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1 Integration

1.1 Riemann sums

Definition 1.1.1. Let [a, b] be a closed interval with a < b. A partition of [a, b] is a finite subset P of [a, b]
of the form P = {a = x0 < x1 < · · · < xi < · · · < xn = b}. Given such a P , let ∆xi = xi − xi−1. Note that∑n

i=i ∆xi = b− a.

Definition 1.1.2. The norm of P is ||P || = max
i=1,...,n{∆xi}

Definition 1.1.3. Let P = {a = x0 < · · · < xn = b} be a partition on [a, b]. For each i = 1, . . . , n:
· Mi = lub{f(x) : x ∈ [xi−1, xi]}
· mi = glb{f(x) : x ∈ [xi−1, xi]}

The upper Riemann sum for f(x) with respect to the partition P is U b
a(P, f) =

n∑
i=1

Mi∆xi.

The lower Riemann sum for f(x) with respect to the partition P is Lb
a(P, f) =

n∑
i=1

mi∆xi.

The Riemann sum for f(x) with respect to the partition P is Sb
a(P, f) =

n∑
i=1

f(ci)∆xi for ci ∈ [xi−1, xi].

· Note that L(f, P ) 6 S(f, P ) 6 U(f, P ).

Theorem 1.1.4. Assume that Q is a refinement of P . Then L(f, P ) 6 L(f,Q) 6 U(f,Q) 6 U(f, P ).

Definition 1.1.5. Assume that f(x) is bounded on the interval [a., b].

The upper Riemann integral of f(x) on [a, b] is

∫ b

a

f(x) dx = glb{U(f, P ) : P is a partition}

The lower Riemann integral of f(x) on [a, b] is

∫
a

b

f(x) dx = lub{L(f, P ) : P is a partition}

Definition 1.1.6. If f(x) is bounded on [a, b], then f(x) is Riemann integrable if∫ b

a

f(x) dx =

∫
a

b

f(x) dx

Then the common value is denoted by

∫ b

a

f(x) dx, which is the Riemann integral of f(x) over [a, b].

Theorem 1.1.7. A function f(x) is integrable on [a, b] if and only if for every ε > 0 there exists a partition
P of [a, b] such that U(f, P )− L(f, P ) < ε.

Definition 1.1.8. If f(x) is integrable over [a, b] and Pn is the n-regular partition of [a, b], then

lim
n→∞

[
L(f, Pn)

]
=

∫ b

a

f(x) dx = lim
n→∞

[
U(f, Pn)

]
Theorem 1.1.9. If f(x) is integrable over [a, b], then for every ε > 0, there exists a δ > 0 such that if P is
any partition of [a, b], with ||P || < δ and S(f, P ) is any Riemann sum associated with P , then

∫ b

a

f(x) dx− S(f, P )

 < ε

Theorem 1.1.10. Suppose f(x) is bounded on [a, b]. Then f(x) is Riemann integrable on [a, b] if and only
if f(x) is continuous on [a, b] except possibly on a set of Lebesgue measure zero.

Theorem 1.1.11. If f(x) is monotonic on [a, b], then f(x) is integrable on [a, b].
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1.2 Properties of integrals

Theorem 1.2.1. Assume that f(x) and g(x) are integrable over [a, b] ⊂ R.

i. If c ∈ R, then cf(x) is integrable over [a, b] and
∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx.

ii. f(x) + g(x) is integrable over [a, b] and
∫ b

a
f(x) + g(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Theorem 1.2.2. Assume that f(x) is integrable over [a, b]. Then g(x) = |f(x)| is integrable over [a, b]. The
converse is not necessarily true.

Theorem 1.2.3. Assume that f(x) is bounded on [a, b], and c ∈ (a, b). Then f(x) is integrable on [a, b] if
and only if f(x) is integrable on [a, c] and on [c, b]. Moreover, in this case∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

Theorem 1.2.4. Assume that f(x) is integrable over [a, b]. Let

m = glb{f(x) : x ∈ [a, b]}
M = lub{f(x) : x ∈ [a, b]}

}
Then m 6

1

b− a

∫ b

a

f(x) dx 6M .

Corollary 1.2.5. [Mean Value Theorem for Integrals]

Assume that f(x) is continuous on [a, b]. Then there exists a c ∈ [a, b] such that f(c) = 1
b−a

∫ b

a
f(x) dx.

