Definitions & Theorems Math 148, Winter 2010

December 19, 2010

Contents

1	Inte	egration	2
	1.1	Riemann sums	2
	1.2	Properties of integrals	3
	1.3	Fundamental Theorem of Calculus	3
	1.4	Integral simplification	4
	1.5	Applications of integration	5
	1.6	Improper integrals	5
2	\mathbf{Seq}	uences and series	6
	2.1	Convergence	6
	2.2	Power series	6
	2.3	Sequences of functions	7
3	Nor	rmed Linear spaces	7
	3.1	Norms	7
	3.2		8
	3.3		8
	3.4	Differentiability and integrability	9
4	Dif	ferential equations	11
		-	11

© J. Lazovskis Professor: B. Forrest

1 Integration

1.1 Riemann sums

Definition 1.1.1. Let [a, b] be a closed interval with a < b. A partition of [a, b] is a finite subset P of [a, b] of the form $P = \{a = x_0 < x_1 < \cdots < x_i < \cdots < x_n = b\}$. Given such a P, let $\Delta x_i = x_i - x_{i-1}$. Note that $\sum_{i=i}^{n} \Delta x_i = b - a$.

Definition 1.1.2. The <u>norm</u> of P is $||P|| = \max_{i=1,\dots,n} \{\Delta x_i\}$

Definition 1.1.3. Let $P = \{a = x_0 < \dots < x_n = b\}$ be a partition on [a, b]. For each $i = 1, \dots, n$: $\cdot M_i = \text{lub}\{f(x) : x \in [x_{i-1}, x_i]\}$ $\cdot m_i = \text{glb}\{f(x) : x \in [x_{i-1}, x_i]\}$

The <u>upper Riemann sum</u> for f(x) with respect to the partition P is $U_a^b(P, f) = \sum_{i=1}^n M_i \Delta x_i$.

The <u>lower Riemann sum</u> for f(x) with respect to the partition P is $L_a^b(P, f) = \sum_{i=1}^n m_i \Delta x_i$.

The <u>Riemann sum</u> for f(x) with respect to the partition P is $S_a^b(P, f) = \sum_{i=1}^n f(c_i)\Delta x_i$ for $c_i \in [x_{i-1}, x_i]$. \cdot Note that $L(f, P) \leq S(f, P) \leq U(f, P)$.

Theorem 1.1.4. Assume that Q is a refinement of P. Then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.

Definition 1.1.5. Assume that f(x) is bounded on the interval [a, b].

The <u>upper Riemann integral</u> of f(x) on [a,b] is $\int_{a}^{b} f(x) dx = \text{glb}\{U(f,P): P \text{ is a partition}\}$ The <u>lower Riemann integral</u> of f(x) on [a,b] is $\underline{\int_{a}^{b}} f(x) dx = \text{lub}\{L(f,P): P \text{ is a partition}\}$

Definition 1.1.6. If f(x) is bounded on [a, b], then f(x) is Riemann integrable if

$$\overline{\int_{a}^{b}} f(x) \, dx = \underline{\int_{a}^{b}} f(x) \, dx$$

Then the common value is denoted by $\int_{a}^{b} f(x) dx$, which is the <u>Riemann integral</u> of f(x) over [a, b].

Theorem 1.1.7. A function f(x) is integrable on [a, b] if and only if for every $\epsilon > 0$ there exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$.

Definition 1.1.8. If f(x) is integrable over [a, b] and P_n is the n-regular partition of [a, b], then

$$\lim_{n \to \infty} \left[L(f, P_n) \right] = \int_a^b f(x) \, dx = \lim_{n \to \infty} \left[U(f, P_n) \right]$$

Theorem 1.1.9. If f(x) is integrable over [a, b], then for every $\epsilon > 0$, there exists a $\delta > 0$ such that if P is any partition of [a, b], with $||P|| < \delta$ and S(f, P) is any Riemann sum associated with P, then

$$\left|\int_{a}^{b} f(x) \, dx - S(f, P)\right| < \epsilon$$

Theorem 1.1.10. Suppose f(x) is bounded on [a, b]. Then f(x) is Riemann integrable on [a, b] if and only if f(x) is continuous on [a, b] except possibly on a set of Lebesgue measure zero.

Theorem 1.1.11. If f(x) is monotonic on [a, b], then f(x) is integrable on [a, b].

