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1. The Peano axioms

1.1. WOP ⇒ POMI.
· Let S ⊂ N such that

1: 1 ∈ S
2: If k ∈ S, then k + 1 ∈ S

· Let T = N \ S
· Assume T 6= ∅
· By the Well Ordering Principle, T has a least element K0.
· Now K0 6= 1, as 1 ∈ S. Then we have that K0 − 1 ∈ N and K0 − 1 < K0.
· Since K0 is the least element in T , K0 − 1 /∈ T , which implies that K0 − 1 ∈ S.
· Hence K0 = (K0 − 1) + 1 ∈ S by 2.
· Since this is not possible, we must have that T = ∅ and S = N.

1.2. POMI ⇒ POSI.
· Assume that S ⊂ N satisfies:

1: 1 ∈ S
2: If {1, 2, . . . k} ∈ S, then k + 1 ∈ S

· Let P (n) be the statement that {1, 2, . . . k} ∈ S.
· If P (n) holds for all n ∈ N, then S = N.
· Let n = 1. Clearly 1 ∈ S, by the assumption 1, so P (1) holds.
· Assume that P (k) holds. That is, {1, 2, . . . k} ∈ S.
· By the assumption 2, P (k + 1) ∈ S.
· From this, {1, 2, . . . k, k + 1} ∈ S, and hence P (k + 1) holds.

· Therefore the Principle of Mathematical Induction shows that P (n) holds for all n ∈ N.

1.3. POSI ⇒ WOP.
· Let S ∈ N be a set that does not have a least element. Also let

T = N \ S = {n ∈ N | n /∈ S}
· First, 1 ∈ T , because if 1 ∈ S, then it would be the least element of S.
· Assume that {1, 2, . . . k} ∈ T .
· Since S does not have a least element, S cannot contain k + 1.
· Therefore if {1, 2, . . . k} ∈ T , then k + 1 ∈ T .

· The Principle of Strong Induction shows that T = N and hence that S = ∅.
· If S ∈ N and S does not have a least element, then S = ∅.
· Therefore it follows that every nonempty subset of N has a least element.
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2. Five-Star Theorems

2.1. The Archimedean Property. N is not bounded above.

· Assume that N is bounded above.
· Let α = lub(N)
· Then α− 1 is not an upper bound of N.
· Then there exists an n ∈ N such that α− 1 < n 6 α.
· But then α = (α− 1) + 1 < n+ 1
· This is impossible, as α = lub(N).
· Therefore N is not bounded above.

2.2. The Monotone Convergence Theorem. If {an} is non-decreasing and bounded
above, then {an} converges.

· If {an} is bounded above, then by the LUBP it has a least upper bound L.
· Let ε > 0.
· Then L− ε < ε, so L− ε is not an upper bound for {an}.
· Hence there exists some No ∈ N with L− ε < ano

· If n > No, then L− ε < ano 6 an 6 L⇒ |an − L| < ε
· Hence lim

n→∞
[an] = L.

2.3. The Bolzano-Weierstrass Theorem. Every bounded sequence {an} has a conver-
gent subsequence.

· By the Peak Point Lemma, {an} has a monotonic subsequence {ank
}.

· Since {ank
} is also bounded, it converges by the Monotone Convergence Theorem.

2.4. The Completeness Theorem. Every Cauchy sequence {an} ⊂ R converges.

· If {an} is Cauchy, then {an} is bounded.
· By the BWT, {an} has a subsequence {ank

} that converges to some L.
· Since {an} is Cauchy, {an} converges to L.

2.5. The Squeeze Theorem for Sequences. Assume that {an} 6 {bn} 6 {cn} for all
n ∈ N. If lim

n→∞
[an] = L = lim

n→∞
[cn], then lim

n→∞
[bn] exists and lim

n→∞
[bn] = L

· Let ε > 0. Then we can find No so that if n > No, then
L− ε < an 6 cn < L+ ε

· If n > No, then
L− ε < an 6 bn 6 cn < L+ ε
⇒ |bn − L| < ε

· Hence the above statement holds.



THEOREMS & PROOFS 3

2.6. The Intermediate Value Theorem. If f(x) is continuous on [a, b] and f(a) < 0
and f(b) > 0 Then there exists some a < c < b such that f(c) = 0).

· Let S = {x ∈ [a, b]|f(x) 6 0}
· Since a ∈ S, S 6= ∅. And since S is bounded, it has a least upper bound.

· Let c = lub(S).

· Then by the Sequential Characterization of Limits, there exists a sequence {xn} ⊂ S
with {xn} → c ∈ [a, b].

· Then f(xn)→ f(c) by continuity.