1.3 Fundamental Theorem of Calculus

Theorem 1.3.1. Assume that f(t) is such that over an interval I,
∫ y

x
f(t) dt exists for each x, y ∈ I.

Assume that |f(t)| 6M for all t ∈ I. Let a ∈ I. Let F (x) =
∫ x

a
f(t) dt. Then for any x, y ∈ I,

|F (x)− F (y)| 6M |x− y|.

Theorem 1.3.2. [Fundamental Theorem of Calculus I]
Assume that f(t) is integrable on [a, b]. Let F (x) =

∫ x

a
f(t) dt, and let c ∈ (a, b). If f(t) is continuous at

t = c, then F (x) is differentiable at x = c with F ′(c) = f(c).

Theorem 1.3.3. [Extended Fundamental Theorem of Calculus]
Assume that g(x), h(x) are differentiable, and that f(x) is continuous on an open interval I. Let

F (x) =
∫ h(x)

g(x)
f(t) dt. Then F (x) is integrable on I with

F ′(x) = f(h(x))h′(x)− f(g(x))g′(x)

Definition 1.3.4. A function F (x) is termed an antiderivative of f(x) on I if F ′(x) = f(x) for all x ∈ I.
The collection of all antiderivatives of f(x) is denoted by

∫
f(x) dx, and termed the indefinite integral. The

function f(x) is the integrand.

Corollary 1.3.5. Assume that F (x) is an antiderivative of f(x) on I. Then
∫
f(x) dx = F (x) + C.

Theorem 1.3.6. [Fundamental Theorem of Calculus II]
Assume that f(t) in continuous on an interval I with a, b ∈ I. Assume that F (t) is any antiderivative of
f(t) on I. Then

F (b)− F (a) =

∫ b

a

f(t) dt
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1.4 Integral simplification

Theorem 1.4.1. [Change of Variables]
Assume that g(x) is continuously differentiable on [a, b], and f(u) is continuous on g([a, b]). Then∫ g(b)

g(a)

f(u) du =

∫ b

a

f(g(x))g(x) dx

Theorem 1.4.2. [Integration by Parts]
Assume that f(x), g(x) are continuously differentiable on [a, b]. Then∫ b

a

f(x)g(x) dx = f(x)

∫ b

a

g(x) dx−
∫ b

a

f ′(x)

∫
g(x) dx dx

Definition 1.4.3. A rational function is type I if r(x) = p(x)
q(x) with

· deg(p(x)) < deg(q(x))
· if q(a) = 0, then p(a) 6= 0
· q(x) = c(x− a1)(x− a2) · · · (x− an)

for ai 6= aj if i 6= j
Then the partial fraction decomposition of r(x) is that there exist A1, A2, . . . , An ∈ R such that

r(x) =
1

c

[
A1

x− a1
+

A2

x− a2
+ · · ·+ An

x− an

]
and Ai =

p(ai)∏
i 6=j

(ai − aj)

Definition 1.4.4. A rational function is type II if r(x) = p(x)
q(x) with

· deg(p(x)) < deg(q(x))
· if q(a) = 0, then p(a) 6= 0
· q(x) = c(x− a1)m1(x− a2)m2 · · · (x− an)mn

for ai 6= aj if i 6= j, and at least one mi > 0
Then every term (x− ai)mi contributes mi terms to the decomposition in the form

Ai1

(x− ai)
+

Ai2

(x− ai)2
+ · · ·+ Aimi

(x− ai)mi

Definition 1.4.5. A rational function is type III if r(x) = p(x)
q(x) with

· deg(p(x)) < deg(q(x))
· if q(a) = 0, then p(a) 6= 0
· q(x) = c(x− a1)m1 · · · (x− ak)mk(x2 + bk+1x+ ck+1)mk+1 · · · (x2 + bnx+ cn)mn

for ai 6= aj if i 6= j, at least one mi > 0, and (x2 + bix+ ci) irreducible for k + 1 6 i 6 n
Then every term (x− ai)mi and (x2 + bjx+ cj)

mj contributes to the decomposition as follows:

