Calculus

THEOREMS & PROOFS

Fall 2009, Math 147

Contents

1. The Peano axioms	1
1.1. WOP \Rightarrow POMI	1
1.2. $POMI \Rightarrow POSI$	1
1.3. $POSI \Rightarrow WOP$	1
2. Five-Star Theorems	2
2.1. The Archimedean Property	2
2.2. The Monotone Convergence Theorem	2
2.3. The Bolzano-Weierstrass Theorem	2
2.4. The Completeness Theorem	2
2.5. The Squeeze Theorem for Sequences	2
2.6. The Intermediate Value Theorem	3
2.7. The Extreme Value Theorem	3
2.8. Rolle's Theorem	4
2.9. The Mean Value Theorem	4
2.10. The Increasing Function Theorem	4
3. Statement-only Theorems	5
3.1. Fundamental Trigonometric Limit	5
3.2. Fundamental Logarithmic Limit	5
3.3. Inverse Function Theorem	5
3.4. First Derivative Test	5
3.5. Second Derivative Test	5
3.6. Taylor's Theorem	5
4. Function Characteristics	6
4.1. Uniform Continuity	6
4.2. Local Extrema	6
4.3. Functions and Big-O	7

© J. Lazovskis Professor: B. Forrest

1. The Peano axioms

1.1. WOP \Rightarrow POMI.

- · Let $S \subset \mathbb{N}$ such that
 - **1:** $1 \in S$
 - **2:** If $k \in S$, then $k + 1 \in S$
- · Let $T = \mathbb{N} \setminus S$
- · Assume $T \neq \emptyset$
- · By the Well Ordering Principle, T has a least element K_0 .
- · Now $K_0 \neq 1$, as $1 \in S$. Then we have that $K_0 1 \in \mathbb{N}$ and $K_0 1 < K_0$.
- · Since K_0 is the least element in $T, K_0 1 \notin T$, which implies that $K_0 1 \in S$.
- Hence $K_0 = (K_0 1) + 1 \in S$ by **2**.
- · Since this is not possible, we must have that $T = \emptyset$ and $S = \mathbb{N}$.

1.2. **POMI** \Rightarrow **POSI**.

- Assume that $S \subset \mathbb{N}$ satisfies:
 - **1:** $1 \in S$
 - **2:** If $\{1, 2, \dots, k\} \in S$, then $k + 1 \in S$
- · Let P(n) be the statement that $\{1, 2, \ldots k\} \in S$.
- If P(n) holds for all $n \in \mathbb{N}$, then $S = \mathbb{N}$.
- · Let n = 1. Clearly $1 \in S$, by the assumption **1**, so P(1) holds.
- Assume that P(k) holds. That is, $\{1, 2, \dots k\} \in S$.
 - By the assumption **2**, $P(k+1) \in S$.
 - From this, $\{1, 2, \dots, k, k+1\} \in S$, and hence P(k+1) holds.
- Therefore the Principle of Mathematical Induction shows that P(n) holds for all $n \in \mathbb{N}$.

1.3. **POSI** \Rightarrow **WOP**.

- · Let $S \in \mathbb{N}$ be a set that does not have a least element. Also let
 - $T = \mathbb{N} \setminus S = \{ n \in \mathbb{N} \mid n \notin S \}$
- · First, $1 \in T$, because if $1 \in S$, then it would be the least element of S.
- Assume that $\{1, 2, \ldots k\} \in T$.
- · Since S does not have a least element, S cannot contain k + 1.
- Therefore if $\{1, 2, \ldots k\} \in T$, then $k + 1 \in T$.
- The Principle of Strong Induction shows that $T = \mathbb{N}$ and hence that $S = \emptyset$.
- · If $S \in \mathbb{N}$ and S does not have a least element, then $S = \emptyset$.

 \cdot Therefore it follows that every nonempty subset of $\mathbb N$ has a least element.

THEOREMS & PROOFS

2. FIVE-STAR THEOREMS

2.1. The Archimedean Property. \mathbb{N} is not bounded above.

- \cdot Assume that $\mathbb N$ is bounded above.
- · Let $\alpha = lub(\mathbb{N})$
- Then $\alpha 1$ is not an upper bound of \mathbb{N} .
- Then there exists an $n \in \mathbb{N}$ such that $\alpha 1 < n \leq \alpha$.
- But then $\alpha = (\alpha 1) + 1 < n + 1$
- This is impossible, as $\alpha = lub(\mathbb{N})$.
- · Therefore \mathbb{N} is not bounded above.

