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1.1.

THEOREMS & PROOFS 1

1. THE PEANO AXIOMS
WOP = POMI.

- Let S C N such that

1: 1€ S
2: If ke S, thenk+1€S8

-Let T=N\S

- Assume T # ()

- By the Well Ordering Principle, T" has a least element Kj.

- Now Ko #1,as 1 € .S. Then we have that Ko — 1 € N and Ky — 1 < Kjy.

- Since K is the least element in T', Ky — 1 ¢ T', which implies that Ky —1 € S.
- Hence Ko = (Ko — 1)+ 1€ S by 2.

- Since this is not possible, we must have that 7= () and S = N.

1.2

POMI = POSI.

- Assume that S C N satisfies:

1: 1 €5
2: If{1,2, ...k} € S, thenk+1€ S

- Let P(n) be the statement that {1,2, ...k} € S.

- If P(n) holds for all n € N, then S = N.

- Let n = 1. Clearly 1 € S, by the assumption 1, so P(1) holds.
- Assume that P(k) holds. That is, {1,2, ...k} € S.

- By the assumption 2, P(k+1) € S.
- From this, {1,2, ... k,k+ 1} € S, and hence P(k + 1) holds.

- Therefore the Principle of Mathematical Induction shows that P(n) holds for all n € N.

1.3.

POSI = WOP.
- Let S € N be a set that does not have a least element. Also let
T=N\S={neN|n¢S}

- First, 1 € T, because if 1 € S, then it would be the least element of S.
- Assume that {1,2, ...k} € T.

- Since S does not have a least element, .S cannot contain k + 1.

- Therefore if {1,2, ...k} € T, then k+1 € T.

- The Principle of Strong Induction shows that 7' = N and hence that S = ().
-If S € N and S does not have a least element, then S = (.

- Therefore it follows that every nonempty subset of N has a least element.
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2. FIVE-STAR THEOREMS

2.1. The Archimedean Property. N is not bounded above.

- Assume that N is bounded above.

- Let a = lub(N)

- Then a — 1 is not an upper bound of N.

- Then there exists an n € Nsuch that o — 1 < n < «
-Butthena=(a—1)+1<n+1

- This is impossible, as o = lub(N).

- Therefore N is not bounded above.

2.2. The Monotone Convergence Theorem. If {a,} is non-decreasing and bounded
above, then {a,} converges.

- If {a,} is bounded above, then by the LUBP it has a least upper bound L.
- Let € > 0.

- Then L — € < ¢, so L — € is not an upper bound for {a,}.

- Hence there exists some N, € N with L — e < ap,

-Ifn> N, then L —e<a,, <a, < L=|a,—L|<e¢

- Hence lim [a,] = L.
n—o0

2.3. The Bolzano-Weierstrass Theorem. Every bounded sequence {ay} has a conver-
gent subsequence.

- By the Peak Point Lemma, {a,} has a monotonic subsequence {ay, }.
- Since {ay, } is also bounded, it converges by the Monotone Convergence Theorem.

2.4. The Completeness Theorem. Every Cauchy sequence {a,,} C R converges.

- If {a,} is Cauchy, then {a,} is bounded.
- By the BWT, {a,} has a subsequence {ay, } that converges to some L.
- Since {a,} is Cauchy, {a,} converges to L.

2.5. The Squeeze Theorem for Sequences. Assume that {a,} < {b } < A{en} for all
n e N. If lim [a,] =L = lim [¢,], then lim [b,] exists and hm [bn] =
n—o00 n—00 n—00

- Let € > 0. Then we can find N, so that if n > N,, then
L—e<a,<c,<L+e

-If n > N,, then
L—e<a,<b,<cp, <L+e
= b, — L| <e

- Hence the above statement holds.
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2.6. The Intermediate Value Theorem. If f(x) is continuous on [a,b] and f(a) <0
and f(b) > 0 Then there exists some a < ¢ < b such that f(c) =0).

- Let S = {x € [a,b]|f(z) < 0}

- Since a € S, S # (. And since S is bounded, it has a least upper bound.

- Let ¢ = lub(S).

- Then by the Sequential Characterization of Limits, there exists a sequence {z,} C S
with {z,} — ¢ € [a, b].

