXTREME VALUE THEOREM]

Suppose that f(x) is continuous on [a,b]. Then there exist $c, d \in [a,b]$ such that $f(x) \leq f(x) \leq f(d)$ for all $x \in [a, b].$

Corollary 3.6.10. If f(x) is continuous on [a,b], then $f([a,b]) = \{f(x); s \in [a,b]\}$ is a closed interval. This is equal to f(c), f(d).

4 Differentiation

4.1 Derivatives

Definition 4.1.1. Given f(x) and a point $x = a \in \mathbb{R}$, the quantity $\frac{f(x) - f(a)}{x - a}$ is termed <u>Newton's quotient</u> for f(x) centered at x = a.

Definition 4.1.2. A function f(x) is termed <u>differentiable</u> at x = a if $\lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right]$ exists. Then it is

expressed as $f'(a) = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right]$. If the limit does not exist, then the function is not differentiable at x = a.

Definition 4.1.3. If a function f(x) is differentiable at x = a, then the line y = f(a) + f'(a)(x - a) is termed the <u>tangent line</u> to the graph of f(x) through (a, f(a)). This is also termed the <u>linear approximation</u> of f(x) at x = a, and denoted by $L_a(x)$.

Theorem 4.1.4. If f(x) is differentiable at x = a, then f(x) is continuous at x = a.

Theorem 4.1.5. Suppose that f(x), g(x) are differentiable at x = a. Then

- **1.** $c \cdot f(x)$ is differentiable at x = a for all $c \in \mathbb{R}$ with $\frac{d}{dx}c \cdot f(x) = c \cdot \frac{d}{dx}f(x)$
- **2.** If h(x) = f(x) + g(x), then h(x) is differentiable at $\overline{x} = a$ with h'(a) = f'(a) + g'(a)
- **3.** If h(x) = f(x)g(x), then h(x) is differentiable at x = a with h'(a) = f'(a)g(a) + f(a)g'(a)

Theorem 4.1.6. [CHAIN RULE]

Suppose f(x) is defined upon an open interval I containing x = a, and g(y) is defined upon an open interval J with $f(I) \subset J$. Suppose that f(x) is differentiable at x = a, and that g(y) is differentiable at y = f(a). Then $h(x) = g \circ f(x)$ is differentiable at x = a with h'(a) = g'(f(a))f'(a).

Definition 4.1.7. For a function f(x), an element x = c is termed a <u>local maximum</u> if there exists an open interval I = (a, b) containing c such that $f(x) \leq f(c)$ for all $x \in (a, b)$. SImilarly, an element x = d is termed a <u>local minimum</u> if there exists an open interval I = (a, b) containing d such that $f(d) \leq f(x)$ for all $x \in (a, b)$. The two together are termed <u>local extrema</u>.

Theorem 4.1.8. Suppose that x = c is either a local extremum for f(x). If f'(c) exists, then f'(c) = 0.

Definition 4.1.9. A point x = c is termed a <u>critical point</u> of f(x) if f(x) is defined upon an open interval I containing c, and either

1. f'(c) = 0

2. f(x) is not differentiable at x = c.

Remark 4.1.10. If f(x) is continuous on [a, b], then each of the global extrema (max/min) will be either at **1.** an endpoint

2. a critical point in (a, b), i.e. an interior critical point

4.2 Inverse functions

Definition 4.2.1. Suppose that $f: X \to Y$ is a bijection. Define a function $g: Y \to X$ by g(y) = x if and only if y = g(x). Then the function g(y) is termed the <u>inverse</u> of f(x) and is denoted by $f^{-1}(x)$.

Definition 4.2.2. If $f: S \to \mathbb{R}$ with $S \subset \mathbb{R}$, then f(x) is invertible on S if f is one-to-one on S. Then define $g: f(S) \to S$ by g(y) = x if and only if $x \in S$ and f(x) = y.