2.2. The Monotone Convergence Theorem. If $\{a_n\}$ is non-decreasing and bounded above, then $\{a_n\}$ converges.

· If $\{a_n\}$ is bounded above, then by the LUBP it has a least upper bound L.

- · Let $\epsilon > 0$.
- Then $L \epsilon < \epsilon$, so $L \epsilon$ is not an upper bound for $\{a_n\}$.
- Hence there exists some $N_o \in \mathbb{N}$ with $L \epsilon < a_{n_o}$
- · If $n \ge N_o$, then $L \epsilon < a_{n_o} \le a_n \le L \Rightarrow |a_n L| < \epsilon$
- Hence $\lim_{n \to \infty} [a_n] = L.$

2.3. The Bolzano-Weierstrass Theorem. Every bounded sequence $\{a_n\}$ has a convergent subsequence.

- By the Peak Point Lemma, $\{a_n\}$ has a monotonic subsequence $\{a_{n_k}\}$.
- · Since $\{a_{n_k}\}$ is also bounded, it converges by the Monotone Convergence Theorem.

2.4. The Completeness Theorem. Every Cauchy sequence $\{a_n\} \subset \mathbb{R}$ converges.

- · If $\{a_n\}$ is Cauchy, then $\{a_n\}$ is bounded.
- · By the BWT, $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ that converges to some L.
- · Since $\{a_n\}$ is Cauchy, $\{a_n\}$ converges to L.

2.5. The Squeeze Theorem for Sequences. Assume that $\{a_n\} \leq \{b_n\} \leq \{c_n\}$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} [a_n] = L = \lim_{n \to \infty} [c_n]$, then $\lim_{n \to \infty} [b_n]$ exists and $\lim_{n \to \infty} [b_n] = L$

- · Let $\epsilon > 0$. Then we can find N_o so that if $n \ge N_o$, then $L \epsilon < a_n \le c_n < L + \epsilon$
- If $n \ge N_o$, then $L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$
 - $\Rightarrow |b_n L| < \epsilon$
- \cdot Hence the above statement holds.

 $\mathbf{2}$

2.6. The Intermediate Value Theorem. If f(x) is continuous on [a,b] and f(a) < 0and f(b) > 0 Then there exists some a < c < b such that f(c) = 0.

- $\cdot \text{ Let } S = \{ x \in [a, b] | f(x) \leq 0 \}$
- · Since $a \in S$, $S \neq \emptyset$. And since S is bounded, it has a least upper bound.
- · Let c = lub(S).
- · Then by the Sequential Characterization of Limits, there exists a sequence $\{x_n\} \subset S$ with $\{x_n\} \to c \in [a, b]$.
- Then $f(x_n) \to f(c)$ by continuity.
- Then since $f(x_n) \leq 0$, we have that $f(c) \leq 0$.
- · Now let $\{y_n\} = c + \frac{b-c}{n}$

- Then $c < y_n \leq b$ and $\lim_{n \to \infty} [y_n] = c$ By continuity, $\lim_{n \to \infty} [f(y_n)] = f(c)$ Then since $f(y_n) < 0$, we have that $f(c) \ge 0$.
- Hence f(c) = 0.

2.7. The Extreme Value Theorem. If f(x) is continuous on a finite closed interval [a, b], then there exist $c, d \in [a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in [a, b]$.

- First we claim that f(x) is bounded on [a, b].
 - Suppose that f(x) is not bounded.
 - Then for each $n \in \mathbb{N}$, we can find $\{x_n\} \subset [a, b]$ with $|f(x_n)| \ge n$.
 - By the Bolzano-Weierstrass Theorem, $\{x_n\}$ has a subsequence x_{n_k} with $x_n \to x_o \in [a, b]$.
 - By continuity, $f(x_{n_k}) \to f(x_o)$.
 - But from above we have that $|f(x_{n_k})| \ge n_k$, which implies that $\{f(x_{n_k})\}$ is not bounded.
 - However, this contradicts the previous statement, so f(x) is bounded.
- $\cdot \text{ Let } T = \{f(x) | x \in [a, b]\}$
- \cdot Then T is bounded.
- \cdot Since T is nonempty, it has a least upper and greatest lower bound.
- · Let L = lub(T) and M = glb(T)
- There exist sequences $\{x_n\}, \{y_n\} \subset [a, b]$ with