1.2**Properties of integrals**

Theorem 1.2.1. Assume that f(x) and g(x) are integrable over $[a, b] \subset \mathbb{R}$.

i. If $c \in \mathbb{R}$, then cf(x) is integrable over [a, b] and $\int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx$. **ii.** f(x) + g(x) is integrable over [a, b] and $\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$.

Theorem 1.2.2. Assume that f(x) is integrable over [a,b]. Then g(x) = |f(x)| is integrable over [a,b]. The converse is not necessarily true.

Theorem 1.2.3. Assume that f(x) is bounded on [a,b], and $c \in (a,b)$. Then f(x) is integrable on [a,b] if and only if f(x) is integrable on [a, c] and on [c, b]. Moreover, in this case

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Theorem 1.2.4. Assume that f(x) is integrable over [a, b]. Let

$$m = \operatorname{glb}\{f(x) : x \in [a, b]\} \\ M = \operatorname{lub}\{f(x) : x \in [a, b]\} \}$$
Then $m \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq M$.

Corollary 1.2.5. [MEAN VALUE THEOREM FOR INTEGRALS] Assume that f(x) is continuous on [a,b]. Then there exists $a \in [a,b]$ such that $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$.

Fundamental Theorem of Calculus 1.3

Theorem 1.3.1. Assume that f(t) is such that over an interval I, $\int_x^y f(t) dt$ exists for each $x, y \in I$. Assume that $|f(t)| \leq M$ for all $t \in I$. Let $a \in I$. Let $F(x) = \int_a^x f(t) dt$. Then for any $x, y \in I$, $|F(x) - F(y)| \leq M|x - y|.$

Theorem 1.3.2. [FUNDAMENTAL THEOREM OF CALCULUS I] Assume that f(t) is integrable on [a,b]. Let $F(x) = \int_a^x f(t) dt$, and let $c \in (a,b)$. If f(t) is continuous at t = c, then F(x) is differentiable at x = c with F'(c) = f(c).

Theorem 1.3.3. [EXTENDED FUNDAMENTAL THEOREM OF CALCULUS] Assume that g(x), h(x) are differentiable, and that f(x) is continuous on an open interval I. Let

 $F(x) = \int_{q(x)}^{h(x)} f(t) dt$. Then F(x) is integrable on I with

$$F'(x) = f(h(x))h'(x) - f(g(x))g'(x)$$

Definition 1.3.4. A function F(x) is termed an antiderivative of f(x) on I if F'(x) = f(x) for all $x \in I$. The collection of all antiderivatives of f(x) is denoted by $\int f(x) dx$, and termed the indefinite integral. The function f(x) is the integrand.

Corollary 1.3.5. Assume that F(x) is an antiderivative of f(x) on I. Then $\int f(x) dx = F(x) + C$.

Theorem 1.3.6. [FUNDAMENTAL THEOREM OF CALCULUS II]

Assume that f(t) in continuous on an interval I with $a, b \in I$. Assume that F(t) is any antiderivative of f(t) on I. Then

$$F(b) - F(a) = \int_{a}^{b} f(t) dt$$

1.4 Integral simplification

Theorem 1.4.1. [CHANGE OF VARIABLES] Assume that g(x) is continuously differentiable on [a, b], and f(u) is continuous on g([a, b]). Then

$$\int_{g(a)}^{g(b)} f(u) \ du = \int_{a}^{b} f(g(x))g(x) \ dx$$

Theorem 1.4.2. [INTEGRATION BY PARTS]

Assume that f(x), g(x) are continuously differentiable on [a, b]. Then

$$\int_{a}^{b} f(x)g(x) \, dx = f(x) \int_{a}^{b} g(x) \, dx - \int_{a}^{b} f'(x) \int g(x) \, dx \, dx$$

Definition 1.4.3. A rational function is type I if $r(x) = \frac{p(x)}{q(x)}$ with

 $\begin{array}{l} \cdot \ deg(p(x)) < \ deg(q(x)) \\ \cdot \ if \ q(a) = 0, \ then \ p(a) \neq 0 \\ \cdot \ q(x) = c(x - a_1)(x - a_2) \cdots (x - a_n) \\ for \ a_i \neq a_j \ if \ i \neq j \end{array}$

Then the partial fraction decomposition of r(x) is that there exist $A_1, A_2, \ldots, A_n \in \mathbb{R}$ such that

$$r(x) = \frac{1}{c} \left[\frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_n}{x - a_n} \right] \quad and \quad A_i = \frac{p(a_i)}{\prod_{i \neq j} (a_i - a_j)}$$