Definition 4.2.3. A function $f: S \to \mathbb{R}$ is said to be <u>(strictly) increasing</u> on S if whenever $x_1, x_2 \in S$ with $x_1 < x_2$, then $(f(x_1) < f(x_2))$ $f(x_1) \leq f(x_2)$. Similarly, f is <u>(strictly)</u> decreasing on S if whenever $x_1, x_2 \in S$ with $x_1 < x_2$, then $(f(x_1) > f(x_2))$ $f(x_1) \geq f(x_2)$. If f is either (strictly) increasing or (strictly) decreasing on S, then f is <u>monotonic</u> on S. **Remark 4.2.4.** If f(x) is strictly increasing/decreasing on S, then f is 1-1 on S, and hence invertible.

Theorem 4.2.5. Suppose that f(x) is continuous on an interval I and also 1-1 on I. Then either

- **1.** f(x) is strictly increasing on I
- **2.** f(x) is strictly decreasing on I

Thus continuous functions tend to be precisely 1-1 when they are monotonic.

Theorem 4.2.6. Suppose that f(x) is strictly increasing/decreasing on [a,b]. Then f(x) is continuous on [a,b] if and only if f([a,b]) = [f(a), f(b)], i.e. if and only if f([a,b]) is an interval.

Remark 4.2.7. Suppose that $f: S \to \mathbb{R}$ is strictly increasing/decreasing. Let T = f(S). Then f is invertible on S. Let $g: T \to S$ be the inverse of f. Then g(y) is strictly increasing/decreasing.

Corollary 4.2.8. Let I be an interval and $f: I \to \mathbb{R}$ be strictly increasing/decreasing with J = f(I). Then f(x) is continuous on I if and only if $g: J \to I$ (where $g = f^{-1}$) is also continuous.

Remark 4.2.9. The graph of f(x) and its inverse are essentially the same, as $(x, f(x)) \rightarrow (g(y), y)$. To graph g(y) in the usual orientation, we "switch" x and y.

Theorem 4.2.10. [INVERSE FUNCTION THEOREM]

Suppose that f(x) is defined on a continuous and open interval I containing x_{\circ} . Suppose that f(x) is either strictly increasing or strictly decreasing on I with inverse $g: J = f(I) \to I$. Then if f(x) is differentiable at x_{\circ} with $f'(x_{\circ}) \neq 0$, then g(y) is differentiable at $y_{\circ} = f(x_{\circ})$ with

$$g'(y_\circ) = \frac{1}{f'(x_\circ)}$$

Definition 4.2.11. Let e be the unique base such that $\lim_{n \to 0} \left[\frac{e^n - 1}{n} \right] = 1$. Then $f(x) = e^x = f^{-1}(x)$.

4.3 Mean value theorem

Theorem 4.3.1. [ROLLE'S THEOREM]

If f(x) is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b), then there exists $a \in (a, b)$ with f'(c) = 0.

Theorem 4.3.2. [MEAN VALUE THEOREM]

If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists $a c \in (a, b)$ with $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Theorem 4.3.3. Suppose that f(x), g(x) are continuous on some closed interval [a, b] and differentiable on (a, b). If f'(x) = g'(x) for all $x \in (a, b)$, then there exists some $m \in \mathbb{R}$ such that g(x) = f(x) + m for all $x \in [a, b]$.

Theorem 4.3.4. [INCREASING FUNCTION THEOREM]

Suppose that f(x), g(x) are continuous on some closed interval [a, b] and differentiable on (a, b) with f'(x) > 0 for all $x \in (a, b)$. Then f(x) is strictly increasing on [a, b].

Remark 4.3.5. The increasing function theorem holds on the interval [a,b] if there exist at most finitely many points $x_1, \ldots, x_n \in [a,b]$ such that $f(x_i) = 0$ for $1 \le i \le n$.

Theorem 4.3.6. Suppose that f(x), g(x) are continuous on [a, b] and differentiable on (a, b). Also suppose that $m \leq f'(x) \leq M$ for all $x \in (a, b)$. Then $f(a) + m(x - a) \leq f(x) \leq f(a) + M(x - a)$ for all $x \in (a, b)$.

Theorem 4.3.7. Suppose that f(x) is defined on an interval I with $|f(x)| \leq M$ for all $x \in I$. Then f(x) is uniformly continuous on I.