- Then f(z,) — f(c) by continuity.

- Then since f(x,) < 0, we have that f(c) <0.

- Now let {y,} =c+ %

- Then ¢ < y, < b and nh_)rrolo [yn] = ¢

- By continuity, linn_ [£{yn)] = /(c)
n—oo

- Then since f(yn) < 0, we have that f(c) > 0.

- Hence f(c) = 0.

2.7. The Extreme Value Theorem. If f(x) is continuous on a finite closed interval
[a, b], then there exist ¢, d € [a, b] such that f(c) < f(x) < f(d) for all x € [a, b].

- First we claim that f(x) is bounded on [a, b)].
- Suppose that f(z) is not bounded.
- Then for each n € N, we can find {x,} C [a,b] with |f(x,)| = n.
- By the Bolzano-Weierstrass Theorem, {z, } has a subsequence z,, with z,, — z, € [a, b].
- By continuity, f(zn,) = f(z,).
- But from above we have that |f(x,, )| > ng, which implies that {f(xy,)} is not
bounded.
- However, this contradicts the previous statement, so f(z) is bounded.
-Let T ={f(2)|x € [a,b]}
- Then T is bounded.
- Since T is nonempty, it has a least upper and greatest lower bound.
- Let L = lub(T) and M = glb(T)
- There exist sequences {z,}, {yn} C [a,b] with
i L—L1< flan) <L
. M < fyn) <M+ ¢
- By the Bolzano-Weierstrass Theorem, there exists a subsequence {zy, } of {x,} such
that z,, — x, € [a, D]
- Choose z, = d so that x,, — d
- By continuity, f(z,) — f(d)
- By i. f(xy,) — L, hence f(d) =L
- Similarly we get a subsequence {yy, } of {y,} with y,, — ¢ € [a,b]. Moreover, f(c) = M.
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2.8. Rolle’s Theorem. If f(z) is continuous on [a,b] and differentiable on (a,b) with
f(a) = f(b), then there exists ¢ € (a,b) with f'(¢) = 0.

- By the Extreme Value Theorem, f(x) attains its maximum (minimum) on [a, b]
- Since f(a) = f(b), either i. f(x) is constant on [a,b], or
ii. f(z) attains its maximum (minimum) at some point ¢ € (a,b)
- In case i. f’(¢) =0 for all ¢ € [a, b]
- In case ii. the point c is a local maximum (minimum) for f(x)
- Then since f’(x) exists, f'(c) =0

2.9. The Mean Value Theorem. If f(z) is continuous on [a,b] and differentiable on

(a,b), then there exists ¢ € (a,b) with Jw = f'(c) .
- Define g(x) to be the linear curve such that g(z) = f(a) + f(bl)) : Z:(a) (x —a)

- Hence g(z) is the secant line from f(a) to f(b).

- Define F(z) = f(z) — g(x)

- Then F(z) is continuous on [a,b] and differentiable on (a, b)

- Since F(a) = F(b) = 0, by Rolle’s Theorem there exists ¢ € (a,b) with F'(¢) =0

- Then we have that F'(z) = f'(x) — f(bl)):({(a)}

o= #0 = 10 - [10=110)]

b—a
f() — f(a)
b—a

2.10. The Increasing Function Theorem. If f(x) is continuous on [a.b] and
differentiable on (a,b) with f/(z) > 0 for all € (a,b), then f(x) is strictly increasing on
[a,b].

- Let x1, x5 € [a,b] with 21 < 2.
- Then the Mean Value Theorem can be applied to [z1, z3].
f(x2) — f(z1)

- Then there exists ¢ € (1, x2) with 0 < f(c) =
Tro9 — T1

- This implies that f(z2) — f(z1) = f(¢)(x2 — 1) >0
- Finally we have that f(z2) > f(z1) for all zo > x; € [a, b].
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3. STATEMENT-ONLY THEOREMS

3.1. Fundamental Trigonometric Limit.

in(6
lim [sm()] exists and equals 1.
6—0 0

3.2. Fundamental Logarithmic Limit.

T—00 T

lim |:1Il(l‘):| exists and equals 0.