(x− ai)mi → Ai1

(x− ai)
+ · · ·+ Aimi

(x− ai)mi

(x2 + bjx+ cj)
mj → Bj1x+ Cj1

(x2 + bjx+ cj)
+ · · ·+

Bjmjx+ Cjmj

(x2 + bjx+ cj)mj

4



1.5 Applications of integration

Definition 1.5.1. The area between two curves f(x) and g(x) over an interval [a, b] is defined as

A =

∫ b

a

|f(x)− g(x)| dx

Definition 1.5.2. The moment is defined as the mass times distance. For an area bounded above by a
function g(x), below by f(x), over an interval [a, b], this becomes:

Mx =

∫ b

a

x(g(x)− f(x)) dx and My =

∫ b

a

1

2

(
g(x)2 − f(x)2

)
dx

Definition 1.5.3. The center of mass is given by the coordinate
(

Mx

A ,
My

A

)
.

Definition 1.5.4. The arc length of the graph of a function f(x) over an interval [a.b] is given by

S =

∫ b

a

√
1 + f ′(x)2 dx

Definition 1.5.5. The volume of revolution of a function f(x) over an interval [a, b] is given by

Vx =

∫ b

a

πf(x)2 dx and Vy =

∫ b

a

2πxf(x) dx

1.6 Improper integrals

Definition 1.6.1. Assume that f(x) is integrable on [a, b] for all b > a. Then∫ ∞
a

f(x) dx = lim
b→∞

[∫ b

a

f(x) dx

]
This is termed an improper integral of the first kind. The improper integral converges if and only if the limit
of the proper integral exists.

Theorem 1.6.2. [Comparison Test for Integrals]
Assume that 0 6 f(t) 6 g(t) for all x ∈ [a,∞), and that f(t), g(t) are integrable on [a, b) for all b ∈ [a,∞).
Then

1. If

∫ ∞
a

g(t) dt converges, then

∫ ∞
a

f(t) dt converges.

2. If

∫ ∞
a

f(t) dt diverges, then

∫ ∞
a

g(t) dt diverges.

Theorem 1.6.3. Assume that f(t) is integrable on [a, b] for all b ∈ [a,∞). Assume that
∫ b

a
|f(t)|dt converges.

Then
∫∞
0
f(t) dt converges.

Theorem 1.6.4. [P-Test for Integrals]∫ ∞
a

1

xp
dx converges if and only if p > 1.
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2 Sequences and series

2.1 Convergence

Theorem 2.1.1. [Divergence Test]

If {an} is any sequence with

∞∑
n=1

an convergent, then lim
n→∞

[
an
]

= 0.

Definition 2.1.2. Given {an} ⊂ R, define lim sup{an} = lim
n→∞

[
sup
k>n
{ak}

]
.

Remark 2.1.3. The ratio test only detects rapidly convergent / divergent series.

Definition 2.1.4. A series of the from

∞∑
n=1

(−1)n−1an is termed an alternating series.

Definition 2.1.5. A series

∞∑
n=0

an converges absolutely if

∞∑
n=0

|an| converges.

Definition 2.1.6. A series

∞∑
n=0

an converges conditionally if

∞∑
n=0

an converges, but not

∞∑
n=0

|an|.

Theorem 2.1.7. If a series converges absolutely, then it converges.

Theorem 2.1.8. If

∞∑
n=0

an converges absolutely, and if ϕ : N→ N is one-to-one and onto, and if bn = aϕ(n),

then

∞∑
n=0

bn converges.

Theorem 2.1.9. If

∞∑
n=0

an is convergent conditionally, then there exists a bijection ϕ : N→ N such that

∞∑
n=0

aϕ(n) = α for any α ∈ [−∞,∞].

2.2 Power series

Definition 2.2.1. A power series centered at x = a ∈ R is a formal series of the form

∞∑
n=0

an(x− a)n, where

{an} is a sequence of coefficients.

Theorem 2.2.2. Let

∞∑
n=0

anx
n be a power series. Assume that

∞∑
n=0

anx
n converges for x◦ 6= 0. If

0 6 |x1| 6 |x◦|, then

∞∑
n=0

anx
n
1 will converge absolutely.

Definition 2.2.3. The radius of convergence of a series is defined as R = sup

{
|x◦| :

∞∑
n=0

anx
n
◦ converges

}
.

Remark 2.2.4. Given a series{an} and its radius of convergence R:
1. If R = 0, then the series converges on {0}.
2. If R =∞, then the series converges on all of R = (−∞,∞).
3. If 0 < R <∞, then the series converges on (−R,R) or [−R,R) or (−R,R] or [−R,R].

