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1 Integration

1.1 Riemann sums

Definition 1.1.1. Let [a,b] be a closed interval with a < b. A partition of [a,b] is a finite subset P of |a, b]
of the form P={a =2 < a1 <+ <2 < -+ < xp, =b}. Given such a P, let Ax; = x; — x;—1. Note that
Az =b—a.

Definition 1.1.2. The norm of P is |[|P|| = ,_7""  {Aw;}

Definition 1.1.3. Let P={a=x0 < - - < a2, = b} be a partition on [a,b]. For eachi=1,...,n:
=lub{f(z) : x € [x;-1, 2]}
-my = gb{f(2) s w € [zi1, 2]}

The upper Riemann sum for f(zx) with respect to the partition P is UL(P, f) = Z M;Ax;.

The lower Riemann sum for f(x) with respect to the partition P is Lb(P, f) = ZmzAx,

n

The Riemann sum for f(z) with respect to the partition P is SS(P, f) = Zf(ci)A:Ei for¢; € [xi—1, ;).
. Note that L(f,P) < S(f, P) < U(f, P). =

Theorem 1.1.4. Assume that Q is a refinement of P. Then L(f, P) < L(f,Q) < U(f,Q) < U(f, P).

Definition 1.1.5. Assume that f(z) is bounded on the interval [a.,b].

b
The upper Riemann integral of f(x) on [a,b] is / f(z) de = glb{U(f, P) : P is a partition}

b
The lower Riemann integral of f(x) on [a,b] is / f(x) de =lub{L(f, P) : P is a partition}

Definition 1.1.6. If f(x) is bounded on [a,b], then f(z) is Riemann integrable if

Lbf(x) dz = /abf(x) dz

b
Then the common value is denoted by / f(x) dx, which is the Riemann integral of f(x) over [a,b].

Theorem 1.1.7. A function f(x) is integrable on [a,b] if and only if for every e > 0 there exists a partition
P of [a,b] such that U(f, P) — L(f,P) <e¢

Definition 1.1.8. If f(x) is integrable over [a,b] and P, is the n-regular partition of [a,b], then

lim / fe) de = lim [U(f, P,)]

n—roo

Theorem 1.1.9. If f(x) is integrable over [a,b], then for every e > 0, there exists a 6 > 0 such that if P is
any partition of [a,b], with ||P|| < 6 and S(f, P) is any Riemann sum associated with P, then

) dx — S(f, P)

Theorem 1.1.10. Suppose f(z) is bounded on [a,b]. Then f(z) is Riemann integrable on [a,b] if and only
if f(z) is continuous on [a,b] except possibly on a set of Lebesgue measure zero.

Theorem 1.1.11. If f(x) is monotonic on [a,b], then f(x) is integrable on [a,b].



1.2 Properties of integrals
Theorem 1.2.1. Assume that f(x) and g(x) are integrable over [a,b] C R.
i. If ¢ € R, then cf(xz) is integrable over [a,b] and fj cf(x) de = cf; f(z) dx
ii. f(z)+ g(x) is integrable over [a,b] and f: f(x)+ g(z) do = f: f(x) dx + f:g(az) dzx
Theorem 1.2.2. Assume that f(x) is integrable over [a,b]. Then g(x) = |f(x)| is integrable over [a,b]. The

converse is not necessarily true.

Theorem 1.2.3. Assume that f(x) is bounded on [a,b], and ¢ € (a,b). Then f(x) is integrable on [a,b] if
and only if f(x) is integrable on [a,c] and on [c,b]. Moreover, in this case

/abf(x)dm:/cf(x) da:—i—/bf(x)dx

Theorem 1.2.4. Assume that f(x) is integrable over [a,b]. Let

glb{f(z) : x € [a,b]}
lab{f(z) : x € [a,b]} } Then m < / f(@) do <

Corollary 1.2.5. [MEAN VALUE THEOREM FOR INTEGRALS]
Assume that f(x) is continuous on [a,b]. Then there exists a c € [a,b] such that f(c) = 7= f; f(x) dx.

a

m
M

1.3 Fundamental Theorem of Calculus

Theorem 1.3.1. Assume that f(t) is such that over an mterval 1, fy ) dt exists for each x,y € I.
Assume that |f(t)| <M for all t€l. Let a€l. Let F(z f f@t) dt Then for any x,y € I,
[F(z) = F(y)| < M|z —y.

Theorem 1.3.2. [FUNDAMENTAL THEOREM OF CALCULUS I]
Assume that f(t) is integrable on [a,b]. Let F(x) = [ f(t) dt, and let c € (a,b). If f(t) is continuous at
t = ¢, then F(x) is differentiable at x = ¢ with F’( ) = f(c).