i.
$$L - \frac{1}{n} \leq f(x_n) \leq L$$

ii.
$$M \leq f(y_n) \leq M + \frac{1}{n}$$

- · By the Bolzano-Weierstrass Theorem, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x_o \in [a, b]$
- · Choose $x_o = d$ so that $x_{n_k} \to d$
- By continuity, $f(x_{n_k}) \to f(d)$
- · By i. $f(x_{n_k}) \to L$, hence f(d) = L
- · Similarly we get a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ with $y_{n_k} \to c \in [a, b]$. Moreover, f(c) = M.

THEOREMS & PROOFS

2.8. Rolle's Theorem. If f(x) is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b), then there exists $c \in (a, b)$ with f'(c) = 0.

- · By the Extreme Value Theorem, f(x) attains its maximum (minimum) on [a, b]
- · Since f(a) = f(b), either i. f(x) is constant on [a, b], or

ii. f(x) attains its maximum (minimum) at some point $c \in (a, b)$ \cdot In case **i.** f'(c) = 0 for all $c \in [a, b]$

- · In case ii. the point c is a local maximum (minimum) for f(x)
- Then since f'(x) exists, f'(c) = 0

2.9. The Mean Value Theorem. If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ with $\frac{f(b) - f(a)}{b - a} = f'(c)$.

• Define g(x) to be the linear curve such that $g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$

- Hence g(x) is the secant line from f(a) to f(b).
- · Define F(x) = f(x) g(x)
- Then F(x) is continuous on [a, b] and differentiable on (a, b)

· Since F(a) = F(b) = 0, by Rolle's Theorem there exists $c \in (a, b)$ with F'(c) = 0

• Then we have that
$$F'(x) = f'(x) - \left\lfloor \frac{f(b) - f(a)}{b - a} \right\rfloor$$

$$0 = F'(c) = f'(c) - \left\lfloor \frac{f(b) - f(a)}{b - a} \right\rfloor$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

2.10. The Increasing Function Theorem. If f(x) is continuous on [a,b] and differentiable on (a,b) with f'(x) > 0 for all $x \in (a,b)$, then f(x) is strictly increasing on [a,b].

• Let $x_1, x_2 \in [a, b]$ with $x_1 < x_2$.

· Then the Mean Value Theorem can be applied to $[x_1, x_2]$.

• Then there exists
$$c \in (x_1, x_2)$$
 with $0 < f(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

- This implies that $f(x_2) f(x_1) = f(c)(x_2 x_1) > 0$
- Finally we have that $f(x_2) > f(x_1)$ for all $x_2 > x_1 \in [a, b]$.

3.1. Fundamental Trigonometric Limit.

 $\lim_{\theta \to 0} \left[\frac{\sin(\theta)}{\theta} \right] \text{ exists and equals 1.}$

3.2. Fundamental Logarithmic Limit.

$$\lim_{x \to \infty} \left[\frac{\ln(x)}{x} \right]$$
 exists and equals 0.

3.3. Inverse Function Theorem. Assume that f(x) is defined on a continuous and open interval I containing some x_0 . Also assume that f(x) is either strictly increasing or strictly decreasing on I with inverse $g: J = f(I) \to I$. Then if f(x) is differentiable at x_0 with $f'(x_0) \neq 0$, then g(y) is differentiable at $y_0 = f(x_0)$ with

$$g'(y_0) = \frac{1}{f'(x_0)}$$

3.4. First Derivative Test. Suppose that $f: S \to R$, where $S \subseteq R$, that there exists an open interval (a, b) containing some $c \in S$, and that $[a, b] \subset S$. Assume also that f(x) is continuous on [a, b] and differentiable on (a, b) except possibly at x = c. Finally, assume that x = c is a critical point for f(x).

1. If $f'(x) \leq 0$ on (a, c) and $f'(x) \geq 0$ on (c, b), then c is a local minimum for f(x). **2.** If $f'(x) \geq 0$ on (a, c) and $f'(x) \leq 0$ on (c, b), then c is a local maximum for f(x).