Theorem 4.3.8. [FIRST DERIVATIVE TEST]

Suppose that c is a critical point of f(x), and f(x) is continuous at x = c.

1. Suppose that there exists an open interval (a,b) containing c such that $f'(x) \leq 0$ for all $x \in (a,c)$ and $f'(x) \leq 0$ for all $x \in (c,b)$. Then c is a local min of f(x).

2. Suppose that there exists an open interval (a,b) containing c such that $f'(x) \ge 0$ for all $x \in (a,c)$ and $f'(x) \le 0$ for all $x \in (c,b)$. Then c is a local max of f(x).

4.4 Concavity

Definition 4.4.1. Let $I \subset \mathbb{R}$ be an interval.

1. A function f(x) is concave upward on I if for each $a, b \in I$ with a < b, the secant line joining (a, f(a)) and (b, f(b)) sits above the graph of f(x) on [a, b].

2. A function f(x) is <u>concave downward</u> on I if for each $a, b \in I$ with a < b, the secant line joining (a, f(a)) and (b, f(b)) sits below the graph of f(x) on [a, b].

Definition 4.4.2. Suppose that f(x) is differentiable on I with derivative function f'(x). If $a \in I$ and f'(x) differentiable at x = a, then the quantity

$$\lim_{x \to a} \left[\frac{f'(x) - f'(a)}{x - a} \right] = f''(x)$$

is termed the <u>second derivative</u> at x = a. In general, $f(n)(x) := \frac{d}{dx} f^{n-1}(x)$.

Theorem 4.4.3. Suppose that f(x) is such that f''(x) > 0 for all $x \in I$. Then f(x) is concave upward on I. If f''(x) < 0 on I, then f(x) is concave downward on I.

Theorem 4.4.4. [SECOND DERIVATIVE TEST]

Suppose that c is a critical point of f(x), and f(x) is continuous at x = c.

1. Suppose that f''(x) is continuous at x = c and f''(c) > 0. Then c is a local min for f(x).

2. Suppose that f''(x) is continuous at x = c and f''(c) < 0. Then c is a local max for f(x).

Definition 4.4.5. A point x = c is termed a point of inflection for f(x) is f(x) is continuous at x = c and if there exists an open interval (a, b) containing c such that either

1. f(x) is concave upward on (a, c) and concave downward on (c, b)

2. f(x) is concave downward on (a, c) and concave upward on (c, b)

Definition 4.4.6. An extended real number is an element in the set of numbers $\mathbb{R}^* = \mathbb{R} \cup \{\pm \infty\}$.

Theorem 4.4.7. [L'HÔPITAL'S RULE]

Suppose that $f, g: (a, b) \to \mathbb{R}$ for extended real numbers a, b and a < b. Suppose that f, g are differentiable on (a, b) with $g(x) \neq 0$ and $g'(x) \neq 0$ for all $x \in (a, b)$.

1. Suppose that $\lim_{x \to a^+} [f(x)] = 0 = \lim_{x \to a^+} [g(x)]$. Then if $\lim_{x \to a^+} \left[\frac{f'(x)}{g'(x)}\right] = L$ for $L \in \mathbb{R}^*$, then $\lim_{x \to a^+} \left[\frac{f(x)}{g(x)}\right] = L$ 2. Suppose that $\lim_{x \to b^-} [f(x)] = 0 = \lim_{x \to b^-} [g(x)]$. Then if $\lim_{x \to b^-} \left[\frac{f'(x)}{g'(x)}\right] = L$ for $L \in \mathbb{R}^*$, then $\lim_{x \to b^-} \left[\frac{f(x)}{g(x)}\right] = L$ 3. Suppose that $\lim_{x \to a^+} [f(x)] = \pm \infty$ and $\lim_{x \to a^+} [g(x)] = \pm \infty$.