Theorem 1.3.3. [EXTENDED FUNDAMENTAL THEOREM OF CALCULUS]
Assume that g(x),h(z) are differentiable, and that f(x) is continuous on an open interval I. Let

F(z) = fh(x) f(t) dt. Then F(x) is integrable on I with

g(x)
F'(z) = f(h(z))l' (x) — f(g(x))g' (2)

Definition 1.3.4. A function F(x) is termed an antiderivative of f(x) on I if F'(z) = f(x) for all x € 1.
The collection of all antiderivatives of f(z) is denoted by [ f(x) dz, and termed the indefinite integral. The
function f(x) is the integrand.

Corollary 1.3.5. Assume that F(x) is an antiderivative of f(z) on I. Then [ f(z) dx = F(z)+ C.

Theorem 1.3.6. [FUNDAMENTAL THEOREM OF CALCULUS II]
Assume that f(t) in continuous on an interval I with a,b € I. Assume that F(t) is any antiderivative of

f@) on I. Then
b
0) = / () dt



1.4 Integral simplification

Theorem 1.4.1. [CHANGE OF VARIABLES]

Assume that g(x) is continuously differentiable on [a,b], and f(u) is continuous on g([a,b]).

/q;a du-/f

Theorem 1.4.2. [INTEGRATION BY PARTS]
Assume that f(x),g(x) are continuously differentiable on [a,b]. Then

/ab f(x)g(z) dz = f(z) /abg(x) dx — /ab f’(x)/g(x) du d

Definition 1.4.3. A rational function is type I if r(z) = 2E) ith

q(@)
- deg(p(x)) < deg(q(w))
- if g(a) = 0, then p(a) # 0
cq(z) = c(z —ar1)(r —az) - (v — ay)

fora; #aj if i #3j

Then

Then the partial fraction decomposition of r(x) is that there exist Ay, Aa, ..., An € R such that

1] A A A, i
r(z) = - LI 2 4.4 and A= p(a)

clz—a1 x—as T —a, H(ai_aj)

i#]

Definition 1.4.4. A rational function is type II if r(z) = % with
- deg(p(x)) < deg(q(x))
- if g(a) = 0, then p(a) # 0
q(x) = (@ — a)™ (@ - az)™ -+ (z — @)™
fora; # aj if i # 7, and at least one m; >0
Then every term (x — a;)™ contributes m; terms to the decomposition in the form

Ain + Ai R Aim,
(x—a;)  (x—a;)? (x —a;)™

Definition 1.4.5. A rational function is type III if r(x) = % with
- deg(p(x)) < deg(q(x))
- if g(a) = 0, then p(a) # 0
cq(z) =c(w—ay)™ - (2 — ag)™ (2% + bpg1@ + Cpa1)" - (22 + b + )™

for a; # aj if i # j, at least one m; > 0, and (z* + bz + ¢;) irreducible for k+1 < i

<n

Then every term (z — a;)™ and (2% + bjx + ¢;)™ contributes to the decomposition as follows:

= aym Ay A
I_a, K DY —
! (x —a;) (x — a;)m:
, Bjix+C; Bim.x+ Cjp,
2 m Jl Jl Jjm; Jjm;
b.: . i _
(-T + J$+CJ> ($2+bjI+Cj) (I2+bj$+6j)mJ



1.5 Applications of integration

Definition 1.5.1. The area between two curves f(x) and g(x) over an interval [a,b] is defined as

b
A= / (@) - g(a)) da

Definition 1.5.2. The moment is defined as the mass times distance. For an area bounded above by a
function g(x), below by f(x), over an interval [a,b], this becomes:

b b
M, :/ x(g(z) — f(x)) dz and M, z/ % (9(2)* = f(2)?) dx

g . . . M, M,
Definition 1.5.3. The center of mass is given by the coordinate (7, AJ).

Definition 1.5.4. The arc length of the graph of a function f(z) over an interval [a.b] is given by

S = /b VIt f(@)? de

Definition 1.5.5. The volume of revolution of a function f(x) over an interval [a,b] is given by

b b
Va z/ 7 f(x)? dx and 'V, :/ 2rrx f(x) dx

1.6 Improper integrals

Definition 1.6.1. Assume that f(x) is integrable on [a,b] for all b > a. Then

[ storas = g | [ s a2

This is termed an improper integral of the first kind. The improper integral converges if and only if the limit
of the proper integral exists.