Definition 1.4.4. A rational function is type II if $r(x) = \frac{p(x)}{q(x)}$ with

- $\cdot deg(p(x)) < deg(q(x))$
- \cdot if q(a) = 0, then $p(a) \neq 0$
- $\cdot q(x) = c(x a_1)^{m_1} (x a_2)^{m_2} \cdots (x a_n)^{m_n}$
- for $a_i \neq a_j$ if $i \neq j$, and at least one $m_i > 0$

Then every term $(x - a_i)^{m_i}$ contributes m_i terms to the decomposition in the form

$$\frac{A_{i1}}{(x-a_i)} + \frac{A_{i2}}{(x-a_i)^2} + \dots + \frac{A_{im_i}}{(x-a_i)^{m_i}}$$

Definition 1.4.5. A rational function is type III if $r(x) = \frac{p(x)}{q(x)}$ with

- $\cdot deg(p(x)) < deg(q(x))$
- \cdot if q(a) = 0, then $p(a) \neq 0$
- $(x a_1)^{m_1} \cdots (x a_k)^{m_k} (x^2 + b_{k+1}x + c_{k+1})^{m_{k+1}} \cdots (x^2 + b_n x + c_n)^{m_n}$

for $a_i \neq a_j$ if $i \neq j$, at least one $m_i > 0$, and $(x^2 + b_i x + c_i)$ irreducible for $k + 1 \leq i \leq n$ Then every term $(x - a_i)^{m_i}$ and $(x^2 + b_j x + c_j)^{m_j}$ contributes to the decomposition as follows:

$$(x - a_i)^{m_i} \to \frac{A_{i1}}{(x - a_i)} + \dots + \frac{A_{im_i}}{(x - a_i)^{m_i}}$$
$$(x^2 + b_j x + c_j)^{m_j} \to \frac{B_{j1} x + C_{j1}}{(x^2 + b_j x + c_j)} + \dots + \frac{B_{jm_j} x + C_{jm_j}}{(x^2 + b_j x + c_j)^{m_j}}$$

1.5 Applications of integration

Definition 1.5.1. The <u>area</u> between two curves f(x) and g(x) over an interval [a, b] is defined as

$$A = \int_{a}^{b} |f(x) - g(x)| \, dx$$

Definition 1.5.2. The <u>moment</u> is defined as the mass times distance. For an area bounded above by a function g(x), below by f(x), over an interval [a, b], this becomes:

$$M_x = \int_a^b x(g(x) - f(x)) \, dx \qquad and \qquad M_y = \int_a^b \frac{1}{2} \left(g(x)^2 - f(x)^2 \right) \, dx$$

Definition 1.5.3. The <u>center of mass</u> is given by the coordinate $\left(\frac{M_x}{A}, \frac{M_y}{A}\right)$.

Definition 1.5.4. The arc length of the graph of a function f(x) over an interval [a.b] is given by

$$S = \int_a^b \sqrt{1 + f'(x)^2} \, dx$$

Definition 1.5.5. The volume of revolution of a function f(x) over an interval [a,b] is given by

$$V_x = \int_a^b \pi f(x)^2 \, dx \qquad and \qquad V_y = \int_a^b 2\pi x f(x) \, dx$$

1.6 Improper integrals

Definition 1.6.1. Assume that f(x) is integrable on [a, b] for all b > a. Then

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \left[\int_{a}^{b} f(x) \, dx \right]$$

This is termed an *improper integral* of the first kind. The improper integral converges if and only if the limit of the proper integral exists.

Theorem 1.6.2. [COMPARISON TEST FOR INTEGRALS]

Assume that $0 \leq f(t) \leq g(t)$ for all $x \in [a, \infty)$, and that f(t), g(t) are integrable on [a, b) for all $b \in [a, \infty)$. Then

1. If
$$\int_{a}^{\infty} g(t) dt$$
 converges, then $\int_{a}^{\infty} f(t) dt$ converges.
2. If $\int_{a}^{\infty} f(t) dt$ diverges, then $\int_{a}^{\infty} g(t) dt$ diverges.

Theorem 1.6.3. Assume that f(t) is integrable on [a, b] for all $b \in [a, \infty)$. Assume that $\int_a^b |f(t)| dt$ converges. Then $\int_0^\infty f(t) dt$ converges.