3.3. Inverse Function Theorem. Assume that f(x) is defined on a continuous and
open interval I containing some xy. Also assume that f(x) is either strictly increasing or
strictly decreasing on I with inverse g : J = f(I) — I. Then if f(x) is differentiable at xg
with f’(xg) # 0, then g(y) is differentiable at yo = f(xo) with

1

f'(z0)

9 (yo) =

3.4. First Derivative Test. Suppose that f :. S — R, where S C R, that there exists an
open interval (a,b) containing some ¢ € S, and that [a,b] C S. Assume also that f(z) is
continuous on [a,b] and differentiable on (a,b) except possibly at x = ¢. Finally, assume
that = ¢ is a critical point for f(x).
1. If f/(z) <0 on (a,c) and f'(x) > 0 on (c,b), then ¢ is a local minimum for f(z).
2. If f'(z) 2 0 on (a,c) and f'(x) <0 on (c,b), then ¢ is a local maximum for f(z).

3.5. Second Derivative Test. Suppose that f : S — R, where S C R, and that [ is an
open interval such that I C J C S where J is an open interval. If f(z) is twice
differentiable at every x € I then we have the following:

1. If f"(z) > 0 for all = € I, then f(x) is concave upward on I.
2. If f(x) <0 for all z € I, then f(z) is concave downward on I.

3.6. Taylor’s Theorem. Suppose that f: S — R, where S C R, and that I C S is an
open interval containing some a € S. Suppose also that f(z) is n + 1 times differentiable
on I. Let R, 4(x) be the nth Taylor remainder of f(x) centered at z = a. For each x € I,
there exists some ¢ := ¢, € Iwith = < ¢; < a such that

Rn,a(x) = f(x) _P’Vl,ll(x)

B f(n+1)(c)

— (n = 1)! _ a)n—i—l
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4. FUNCTION CHARACTERISTICS

4.1. Uniform Continuity. If f(z) is continuous in [a, b], then it is uniformly continuous
on [a,b).

- Assume that f(x) is not uniformly continuous on [a, b].

- That is, assume {zy}, {yn} € [a,b] with 1i_>rn [Tn, — yn] = 0, but 1i_>m [f(zn) — flyn)] #0
n—oo n—oo

- Since li_>m [f(xn) — f(yn)] # 0, replacing {x,}, {yn} with subsequences if necessary, we

can assume that for some ey > 0 we have |f(zy,) — f(yn,)| = €0

- Since {x,} € [a,b], by the Bolzano-Weierstrass Theorem {z,} has a convergent
subsequence {z,, } with z,, — zo € [a,]]

- Since nh_}r{)lO [n, — Yn,] =0, we have that y,, — yo € [a, D]

- By continuity, f(2n,) = f(z0) and f(yn,) = f(yo)
- Then f(xn,) — f(yn,) — 0, which is impossible, since lim [f(xy,) — f(yn,)] # 0.

n—o0
- Hence we must have that f(z) is uniformly continuous on [a, b].

4.2. Local Extrema. If f(z) has a local maximum or minimum at some = = ¢ and if
f'(c) exists, then f’'(c) = 0.

- Assume that f(z) has a local maximum at z = c.
- Then there exists an open interval (a,b) containing ¢ with f(x) < f(c) for all = € (a,b).

-Ifa<x<cthenw20
- Hence f'(c) = lim @) = Fo)] >0
T—cT | r —cC ]
-Ifc<x<bthenM<0
Tr—c
- Hence f'(c) = lim @) = /() <0
z—ct | Tr—cC

- Therefore f'(c) = 0.

- A similar procedure can be applied if ¢ is a local minimum.
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4.3. Functions and Big-O. If f(z) is n + 1 times differentiable on some open interval
I>[~1,1] and f"*V(x) is continuous on [—1,1], then f(x) = Poo(z) + O(z"*!) as
z — 0.

- By the Extreme Value Theorem, f("+1)(x) is bounded on [—1, 1].
- Choose M € R such that |f*1)(z)| < M for all z € [-1,1].
- Taylor’s Theorem implies that for any x € [—1, 1] there exists 0 < ¢, < x such that

(n+1) (¢, M
1£(2) = Pao(a)] = |f(n+50)'>xn+1 LA
M n
-
— 0($n+1)

- Hence we have that