Theorem 1.6.2. [COMPARISON TEST FOR INTEGRALS]
Assume that 0 < f(t) < g(t) for all x € [a,00), and that f(t), g(t) are integrable on [a,b) for all b € [a, 00).
Then

1. If/ g(t) dt converges, then/ f(t) dt converges.
a a
2. If/ f(t) dt diverges, then/ g(t) dt diverges.
Theorem 1.6.3. Assume that f(t) is integrable on [a,b] for allb € [a,00). Assume that f; | f(t)|dt converges.

Then [, f(t) dt converges.

Theorem 1.6.4. [P-TEST FOR INTEGRALS]

oo

1

/ — dz converges if and only if p > 1.
a xz



2 Sequences and series

2.1 Convergence

Theorem 2.1.1. [DIVERGENCE TEST]

oo
If {a,} is any sequence with Z an convergent, then lim [an] =0.
el n—oo

Definition 2.1.2. Given {a,} C R, define limsup{a,} = lim {sup{ak}} .
n—roo k}n
Remark 2.1.3. The ratio test only detects rapidly convergent / divergent series.

o0
Definition 2.1.4. A series of the from Z(fl)nflan 1s termed an alternating series.

n=1

o0 (o]
Definition 2.1.5. A series Z an converges absolutely if Z lay| converges.

n=0 n=0

o0 o0 o0
Definition 2.1.6. A series Z an converges conditionally if Z an converges, but not Z |an].

n=0 n=0 n=0

Theorem 2.1.7. If a series converges absolutely, then it converges.

Theorem 2.1.8. If Z an converges absolutely, and if o : N — N is one-to-one and onto, and if b, = ay(y),

n=0

o0
then Z b, converges.

n=0

(oo}
Theorem 2.1.9. If Zan is convergent conditionally, then there exists a bijection ¢ : N — N such that

n=0

Z Ay(n) = @ for any o € [—00,00].
n=0

2.2 Power series
o0
Definition 2.2.1. A power series centered at x = a € R is a formal series of the form Z an(x — a)", where

n=0
{an} is a sequence of coefficients.

o0 o0
Theorem 2.2.2. Let Zanm” be a power series. Assume that Zanm” converges for xo #0. If

n=0 n=0

o0
0 < |z1] < |xo], then Z anx} will converge absolutely.

n=0

o0
Definition 2.2.3. The radius of convergence of a series is defined as R = sup {|xo| : Z ATy corwerges}.

n=0

Remark 2.2.4. Given a series{a,} and its radius of convergence R:
1. If R =0, then the series converges on {0}.
2. If R = oo, then the series converges on all of R = (—o0, 00).
3. If 0 < R < o0, then the series converges on (—R,R) or [-R,R) or (—R, R] or [-R, R].



Ap+1
Qnp

Theorem 2.2.5. Given a power series Z anx”, let lim [ =L €[0,00]. Then

n—oo
n=0

1. If0< L < oo, thenR %
2. If L=0, then R = 6:oo.
3. Iszoo,thenRzézO.

1
Theorem 2.2.6. Given a series Z anx", the radius of convergence is R

— lim sup{ v/a,, }

Definition 2.2.7. The set of values x© on which a power series E anx™ converges is termed the
. n=0
interval of convergence.

2.3 Sequences of functions
Definition 2.3.1. A sequence of functions {fn} converges pointwise on S C R to f(z) if for each z, € S,
flao) = lim [fu(ao)].

Theorem 2.3.2. If {f,} is a sequence of continuous functions converging pointwise to f(x) on S, f(x)
must have at least one point of continuity.

Definition 2.3.3. A sequence of functions {f,} converges uniformly on S CR to f(x) if for every e >0
there exists an N € N such that if n > N, then |fn(x) — f(x)] <€ for allz € S.
- Note that uniform convergence implies pointwise convergence.

Theorem 2.3.4. If {f,} is a sequence of functions that converges uniformly on S to f(x), and if each f,(x)
is continuous at x, relative to S, then f(x) is continuous at x, relative to S.

Theorem 2.3.5. Suppose that {fn} is a sequence of integrable functions on some interval [a,b]. Assume
that {fn} converges uniformly to f(x) on [a,b]. Then f(x) is integrable, and

/ab f(z) do = /aby}if;o u)] = Tim l / il 1

3 Normed Linear spaces

3.1 Norms

Definition 3.1.1. Let V' be a vector space over R. A norm on V is a function || -|| : V — R such that
1. ||v]| 2 0 and ||v|| = 0 if and only if v =0
2. |lav]| = |af - [Jv]]

3. [[v+w|| < ||v|]| + ||w|] [TRIANGLE INEQUALITY]
for any a € R and u,v € V.. The norm is an abstract notion of length.