Theorem 1.6.4. [P-TEST FOR INTEGRALS] $\int_{a}^{\infty} \frac{1}{x^{p}} dx \text{ converges if and only if } p > 1.$

2 Sequences and series

2.1 Convergence

Theorem 2.1.1. [DIVERGENCE TEST] If $\{a_n\}$ is any sequence with $\sum_{n=1}^{\infty} a_n$ convergent, then $\lim_{n \to \infty} [a_n] = 0$.

Definition 2.1.2. Given $\{a_n\} \subset \mathbb{R}$, define $\limsup\{a_n\} = \lim_{n \to \infty} \left| \sup_{k \ge n} \{a_k\} \right|$.

Remark 2.1.3. The ratio test only detects rapidly convergent / divergent series.

Definition 2.1.4. A series of the from $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ is termed an <u>alternating series</u>.

Definition 2.1.5. A series $\sum_{n=0}^{\infty} a_n$ <u>converges absolutely</u> if $\sum_{n=0}^{\infty} |a_n|$ converges.

Definition 2.1.6. A series $\sum_{n=0}^{\infty} a_n \underline{\text{converges conditionally}}$ if $\sum_{n=0}^{\infty} a_n \text{ converges, but not } \sum_{n=0}^{\infty} |a_n|$.

Theorem 2.1.7. If a series converges absolutely, then it converges.

Theorem 2.1.8. If $\sum_{n=0}^{\infty} a_n$ converges absolutely, and if $\varphi : \mathbb{N} \to \mathbb{N}$ is one-to-one and onto, and if $b_n = a_{\varphi(n)}$, then $\sum_{n=0}^{\infty} b_n$ converges.

Theorem 2.1.9. If $\sum_{n=0}^{\infty} a_n$ is convergent conditionally, then there exists a bijection $\varphi : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=0}^{\infty} a_{\varphi(n)} = \alpha$ for any $\alpha \in [-\infty, \infty]$.

2.2 Power series

Definition 2.2.1. A <u>power series</u> centered at $x = a \in \mathbb{R}$ is a formal series of the form $\sum_{n=0}^{\infty} a_n (x-a)^n$, where $\{a_n\}$ is a sequence of coefficients.

Theorem 2.2.2. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series. Assume that $\sum_{n=0}^{\infty} a_n x^n$ converges for $x_o \neq 0$. If $0 \leq |x_1| \leq |x_o|$, then $\sum_{n=0}^{\infty} a_n x_1^n$ will converge absolutely.

Definition 2.2.3. The <u>radius of convergence</u> of a series is defined as $R = \sup \left\{ |x_{\circ}| : \sum_{n=0}^{\infty} a_n x_{\circ}^n \text{ converges} \right\}.$

Remark 2.2.4. Given a series $\{a_n\}$ and its radius of convergence R:

- **1.** If R = 0, then the series converges on $\{0\}$.
- **2.** If $R = \infty$, then the series converges on all of $\mathbb{R} = (-\infty, \infty)$.
- **3.** If $0 < R < \infty$, then the series converges on (-R, R) or [-R, R) or (-R, R] or [-R, R].

Theorem 2.2.5. Given a power series $\sum_{n=0}^{\infty} a_n x^n$, let $\lim_{n \to \infty} \left[\left| \frac{a_{n+1}}{a_n} \right| \right] = L \in [0, \infty]$. Then **1.** If $0 < L < \infty$, then $R = \frac{1}{L}$. **2.** If L = 0, then $R = \frac{1}{0} = \infty$. **3.** If $L = \infty$, then $R = \frac{1}{\infty} = 0$. **Theorem 2.2.6.** Given a series $\sum_{n=0}^{\infty} a_n x^n$, the radius of convergence is $R = \frac{1}{\limsup\{\sqrt[n]{a_n}\}}$

Definition 2.2.7. The set of values x on which a power series $\sum_{n=0}^{\infty} a_n x^n$ converges is termed the interval of convergence.

2.3 Sequences of functions

Definition 2.3.1. A sequence of functions $\{f_n\}$ converges <u>pointwise</u> on $S \subset \mathbb{R}$ to f(x) if for each $x_o \in S$, $f(x_o) = \lim_{n \to \infty} [f_n(x_o)].$

Theorem 2.3.2. If $\{f_n\}$ is a sequence of continuous functions converging pointwise to f(x) on S, f(x) must have at least one point of continuity.