3.5. Second Derivative Test. Suppose that $f: S \to R$, where $S \subseteq R$, and that I is an open interval such that $I \subset J \subset S$ where J is an open interval. If f(x) is twice differentiable at every $x \in I$ then we have the following:

1. If $f''(x) \ge 0$ for all $x \in I$, then f(x) is concave upward on I.

2. If $f''(x) \leq 0$ for all $x \in I$, then f(x) is concave downward on I.

3.6. **Taylor's Theorem.** Suppose that $f: S \to R$, where $S \subseteq R$, and that $I \subset S$ is an open interval containing some $a \in S$. Suppose also that f(x) is n + 1 times differentiable on I. Let $R_{n,a}(x)$ be the *n*th Taylor remainder of f(x) centered at x = a. For each $x \in I$, there exists some $c := c_x \in I$ with $x < c_x < a$ such that

$$R_{n,a}(x) := f(x) - P_{n,a}(x)$$
$$= \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

THEOREMS & PROOFS

4. Function Characteristics

4.1. Uniform Continuity. If f(x) is continuous in [a, b], then it is uniformly continuous on [a, b].

- Assume that f(x) is not uniformly continuous on [a, b].
- That is, assume $\{x_n\}, \{y_n\} \in [a, b]$ with $\lim_{n \to \infty} [x_n y_n] = 0$, but $\lim_{n \to \infty} [f(x_n) f(y_n)] \neq 0$ Since $\lim_{n \to \infty} [f(x_n) f(y_n)] \neq 0$, replacing $\{x_n\}, \{y_n\}$ with subsequences if necessary, we can assume that for some $\epsilon_0 > 0$ we have $|f(x_{n_k}) - f(y_{n_k})| \ge \epsilon_0$
- · Since $\{x_n\} \in [a, b]$, by the Bolzano-Weierstrass Theorem $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$ with $x_{n_k} \to x_0 \in [a, b]$ \cdot Since $\lim_{n \to \infty} [x_{n_k} - y_{n_k}] = 0$, we have that $y_{n_k} \to y_0 \in [a, b]$
- By continuity, $f(x_{n_k}) \to f(x_0)$ and $f(y_{n_k}) \to f(y_0)$
- Then $f(x_{n_k}) f(y_{n_k}) \to 0$, which is impossible, since $\lim_{n \to \infty} [f(x_{n_k}) f(y_{n_k})] \neq 0$.
- Hence we must have that f(x) is uniformly continuous on [a, b].

4.2. Local Extrema. If f(x) has a local maximum or minimum at some x = c and if f'(c) exists, then f'(c) = 0.

- Assume that f(x) has a local maximum at x = c.
- Then there exists an open interval (a, b) containing c with $f(x) \leq f(c)$ for all $x \in (a, b)$.

$$\text{If } a < x < c \text{ then } \frac{f(x) - f(c)}{x - c} \ge 0 \\ \text{Hence } f'(c) = \lim_{x \to c^-} \left[\frac{f(x) - f(c)}{x - c} \right] \ge 0 \\ \text{If } c < x < b \text{ then } \frac{f(x) - f(c)}{x - c} \le 0 \\ \text{Hence } f'(c) = \lim_{x \to c^+} \left[\frac{f(x) - f(c)}{x - c} \right] \le 0 \\ \text{Therefore } f'(c) = 0$$

- Therefore f'(c) = 0.
- · A similar procedure can be applied if c is a local minimum.

4.3. Functions and Big-O. If f(x) is n + 1 times differentiable on some open interval $I \supset [-1, 1]$ and $f^{(n+1)}(x)$ is continuous on [-1, 1], then $f(x) = P_{n,0}(x) + O(x^{n+1})$ as $x \to 0.$

- By the Extreme Value Theorem, $f^{(n+1)}(x)$ is bounded on [-1, 1]. Choose $M \in \mathbb{R}$ such that $|f^{(n+1)}(x)| \leq M$ for all $x \in [-1, 1]$. Taylor's Theorem implies that for any $x \in [-1, 1]$ there exists $0 < c_x \leq x$ such that

$$|f(x) - P_{n,0}(x)| = \left| \frac{f^{(n+1)}(c_x)}{(n+1)!} x^{n+1} \right| \le \left| \frac{M}{(n+1)!} x^{n+1} \right|$$
$$= \frac{M}{(n+1)!} |x^{n+1}|$$
$$= O(x^{n+1})$$

 \cdot Hence we have that

$$f(x) - P_{n,0}(x) = O(x^{n+1})$$

$$f(x) = P_{n,0}(x) + O(x^{n+1})$$