Definition 3.1.2. The Euclidean norm is defined for V.=R"™ and & € R™ such that ¥ = x1,...,Zp:

1
n /2
IZ]] = lle1, ... 2l = /o + -+ a7 = (Zx2>
i=1

Definition 3.1.3. The dot product of Z,y € R™ is defined as T oy = x1y1 + + + TplYn-

Theorem 3.1.4. [CAUCHY-SCHWARZ INEQUALITY] For a,b € V' for some vector space V

n n /2 /2
Z ’aibi’ < (Zaf) (Zb2> or, equivalently — aey < ||a|| - |||
i=1 i=1



Definition 3.1.5. The ordered pair (V.|| - ||) is termed a normed linear space.
ForV=R" andv e V:

n
- The 1-norm is defined as o]l = [|v1, - -y onllt = Vel + -+ o] = Z |vs]
i=1
- The infinity norm is defined as [[V]lco = ||V1, - -+, Unlloo = max {v;}
1<i<n

1
n /v
- The p-norm for 1 < p < oo is defined as ||v||p = ||v1,...,00]lp = (Z |vi|p>
i=1
It is always the case that ||v]]ee < [|V]]p < ||v]|1-

Definition 3.1.6. The inner product on a vector space V is a function (-,) : V. x V — R such that
1. (v,w) = (w,v)
2. (v+w,z) = (v,2) + (w,z)
3. (2u,2) = 2(v,2)
4. (v,v) 20 and (v,v) =0 if and only if v =0
for allv,w,z € V. Then (V,{-,-)) is termed an inner product space.

Remark 3.1.7. For the terms defined above, the norm can also be defined as ||[v|| = (v,v>1/2.

3.2 Norms and continuous functions

Definition 3.2.1. Define the vector space V = Cla,b] = {f : [a,b] = R : fis continuous } as the set of all
continuous functions on the interval [a,b] C R.

Remark 3.2.2. The following are examples of norms on this vector space:
b
Al = [ 1fa)lde

b L
-Hﬂhz(/lﬂ@zw>

flloe = i {1f@)] (€ [a. 1)

b
(fa)gl@) = [ F@)gta) de

Definition 3.2.3. Let X be a vector space. Then a metric on X is a function d : X x X — R with
1. d(z,y) = d(y,z)
2. d(z,y) >0 and d(x,y) =0 if and only if x =y
3. d(v.y) < d(x,2) + d(2,y)

forall x,y,z € X.

Definition 3.2.4. With respect to the above definition, the ordered pair (X,d) is termed a metric space.

3.3 Convergence in a metric space

Definition 3.3.1. Given a metric d: X x X = R, a sequence {x,} C X converges to x, € X if for every
€ > 0 there exists an N € N such that if n > N, then d(zo,z,) < €. Therefore lim [d(zo,zy)] = 0.
n—oo

Definition 3.3.2. A sequence {z,} C (X,d) is Cauchy if for every € > 0 there exists an N € N such that if
k,m = N, then d(zg, ;) < €.

Theorem 3.3.3. If {z,} is convergent in (X,d), then {x,} is Cauchy.



Remark 3.3.4. If X =Q and d(z,y) = |x —y|, then there exist Cauchy sequences in (X,d) that do not
converge.

Definition 3.3.5. A set A C (X,d) is bounded if there exists xo € X and M > 0 such that d(zo,z) < M
forall x € A.

Theorem 3.3.6. If {z,} C (X,d), then {z,} is bounded.
Definition 3.3.7. A metric space is complete if every Cauchy sequence in the metric space converges.

Theorem 3.3.8. [COMPLETENESS THEOREM FOR C|a,b]]
The metric space Cla,b] is complete.

Remark 3.3.9. A sequence {f,} C Cla,b] converges to f € Cla,b] in || -||oc if for every e > 0 there exists
N € N such that if n = N, then || frn, — flloo = max{|fn(z) — f(x)| < €:x € [a,b]} if and only if f, converges
to f uniformly.

Theorem 3.3.10. Suppose Z anz™ has radius of convergence R > 0. Let0 < 21 < R. Let fi(x Z anT
n=0

Then {fr} converges uniformly on [—x1,x1] to Z ap,x"
n=0

3.4 Differentiability and integrability

Theorem 3.4.1. If a power series has an interval of convergence I, then the series is continuous on I.