Definition 2.3.3. A sequence of functions $\{f_n\}$ converges <u>uniformly</u> on $S \subset \mathbb{R}$ to f(x) if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \ge N$, then $|f_n(x) - f(x)| < \epsilon$ for all $x \in S$. \cdot Note that uniform convergence implies pointwise convergence.

Theorem 2.3.4. If $\{f_n\}$ is a sequence of functions that converges uniformly on S to f(x), and if each $f_n(x)$ is continuous at x_\circ relative to S, then f(x) is continuous at x_\circ relative to S.

Theorem 2.3.5. Suppose that $\{f_n\}$ is a sequence of integrable functions on some interval [a,b]. Assume that $\{f_n\}$ converges uniformly to f(x) on [a,b]. Then f(x) is integrable, and

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} \lim_{n \to \infty} \left[f_n(x) \right] = \lim_{n \to \infty} \left[\int_{a}^{b} f_n(x) \, dx \right]$$

3 Normed Linear spaces

3.1 Norms

Definition 3.1.1. Let V be a vector space over \mathbb{R} . A <u>norm</u> on V is a function $|| \cdot || : V \to \mathbb{R}$ such that **1.** $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0

- **2.** $||\alpha v|| = |\alpha| \cdot ||v||$
- 3. $||v + w|| \leq ||v|| + ||w||$ [TRIANGLE INEQUALITY]

for any $\alpha \in \mathbb{R}$ and $u, v \in V$. The norm is an abstract notion of length.

Definition 3.1.2. The <u>Euclidean norm</u> is defined for $V = \mathbb{R}^n$ and $\vec{x} \in \mathbb{R}^n$ such that $\vec{x} = x_1, \ldots, x_n$:

$$||\vec{x}|| = ||x_1, \dots, x_n|| = \sqrt{x_1^2 + \dots + x_n^2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Definition 3.1.3. The dot product of $\vec{x}, \vec{y} \in \mathbb{R}^n$ is defined as $\vec{x} \bullet \vec{y} = x_1y_1 + \cdots + x_ny_n$.

Theorem 3.1.4. [CAUCHY-SCHWARZ INEQUALITY] For $a, b \in V$ for some vector space V

$$\sum_{i=1}^{n} |a_i b_i| \leq \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} \left(\sum_{i=1}^{n} b_i^2\right)^{1/2} \quad or, \ equivalently \quad \vec{a} \bullet \vec{y} \leq ||a|| \cdot ||b|$$

Definition 3.1.5. The ordered pair $(V, || \cdot ||)$ is termed a normed linear space. For $V = \mathbb{R}^n$ and $v \in V$:

- $||v||_1 = ||v_1, \dots, v_n||_1 = |v_a| + \dots |v_n| = \sum_{i=1}^n |v_i|$ \cdot The 1-norm is defined as $||v||_{\infty} = ||v_1, \dots, v_n||_{\infty} = \max_{1 \le i \le n} \{v_i\}$
- The infinity norm is defined as

• The p-norm for
$$1 is defined as $||v||_p = ||v_1, \dots, v_n||_p = \left(\sum_{i=1}^{n} |v_i|^p\right)^{1/p}$
always the case that $||v||_{\infty} \leq ||v||_p \leq ||v||_1$.$$

It is always the case that $||v||_{\infty} \leq ||v||_{p} \leq ||v||_{1}$.

Definition 3.1.6. The inner product on a vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ such that

1. $\langle v, w \rangle = \langle w, v \rangle$ **2.** $\langle v + w, z \rangle = \langle v, z \rangle + \langle w, x \rangle$

- **3.** $\langle 2v, z \rangle = 2 \langle v, z \rangle$
- **4.** $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0$ if and only if v = 0

for all $v, w, z \in V$. Then $(V, \langle \cdot, \cdot \rangle)$ is termed an inner product space.

Remark 3.1.7. For the terms defined above, the norm can also be defined as $||v|| = \langle v, v \rangle^{1/2}$.

3.2Norms and continuous functions

Definition 3.2.1. Define the vector space $V = C[a,b] = \{f : [a,b] \to \mathbb{R} : f \text{ is continuous }\}$ as the set of all continuous functions on the interval $[a, b] \subset \mathbb{R}$.