6



Theorem 2.2.5. Given a power series

∞∑
n=0

anx
n, let lim

n→∞

[an+1

an


]

= L ∈ [0,∞]. Then

1. If 0 < L <∞, then R = 1
L .

2. If L = 0, then R = 1
0 =∞.

3. If L =∞, then R = 1
∞ = 0.

Theorem 2.2.6. Given a series

∞∑
n=0

anx
n, the radius of convergence is R =

1

lim sup{ n
√
an}

Definition 2.2.7. The set of values x on which a power series

∞∑
n=0

anx
n converges is termed the

interval of convergence.

2.3 Sequences of functions

Definition 2.3.1. A sequence of functions {fn} converges pointwise on S ⊂ R to f(x) if for each x◦ ∈ S,

f(x◦) = lim
n→∞

[
fn(x◦)

]
.

Theorem 2.3.2. If {fn} is a sequence of continuous functions converging pointwise to f(x) on S, f(x)
must have at least one point of continuity.

Definition 2.3.3. A sequence of functions {fn} converges uniformly on S ⊂ R to f(x) if for every ε > 0
there exists an N ∈ N such that if n > N , then |fn(x)− f(x)| < ε for all x ∈ S.
· Note that uniform convergence implies pointwise convergence.

Theorem 2.3.4. If {fn} is a sequence of functions that converges uniformly on S to f(x), and if each fn(x)
is continuous at x◦ relative to S, then f(x) is continuous at x◦ relative to S.

Theorem 2.3.5. Suppose that {fn} is a sequence of integrable functions on some interval [a, b]. Assume
that {fn} converges uniformly to f(x) on [a, b]. Then f(x) is integrable, and∫ b

a

f(x) dx =

∫ b

a

lim
n→∞

[
fn(x)

]
= lim

n→∞

[∫ b

a

fn(x) dx

]

3 Normed Linear spaces

3.1 Norms

Definition 3.1.1. Let V be a vector space over R. A norm on V is a function || · || : V → R such that
1. ||v|| > 0 and ||v|| = 0 if and only if v = 0
2. ||αv|| = |α| · ||v||
3. ||v + w|| 6 ||v||+ ||w|| [Triangle Inequality]

for any α ∈ R and u, v ∈ V . The norm is an abstract notion of length.

Definition 3.1.2. The Euclidean norm is defined for V = Rn and ~x ∈ Rn such that ~x = x1, . . . , xn:

||~x|| = ||x1, . . . , xn|| =
√
x21 + · · ·+ x2n =

(
n∑

i=1

x2i

)1/2

Definition 3.1.3. The dot product of ~x, ~y ∈ Rn is defined as ~x • ~y = x1y1 + · · ·+ xnyn.

Theorem 3.1.4. [Cauchy-Schwarz Inequality] For a, b ∈ V for some vector space V

n∑
i=1

aibi 6

(
n∑

i=1

a2i

)1/2
(

n∑
i=1

b2i

)1/2

or, equivalently ~a • ~y 6 ||a|| · ||b||
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Definition 3.1.5. The ordered pair (V, || · ||) is termed a normed linear space.
For V = Rn and v ∈ V :

· The 1-norm is defined as ||v||1 = ||v1, . . . , vn||1 = |va|+ · · · |vn| =
n∑

i=1

|vi|

· The infinity norm is defined as ||v||∞ = ||v1, . . . , vn||∞ = max
16i6n

{vi}

· The p-norm for 1 < p <∞ is defined as ||v||p = ||v1, . . . , vn||p =

(
n∑

i=1

|vi|p
)1/p

It is always the case that ||v||∞ 6 ||v||p 6 ||v||1.

Definition 3.1.6. The inner product on a vector space V is a function 〈·, ·〉 : V × V → R such that
1. 〈v, w〉 = 〈w, v〉
2. 〈v + w, z〉 = 〈v, z〉+ 〈w, x〉
3. 〈2v, z〉 = 2〈v, z〉
4. 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0

for all v, w, z ∈ V . Then (V, 〈·, ·〉) is termed an inner product space.

Remark 3.1.7. For the terms defined above, the norm can also be defined as ||v|| = 〈v, v〉1/2 .