Corollary 3.4.2. Suppose that a power series Zanx" has radius of convergence R > 0. Assume that
n=0

[a,b] C (—R,R). If f(x Zan " then

/abf(:c)dx—/a Zanw dm—z

n=0

b s n+1
anx
apz™ dr | = E n
</ ) n=0 ntl

Corollary 3.4.3. Suppose that a power series Zanx" has radius of convergence R > 0. Assume that
n=0

a

[a,b] C (=R, R). If f(x Zan then

d d & . = d
%f(x)zﬁganx =Z<dan ) Znan

n=0

Definition 3.4.4. Given a sem'es S g anx™

- The series Y- —oNapx" L is termed the formal derivative of the given series
- The series Zn 0 najl ™t is termed the formal integral of the given series

Theorem 3.4.5. Suppose {F,} C Cla,b] with lim [F,(a)] =a.. If {F,} has continuous derivatives
n— oo

F) () = fn(z), such that {f,} converges uniformly on [a,b] to g(z) € Cla,b], then {F,,} converges uniformly

to a continuous function G € Cla,b] such that G'(x) = g(z) for all x € (a,b).

Corollary 3.4.6. If f(x) is represented by a power series Y ., anx™ on (—R,R) for R >0, then f(z) is
infinitely differentiable on (—R, R) with

co k—1

) (x) = Z H(n — i) apz™

n=k 1=0



Theorem 3.4.7. [UNIQUENESS OF REPRESENTATION]
Assume that f(x) has power series representations y - a,x™ and Y.~ bya™ centered at x = a where each

. iy . (n)
series has a positive radius of convergence. Then a, = b, = fi,(a)
n:

Definition 3.4.8. Assume that f(x) isn times differentiable at x = a. Then the k-th degree Taylor polynomial
for f(z) at x = a is

() (g
Pk:,a(x) — Z f n'( )(.13 _ a)n
n=0 :

Definition 3.4.9. Assume that f(x) is n times differentiable at x = a. Then the n-th degree error term in
using P, q(x) to approzimate f(x) is

Rn,a(‘r) = f(l‘) - Pn,a(x)

Theorem 3.4.10. Assume that f(x) is n+ 1 times differentiable on an open interval I containing a. Let
x € I with x # a. Then there exists a ¢ € (v,a) such that

_ ()

Rn,a(x) - Pn,a(x) = m )n+1

(r—a

Remark 3.4.11. Assume that x1 > 0 and there exists M such that |f) (x)] < M for all n € NU{0} and

o fM (@)

for all x € [—xy,x1]. Then the Taylor series summation Y >~

[—x1,21].

converges uniformly to f(x) on

Theorem 3.4.12. If two functions have power series representations f(x) = > > anz™ and g(x) = Y .° ; byaz™,
then h(z) = f(x)g(x) is represented by the power series

h(z) = i (i akbnk> z"
k=0

Remark 3.4.13. Let f,g € (Cla,b],|| - ||oc). Note that if x € [a,b], then |f - g(x)| < |1f|col|g]]co-
Hence ||f - gllso < || f[loollgloc-

Theorem 3.4.14. If {f.},{g9n} € Cla,b] such that f,, = fo,gn — go for fo,go € Cla,b], that is, both f, an
gn converge uniformly, then f,gn — fogo in Cla,b].

Theorem 3.4.15. [WEIERSTRASS APPROXIMATION THEOREM]
If f € Cla,b], then there exists a sequence {p,} of polynomials such that p,(xz) — f(x) uniformly on [a,b].

Theorem 3.4.16. [WEIERSTRASS M-TEST I]
Suppose that {f,} is a sequence in (Cla,b], || ||oo). If Yooy ||fnlloc converges, then Y7, f, converges in
(Cla, b, [[ - [oo)-

Theorem 3.4.17. [WEIERSTRASS M-TEST II]

Let (V]| - ||oo) be a normed linear space. Then the following are equivalent:
C(V11 llo) s complete
If {vp} € V is such that >~ ||vn]|ee < 00, then Y 0" | vy, converges.

Theorem 3.4.18. [BANACH CONTRACTIVE MAPPING THEOREM]
Suppose that T : Cla,b] — Cla,b] is a contractive map. That is, suppose that I' is such that there exists k
satisfying 0 < k < 1 with

I(u) =T (v)oo € ku — v
for all u,v € Cla,b]. Then there exists a unique function f € Cla,b] such that T'(f) = f.

10



4 Differential equations

4.1 Separable equations

Definition 4.1.1. A differential equation is an equation of the form f(x,y,y',y",...,y™) = 0.

Definition 4.1.2. The order of the differential equation is the order of the highest derivative in the differ-
ential equation.

Definition 4.1.3. A first order ordinary differential equation is said to be separable if it can be written in
the form y' = f(x)g(y).

11