· Then since f(xn) 6 0, we have that f(c) 6 0.

· Now let {yn} = c+ b−c
n

· Then c < yn 6 b and lim
n→∞

[yn] = c

· By continuity, lim
n→∞

[f(yn)] = f(c)

· Then since f(yn) < 0, we have that f(c) > 0.

· Hence f(c) = 0.

2.7. The Extreme Value Theorem. If f(x) is continuous on a finite closed interval
[a, b], then there exist c, d ∈ [a, b] such that f(c) 6 f(x) 6 f(d) for all x ∈ [a, b].

· First we claim that f(x) is bounded on [a, b].
- Suppose that f(x) is not bounded.
- Then for each n ∈ N, we can find {xn} ⊂ [a, b] with |f(xn)| > n.
- By the Bolzano-Weierstrass Theorem, {xn} has a subsequence xnk

with xn → xo ∈ [a, b].
- By continuity, f(xnk

)→ f(xo).
- But from above we have that |f(xnk

)| > nk, which implies that {f(xnk
)} is not

bounded.
- However, this contradicts the previous statement, so f(x) is bounded.

· Let T = {f(x)|x ∈ [a, b]}
· Then T is bounded.
· Since T is nonempty, it has a least upper and greatest lower bound.
· Let L = lub(T ) and M = glb(T )
· There exist sequences {xn}, {yn} ⊂ [a, b] with

i. L− 1
n 6 f(xn) 6 L

ii. M 6 f(yn) 6M + 1
n

· By the Bolzano-Weierstrass Theorem, there exists a subsequence {xnk
} of {xn} such

that xnk
→ xo ∈ [a, b]

· Choose xo = d so that xnk
→ d

· By continuity, f(xnk
)→ f(d)

· By i. f(xnk
)→ L, hence f(d) = L

· Similarly we get a subsequence {ynk
} of {yn} with ynk

→ c ∈ [a, b]. Moreover, f(c) = M .
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2.8. Rolle’s Theorem. If f(x) is continuous on [a, b] and differentiable on (a, b) with
f(a) = f(b), then there exists c ∈ (a, b) with f ′(c) = 0.

· By the Extreme Value Theorem, f(x) attains its maximum (minimum) on [a, b]
· Since f(a) = f(b), either i. f(x) is constant on [a, b], or

ii. f(x) attains its maximum (minimum) at some point c ∈ (a, b)
· In case i. f ′(c) = 0 for all c ∈ [a, b]
· In case ii. the point c is a local maximum (minimum) for f(x)
· Then since f ′(x) exists, f ′(c) = 0

2.9. The Mean Value Theorem. If f(x) is continuous on [a, b] and differentiable on

(a, b), then there exists c ∈ (a, b) with
f(b)− f(a)

b− a
= f ′(c) .

· Define g(x) to be the linear curve such that g(x) = f(a) +
f(b)− f(a)

b− a
(x− a)

· Hence g(x) is the secant line from f(a) to f(b).
· Define F (x) = f(x)− g(x)
· Then F (x) is continuous on [a, b] and differentiable on (a, b)
· Since F (a) = F (b) = 0, by Rolle’s Theorem there exists c ∈ (a, b) with F ′(c) = 0

· Then we have that F ′(x) = f ′(x)−
[
f(b)− f(a)

b− a

]
0 = F ′(c) = f ′(c)−

[
f(b)− f(a)

b− a

]
f ′(c) =

f(b)− f(a)

b− a

2.10. The Increasing Function Theorem. If f(x) is continuous on [a.b] and
differentiable on (a, b) with f ′(x) > 0 for all x ∈ (a, b), then f(x) is strictly increasing on
[a, b].

· Let x1, x2 ∈ [a, b] with x1 < x2.
· Then the Mean Value Theorem can be applied to [x1, x2].

· Then there exists c ∈ (x1, x2) with 0 < f(c) =
f(x2)− f(x1)

x2 − x1
· This implies that f(x2)− f(x1) = f(c)(x2 − x1) > 0
· Finally we have that f(x2) > f(x1) for all x2 > x1 ∈ [a, b].
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3. Statement-only Theorems

3.1. Fundamental Trigonometric Limit.

lim
θ→0

[
sin(θ)

θ

]
exists and equals 1.

3.2. Fundamental Logarithmic Limit.

lim
x→∞

[
ln(x)

x

]
exists and equals 0.