3.2 Norms and continuous functions

Definition 3.2.1. Define the vector space V = C[a, b] = {f : [a, b]→ R : f is continuous } as the set of all
continuous functions on the interval [a, b] ⊂ R.

Remark 3.2.2. The following are examples of norms on this vector space:

· ||f ||1 =

∫ b

a

|f(x)|dx

· ||f ||2 =

(∫ b

a

|f(x)|2dx

)1/2

· ||f ||∞ = max
x∈[a,b]

{|f(x)| : x ∈ [a, b]}

·
〈
f(x), g(x)

〉
=

∫ b

a

f(x)g(x) dx

Definition 3.2.3. Let X be a vector space. Then a metric on X is a function d : X ×X → R with
1. d(x, y) = d(y, x)
2. d(x, y) > 0 and d(x, y) = 0 if and only if x = y
3. d(x, y) 6 d(x, z) + d(z, y)

for all x, y, z ∈ X.

Definition 3.2.4. With respect to the above definition, the ordered pair (X, d) is termed a metric space.

3.3 Convergence in a metric space

Definition 3.3.1. Given a metric d : X ×X → R, a sequence {xn} ⊂ X converges to x◦ ∈ X if for every

ε > 0 there exists an N ∈ N such that if n > N , then d(x◦, xn) < ε. Therefore lim
n→∞

[
d(x◦, xn)

]
= 0.

Definition 3.3.2. A sequence {xn} ⊂ (X, d) is Cauchy if for every ε > 0 there exists an N ∈ N such that if
k,m > N , then d(xk, xm) < ε.

Theorem 3.3.3. If {xn} is convergent in (X, d), then {xn} is Cauchy.
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Remark 3.3.4. If X = Q and d(x, y) = |x− y|, then there exist Cauchy sequences in (X, d) that do not
converge.

Definition 3.3.5. A set A ⊂ (X, d) is bounded if there exists x◦ ∈ X and M > 0 such that d(x◦, x) 6M
for all x ∈ A.

Theorem 3.3.6. If {xn} ⊂ (X, d), then {xn} is bounded.

Definition 3.3.7. A metric space is complete if every Cauchy sequence in the metric space converges.

Theorem 3.3.8. [Completeness theorem for C[a,b]]
The metric space C[a, b] is complete.

Remark 3.3.9. A sequence {fn} ⊂ C[a, b] converges to f ∈ C[a, b] in || · ||∞ if for every ε > 0 there exists
N ∈ N such that if n > N , then ||fn − f ||∞ = max{|fn(x)− f(x)| < ε : x ∈ [a, b]} if and only if fn converges
to f uniformly.

Theorem 3.3.10. Suppose

∞∑
n=0

anx
n has radius of convergence R > 0. Let 0 6 x1 < R. Let fk(x) =

k∑
n=0

anx
n.

Then {fk} converges uniformly on [−x1, x1] to

∞∑
n=0

anx
n.

3.4 Differentiability and integrability

Theorem 3.4.1. If a power series has an interval of convergence I, then the series is continuous on I.

Corollary 3.4.2. Suppose that a power series

∞∑
n=0

anx
n has radius of convergence R > 0. Assume that

[a, b] ⊂ (−R,R). If f(x) =

∞∑
n=0

anx
n, then

∫ b

a

f(x) dx =

∫ b

a

∞∑
n=0

anx
n dx =

∞∑
n=0

(∫ b

a

anx
n dx

)
=

∞∑
n=0

anx
n+1

n+ 1


b

a

Corollary 3.4.3. Suppose that a power series

∞∑
n=0

anx
n has radius of convergence R > 0. Assume that

[a, b] ⊂ (−R,R). If f(x) =

∞∑
n=0

anx
n, then

d

dx
f(x) =

d

dx

∞∑
n=0

anx
n =

∞∑
n=0

(
d

dx
anx

n

)
=

∞∑
n=0

nanx
n−1

Definition 3.4.4. Given a series
∑∞

n=0 anx
n:

· The series
∑∞

n=0 nanx
n−1 is termed the formal derivative of the given series

· The series
∑∞

n=0
an

n+1x
n+1 is termed the formal integral of the given series

Theorem 3.4.5. Suppose {Fn} ⊂ C[a, b] with lim
n→∞

[Fn(a)] = a◦. If {Fn} has continuous derivatives

F ′n(x) = fn(x), such that {fn} converges uniformly on [a, b] to g(x) ∈ C[a, b], then {Fn} converges uniformly
to a continuous function G ∈ C[a, b] such that G′(x) = g(x) for all x ∈ (a, b).