Remark 3.2.2. The following are examples of norms on this vector space:

$$\cdot ||f||_1 = \int_a |f(x)|dx$$

$$\cdot ||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$$

$$\cdot ||f||_{\infty} = \max_{x \in [a,b]} \{|f(x)| : x \in [a,b]\}$$

$$\cdot \langle f(x), g(x) \rangle = \int_a^b f(x)g(x) dx$$

Definition 3.2.3. Let X be a vector space. Then a metric on X is a function $d: X \times X \to \mathbb{R}$ with

- **1.** d(x, y) = d(y, x)
- **2.** $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y

3. $d(x,y) \leq d(x,z) + d(z,y)$

for all $x, y, z \in X$.

Definition 3.2.4. With respect to the above definition, the ordered pair (X,d) is termed a metric space.

3.3Convergence in a metric space

Definition 3.3.1. Given a metric $d: X \times X \to \mathbb{R}$, a sequence $\{x_n\} \subset X$ converges to $x_o \in X$ if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \ge N$, then $d(x_{\circ}, x_n) < \epsilon$. Therefore $\lim_{n \to \infty} \left[d(x_{\circ}, x_n) \right] = 0$.

Definition 3.3.2. A sequence $\{x_n\} \subset (X,d)$ is Cauchy if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $k, m \ge N$, then $d(x_k, x_m) < \epsilon$.

Theorem 3.3.3. If $\{x_n\}$ is convergent in (X, d), then $\{x_n\}$ is Cauchy.

Remark 3.3.4. If $X = \mathbb{Q}$ and d(x, y) = |x - y|, then there exist Cauchy sequences in (X, d) that do not converge.

Definition 3.3.5. A set $A \subset (X, d)$ is <u>bounded</u> if there exists $x_{\circ} \in X$ and M > 0 such that $d(x_{\circ}, x) \leq M$ for all $x \in A$.

Theorem 3.3.6. If $\{x_n\} \subset (X, d)$, then $\{x_n\}$ is bounded.

Definition 3.3.7. A metric space is complete if every Cauchy sequence in the metric space converges.

Theorem 3.3.8. [COMPLETENESS THEOREM FOR C[a,b]] The metric space C[a, b] is complete.

Remark 3.3.9. A sequence $\{f_n\} \subset C[a,b]$ converges to $f \in C[a,b]$ in $\|\cdot\|_{\infty}$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \ge N$, then $||f_n - f||_{\infty} = \max\{|f_n(x) - f(x)| < \epsilon : x \in [a, b]\}$ if and only if f_n converges to f uniformly.

Theorem 3.3.10. Suppose $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Let $0 \le x_1 < R$. Let $f_k(x) = \sum_{n=0}^k a_n x^n$. Then $\{f_k\}$ converges uniformly on $[-x_1, x_1]$ to $\sum_{n=0}^{\infty} a_n x^n$.

$\mathbf{3.4}$ Differentiability and integrability

Theorem 3.4.1. If a power series has an interval of convergence I, then the series is continuous on I.

Corollary 3.4.2. Suppose that a power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Assume that

$$[a,b] \subset (-R,R). \text{ If } f(x) = \sum_{n=0}^{\infty} a_n x^n, \text{ then}$$
$$\int_a^b f(x) \, dx = \int_a^b \sum_{n=0}^{\infty} a_n x^n \, dx = \sum_{n=0}^{\infty} \left(\int_a^b a_n x^n \, dx \right) = \sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1} \Big|_a^b$$

Corollary 3.4.3. Suppose that a power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Assume that

$$[a,b] \subset (-R,R). \text{ If } f(x) = \sum_{n=0}^{\infty} a_n x^n, \text{ then}$$
$$\frac{d}{dx} f(x) = \frac{d}{dx} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \left(\frac{d}{dx} a_n x^n\right) = \sum_{n=0}^{\infty} na_n x^{n-1}$$

Definition 3.4.4. Given a series $\sum_{n=0}^{\infty} a_n x^n$: \cdot The series $\sum_{n=0}^{\infty} na_n x^{n-1}$ is termed the formal derivative of the given series \cdot The series $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ is termed the formal integral of the given series

Theorem 3.4.5. Suppose $\{F_n\} \subset C[a,b]$ with $\lim_{n\to\infty} [F_n(a)] = a_\circ$. If $\{F_n\}$ has continuous derivatives $F'_n(x) = f_n(x)$, such that $\{f_n\}$ converges uniformly on [a,b] to $g(x) \in C[a,b]$, then $\{F_n\}$ converges uniformly to a continuous function $G \in C[a,b]$ such that G'(x) = g(x) for all $x \in (a,b)$.