3.3. Inverse Function Theorem. Assume that f(x) is defined on a continuous and
open interval I containing some x0. Also assume that f(x) is either strictly increasing or
strictly decreasing on I with inverse g : J = f(I)→ I. Then if f(x) is differentiable at x0
with f ′(x0) 6= 0, then g(y) is differentiable at y0 = f(x0) with

g′(y0) =
1

f ′(x0)

3.4. First Derivative Test. Suppose that f : S → R, where S ⊆ R, that there exists an
open interval (a, b) containing some c ∈ S, and that [a, b] ⊂ S. Assume also that f(x) is
continuous on [a, b] and differentiable on (a, b) except possibly at x = c. Finally, assume
that x = c is a critical point for f(x).

1. If f ′(x) 6 0 on (a, c) and f ′(x) > 0 on (c, b), then c is a local minimum for f(x).
2. If f ′(x) > 0 on (a, c) and f ′(x) 6 0 on (c, b), then c is a local maximum for f(x).

3.5. Second Derivative Test. Suppose that f : S → R, where S ⊆ R, and that I is an
open interval such that I ⊂ J ⊂ S where J is an open interval. If f(x) is twice
differentiable at every x ∈ I then we have the following:

1. If f ′′(x) > 0 for all x ∈ I, then f(x) is concave upward on I.
2. If f ′′(x) 6 0 for all x ∈ I, then f(x) is concave downward on I.

3.6. Taylor’s Theorem. Suppose that f : S → R, where S ⊆ R, and that I ⊂ S is an
open interval containing some a ∈ S. Suppose also that f(x) is n+ 1 times differentiable
on I. Let Rn,a(x) be the nth Taylor remainder of f(x) centered at x = a. For each x ∈ I,
there exists some c := cx ∈ Iwith x < cx < a such that

Rn,a(x) := f(x)− Pn,a(x)

=
f (n+1)(c)

(n+ 1)!
(x− a)n+1
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4. Function Characteristics

4.1. Uniform Continuity. If f(x) is continuous in [a, b], then it is uniformly continuous
on [a, b].

· Assume that f(x) is not uniformly continuous on [a, b].
· That is, assume {xn}, {yn} ∈ [a, b] with lim

n→∞
[xn − yn] = 0, but lim

n→∞
[f(xn)− f(yn)] 6= 0

· Since lim
n→∞

[f(xn)− f(yn)] 6= 0, replacing {xn}, {yn} with subsequences if necessary, we

can assume that for some ε0 > 0 we have |f(xnk
)− f(ynk

)| > ε0
· Since {xn} ∈ [a, b], by the Bolzano-Weierstrass Theorem {xn} has a convergent

subsequence {xnk
} with xnk

→ x0 ∈ [a, b]
· Since lim

n→∞
[xnk

− ynk
] = 0, we have that ynk

→ y0 ∈ [a, b]

· By continuity, f(xnk
)→ f(x0) and f(ynk

)→ f(y0)
· Then f(xnk

)− f(ynk
)→ 0, which is impossible, since lim

n→∞
[f(xnk

)− f(ynk
)] 6= 0.

· Hence we must have that f(x) is uniformly continuous on [a, b].

4.2. Local Extrema. If f(x) has a local maximum or minimum at some x = c and if
f ′(c) exists, then f ′(c) = 0.

· Assume that f(x) has a local maximum at x = c.
· Then there exists an open interval (a, b) containing c with f(x) 6 f(c) for all x ∈ (a, b).

· If a < x < c then
f(x)− f(c)

x− c
> 0

· Hence f ′(c) = lim
x→c−

[
f(x)− f(c)

x− c

]
> 0

· If c < x < b then
f(x)− f(c)

x− c
6 0

· Hence f ′(c) = lim
x→c+

[
f(x)− f(c)

x− c

]
6 0

· Therefore f ′(c) = 0.
· A similar procedure can be applied if c is a local minimum.



THEOREMS & PROOFS 7

4.3. Functions and Big-O. If f(x) is n+ 1 times differentiable on some open interval

I ⊃ [−1, 1] and f (n+1)(x) is continuous on [−1, 1], then f(x) = Pn,0(x) +O(xn+1) as
x→ 0.

· By the Extreme Value Theorem, f (n+1)(x) is bounded on [−1, 1].

· Choose M ∈ R such that |f (n+1)(x)| 6M for all x ∈ [−1, 1].
· Taylor’s Theorem implies that for any x ∈ [−1, 1] there exists 0 < cx 6 x such that

|f(x)− Pn,0(x)| =

∣∣∣∣∣f (n+1)(cx)

(n+ 1)!
xn+1

∣∣∣∣∣ 6
∣∣∣∣ M

(n+ 1)!
xn+1

∣∣∣∣
=

M

(n+ 1)!

∣∣xn+1
∣∣

= O(xn+1)
· Hence we have that

f(x)− Pn,0(x) = O(xn+1)

f(x) = Pn,0(x) +O(xn+1)