Corollary 3.4.6. If f(x) is represented by a power series
∑∞

n=0 anx
n on (−R,R) for R > 0, then f(x) is

infinitely differentiable on (−R,R) with

f (k)(x) =

∞∑
n=k

k−1∏
i=0

(n− i) anxn−k
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Theorem 3.4.7. [Uniqueness of Representation]
Assume that f(x) has power series representations

∑∞
n=0 anx

n and
∑∞

n=0 bnx
n centered at x = a where each

series has a positive radius of convergence. Then an = bn = f(n)(a)
n! .

Definition 3.4.8. Assume that f(x) is n times differentiable at x = a. Then the k-th degree Taylor polynomial
for f(x) at x = a is

Pk,a(x) =

k∑
n=0

f (n)(a)

n!
(x− a)n

Definition 3.4.9. Assume that f(x) is n times differentiable at x = a. Then the n-th degree error term in
using Pn,a(x) to approximate f(x) is

Rn,a(x) = f(x)− Pn,a(x)

Theorem 3.4.10. Assume that f(x) is n+ 1 times differentiable on an open interval I containing a. Let
x ∈ I with x 6= a. Then there exists a c ∈ (x, a) such that

Rn,a(x)− Pn,a(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

Remark 3.4.11. Assume that x1 > 0 and there exists M such that |f (n)(x)| < M for all n ∈ N ∪ {0} and

for all x ∈ [−x1, x1]. Then the Taylor series summation
∑∞

n=0
f(n)(a)

n! xn converges uniformly to f(x) on
[−x1, x1].

Theorem 3.4.12. If two functions have power series representations f(x) =
∑∞

n=0 anx
n and g(x) =

∑∞
n=0 bnx

n,
then h(x) = f(x)g(x) is represented by the power series

h(x) =

∞∑
n=0

(
n∑

k=0

akbn−k

)
xn

Remark 3.4.13. Let f, g ∈ (C[a, b], || · ||∞). Note that if x ∈ [a, b], then |f · g(x)| 6 ||f ||∞||g||∞.
Hence ||f · g||∞ 6 ||f ||∞||g||∞.

Theorem 3.4.14. If {fn}, {gn} ∈ C[a, b] such that fn → f◦, gn → g◦ for f◦, g◦ ∈ C[a, b], that is, both fn an
gn converge uniformly, then fngn → f◦g◦ in C[a, b].

Theorem 3.4.15. [Weierstrass Approximation Theorem]
If f ∈ C[a, b], then there exists a sequence {pn} of polynomials such that pn(x)→ f(x) uniformly on [a, b].

Theorem 3.4.16. [Weierstrass M-test I]
Suppose that {fn} is a sequence in (C[a, b], || · ||∞). If

∑∞
n=1 ||fn||∞ converges, then

∑∞
n=1 fn converges in

(C[a, b], || · ||∞).

Theorem 3.4.17. [Weierstrass M-test II]
Let (V, || · ||∞) be a normed linear space. Then the following are equivalent:
· (V, || · ||∞) is complete
· If {vn} ∈ V is such that

∑∞
n=1 ||vn||∞ <∞, then

∑∞
n=1 vn converges.

Theorem 3.4.18. [Banach Contractive Mapping Theorem]
Suppose that Γ : C[a, b]→ C[a, b] is a contractive map. That is, suppose that Γ is such that there exists k
satisfying 0 6 k < 1 with

Γ(u)− Γ(v)∞ 6 ku− v∞

for all u, v ∈ C[a, b]. Then there exists a unique function f ∈ C[a, b] such that Γ(f) = f .
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4 Differential equations

4.1 Separable equations

Definition 4.1.1. A differential equation is an equation of the form f(x, y, y′, y′′, . . . , y(n)) = 0.

Definition 4.1.2. The order of the differential equation is the order of the highest derivative in the differ-
ential equation.

Definition 4.1.3. A first order ordinary differential equation is said to be separable if it can be written in
the form y′ = f(x)g(y).
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