Corollary 3.4.6. If f(x) is represented by a power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R, R) for R > 0, then f(x) is infinitely differentiable on (-R, R) with

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \prod_{i=0}^{k-1} (n-i) \ a_n x^{n-k}$$

Theorem 3.4.7. [UNIQUENESS OF REPRESENTATION]

Assume that f(x) has power series representations $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ centered at x = a where each series has a positive radius of convergence. Then $a_n = b_n = \frac{f^{(n)}(a)}{n!}$.

Definition 3.4.8. Assume that f(x) is n times differentiable at x = a. Then the k-th degree <u>Taylor polynomial</u> for f(x) at x = a is

$$P_{k,a}(x) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Definition 3.4.9. Assume that f(x) is n times differentiable at x = a. Then the n-th degree <u>error term</u> in using $P_{n,a}(x)$ to approximate f(x) is

$$R_{n,a}(x) = f(x) - P_{n,a}(x)$$

Theorem 3.4.10. Assume that f(x) is n + 1 times differentiable on an open interval I containing a. Let $x \in I$ with $x \neq a$. Then there exists a $c \in (x, a)$ such that

$$R_{n,a}(x) - P_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

Remark 3.4.11. Assume that $x_1 > 0$ and there exists M such that $|f^{(n)}(x)| < M$ for all $n \in \mathbb{N} \cup \{0\}$ and for all $x \in [-x_1, x_1]$. Then the Taylor series summation $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} x^n$ converges uniformly to f(x) on $[-x_1, x_1]$.

Theorem 3.4.12. If two functions have power series representations $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$, then h(x) = f(x)g(x) is represented by the power series

$$h(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n$$

Remark 3.4.13. Let $f, g \in (C[a, b], || \cdot ||_{\infty})$. Note that if $x \in [a, b]$, then $|f \cdot g(x)| \leq ||f||_{\infty} ||g||_{\infty}$. Hence $||f \cdot g||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}$.

Theorem 3.4.14. If $\{f_n\}, \{g_n\} \in C[a, b]$ such that $f_n \to f_\circ, g_n \to g_\circ$ for $f_\circ, g_\circ \in C[a, b]$, that is, both f_n an g_n converge uniformly, then $f_ng_n \to f_\circ g_\circ$ in C[a, b].

Theorem 3.4.15. [WEIERSTRASS APPROXIMATION THEOREM] If $f \in C[a, b]$, then there exists a sequence $\{p_n\}$ of polynomials such that $p_n(x) \to f(x)$ uniformly on [a, b].

Theorem 3.4.16. [WEIERSTRASS M-TEST I] Suppose that $\{f_n\}$ is a sequence in $(C[a, b], || \cdot ||_{\infty})$. If $\sum_{n=1}^{\infty} ||f_n||_{\infty}$ converges, then $\sum_{n=1}^{\infty} f_n$ converges in $(C[a, b], || \cdot ||_{\infty})$.

Theorem 3.4.17. [WEIERSTRASS M-TEST II]

Let $(V, || \cdot ||_{\infty})$ be a normed linear space. Then the following are equivalent: $\cdot (V, || \cdot ||_{\infty})$ is complete $\cdot If \{v_n\} \in V$ is such that $\sum_{n=1}^{\infty} ||v_n||_{\infty} < \infty$, then $\sum_{n=1}^{\infty} v_n$ converges.

Theorem 3.4.18. [BANACH CONTRACTIVE MAPPING THEOREM] Suppose that $\Gamma : C[a, b] \to C[a, b]$ is a contractive map. That is, suppose that Γ is such that there exists k satisfying $0 \leq k < 1$ with

$$\Gamma(u) - \Gamma(v)_{\infty} \leqslant ku - v_{\infty}$$

for all $u, v \in C[a, b]$. Then there exists a unique function $f \in C[a, b]$ such that $\Gamma(f) = f$.

4 Differential equations

4.1 Separable equations

Definition 4.1.1. A differential equation is an equation of the form $f(x, y, y', y'', \dots, y^{(n)}) = 0$.

Definition 4.1.2. The <u>order</u> of the differential equation is the order of the highest derivative in the differential equation.

Definition 4.1.3. A first order ordinary differential equation is said to be <u>separable</u> if it can be written in the form y' = f(x)g(y).