5. Suppose that
$$\lim_{x \to a^+} [f(x)] = \pm \infty$$
 and $\lim_{x \to a^+} [g(x)] = \pm \infty$.
Then if $\lim_{x \to a^+} \left[\frac{f'(x)}{g'(x)} \right] = L$ for $L \in \mathbb{R}^*$, then $\lim_{x \to a^+} \left[\frac{f(x)}{g(x)} \right] = L$
4. Suppose that $\lim_{x \to b^-} [f(x)] = \pm \infty$ and $\lim_{x \to b^-} [g(x)] = \pm \infty$.
Then if $\lim_{x \to b^-} \left[\frac{f'(x)}{g'(x)} \right] = L$ for $L \in \mathbb{R}^*$, then $\lim_{x \to b^-} \left[\frac{f(x)}{g(x)} \right] = L$

Theorem 4.4.8. [CAUCHY MEAN VALUE THEOREM]

Assume that f(x), g(x) are continuous on [a, b] and differentiable on (a, b) with $g(x) \neq 0$ for all $x \in (a, b)$. Then there exists $a \ c \in (a, b)$ such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{b - a}$.

5 Taylor's Theorem

Definition 5.0.1. Suppose that f(x) is n times differentiable at x = a. Then the n-th degree <u>Taylor polynomial</u> for f(x) centered at x = a is

$$P_{n,a}(x) = \sum_{k=0}^{n} \frac{f^k(a)}{k!} (x-a)^k$$

Definition 5.0.2. Suppose that f(x) is n times differentiable at x = a. Then the <u>error term</u> in approximating f(x) using the n-th degree Taylor polynomial is

$$R_{n,a}(x) = f(x) - P_{n,a}(x)$$

Theorem 5.0.3. [TAYLOR'S THEOREM]

Suppose that f(x) is n times differentiable on an open interval I containing x = a. Then for every $x \in I$ and $x \neq a$, there exists some $c \in (x, a)$ such that

$$R_{n,a}(x) = f(x) - P_{n,a}(x) = \frac{f^{(n+1)}(c)}{n+1}(x-a)^{n-1}$$

5.1 Big O notation

Definition 5.1.1. A function f(x) is big O of g(x) as $x \to a$ if there exists a $\delta > 0$ and m > 0 such that $|f(x)| \leq M|g(x)|$ for all $x \in (a - \delta, a + \overline{\delta})$, except possibly at x = a. This is expressed as f(x) = O(g(x)) as $x \to a$.

Definition 5.1.2. For functions f(x), g(x), the equation $f(x) = g(x) + \mathcal{O}(x^n)$ holds if $f(x) - g(x) = \mathcal{O}(x^n)$.

Theorem 5.1.3. Suppose that $f(x) = \mathcal{O}(x^n)$ and $g(x) = \mathcal{O}(x^m)$. Then **1.** $c \cdot f(x) = \mathcal{O}(x^n) \implies c \cdot \mathcal{O}(x^n) = \mathcal{O}(x^n)$ **2.** $f(x) + g(x) = \mathcal{O}(x^n) + \mathcal{O}(x^m) = \mathcal{O}(x^k)$ such that $k = \min\{n, m\}$ **3.** $f(x)g(x) = \mathcal{O}(x^n)\mathcal{O}(x^m) = \mathcal{O}(x^{n+m})$ **4.** $x^k f(x) = x^k \mathcal{O}(x^n) = \mathcal{O}(x^{k+n})$ **5.** If $n \leq m$, then $g(x) = \mathcal{O}(x^n)$ **6.** If $n \geq 1$, then $\frac{1}{x}f(x) = \frac{1}{x}\mathcal{O}(x^n) = \mathcal{O}(x^{n-1})$

Theorem 5.1.4. Suppose that $f^{(n+1)}(x)$ is continuous on $[-\delta, \delta]$. Then $f(x) = P_{n,a}(x) + \mathcal{O}(x^{n+1})$.

Theorem 5.1.5. If $f^{(n+1)}(x)$ is continuous on $[-\delta, \delta]$ and if p(x) is a polynomial of degree n or less with $f(x) = p(x) + \mathcal{O}(x^{n+1})$, then $p(x) = P_{n,0}(x)$.

Theorem 5.1.6. If p(x) is a polynomial of degree $\leq n$ for $n \in \mathbb{N} \cup \{0\}$ and $p(x) = \mathcal{O}(x^{n+1})$, then p(x) = 0 for all x.