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1. FIVE-STAR THEOREMS
1.1. Fundamental Theorem of Calculus I. Assume that f(z) is integrable on [a,b]. Let
X

F(x) :/ f(t) dt, and let ¢ € (a,b). If f(t) is continuous at ¢t = ¢, then F(x) is differentiable
at x = ¢, and F'(e) = f(e).

- Let € > 0.

- Then there exists 6 > 0 such that if |c — 2| < d, then |f(c) — f(x)] <e.

- We may assume that § < min{c —a,b — c}.

- Let 0 < |h] < 0.
F(c+h)— F(c)

h
/:Jrhf(t) dt — /acf(t) dt
h

/a e di s / " r) dt
h

ct+h
- o] twa

- We know that if t € (c,c+ h), then |t —¢| < |h| < 0
- This implies that f(c) —e < f(t) < f(c) + ¢

1 c+h
- Hence f(c)—e<h/ f()dt < f(c)+e

F(c+h) — F(c)
h

- Consider

- This implies that

— f(c)

<e€

- Therefore F'(c) = %12% [F(C + h})L — F(C)} = f(c)

1.2. Fundamental Theorem of Calculus II. Assume that f(t) is continuous on an interval I

b
containing a, b. Assume that F'(¢) is any antiderivative of f(¢) on I. Then F(b) — F(a) = / f(t) dt.

- We may assume that a < b.
- Let G(z) = / f(t) dt.

- Then by the I%undamental Theorem of Calculus I, G'(z) = f(z) V = € (a,b).

- Then by the Mean Value Theorem, there exists a constant ¢ such that
F(z)=G(z)+cV x € [a,lb]

- In particular, F(b)— F(a) = (G(b)+¢c)—(G(a)+c)

G(b) — Gla)
b a
_ /Of(t) dt—/ﬂ () dt

_ /abf(t) dt



1.3. Change of Variables Theorem. Assume that g(z) is continuously differentiable on [a, b]

(b) b
and that f(x) is continuous on g([a, b]). Then ’ f(u) du = / flg(x)d () dz.
g(a) a

- Let F(t) —/ )f(u) du.
g(a

(
- Then F'(u) is differentiable and defined on the interior of g([a,b]) and is continuous on g¢(][a, b])
with F’(t) = f(t) by the Fundamental Theorem of Calculus I.

- Let H(z) = F(g(z)).
- Then by the chain rule, H'(z) = F'(g(x))g'(x) on (a,b)
= f(9(z))g' (x)
- Then by the Fundamental Theorem of Calculus I,
b
[ fo)g@ i~ B - HE@
= F(g(b)) — F(g(a))

o o
1.4. Comparison Test for Series. Let Z an and Z b, be two positive series satisfying 0 < a,, < by,.

n=1 n=1
Then
o]
1. If Z b, converges, then Z an converges.
n=1 n=1
o0 o0
2. If Z an diverges, then Z b, diverges.
n=1 n=1
k k 00
- Let S, .= Z an and T}, = Z b, be the k—th partial sums of the two series. Let T := Z by,
n=1 n=1 n=1

- Since Ty, is nondecreasing, we have that T, < T V k.

k k
-HenceSk:Zan<an:Tk<TVk
n=1

n=1
- Hence {Sj} is bounded above by T.
- Since {Sk} is nondecreasing, { S} converges by the Monotone Convergence Theorem.

- Part 2. is simply the contrapositive of the above and follows immediately.



1.5. Limit Comparison Test for Series. Let {a,} and {b,} be positive sequences with by # 0V k.
Assume that lim [Zn] = L where L € [0,00) or L = co. Then:

n—oo n

oo o0
1. If L € (0,00), then Z an converges if and only if Z b, converges.

n=1 n=1

o o
2. If L=0 and Z b, converges, then Z an also converges.
n=1 n=1
oo o0
3. If L =00 and Z a, converges, then Z b, also converges.
n=1 n=1
Proof for 1:
- Assume that L € (0, 00).
- Since lim [an] = L, there exists an N € N such that if n > N, then
n—oo | by,
an L
— — Ll < =
ot <g
L a, L
— — L < —
2 b, 2
L _an_3L
2 by 2
L 3L
g-bn<an<7-bn foralln > N
oo oo
- If Z a, converges, then Z an converges because it is a tail of the former.
n=1 n=N
= [L
- By the Comparison Test, Z [2 . bn] converges.
n=N

oo
- Since L # 0, we must have that Z by, converges.

- T 3L
- Similarly, if Z b, converges, so does Z {2 . bn} .
n=1 n=N
o0 o0
- By the Comparison Test, Z G, converges, so Z Gy, cOnverges.
n=N n=1
Proof for 2:
- If L =0, then there exists N € N such that for all n > N,
ogZ—"gl — 0<ay<b, foralln>N
n

oo oo
- By the comparison test and by series properties, if Z b, converges, then so does Z Q-

n=1 n=1
Proof for 3:
- If L = o0, then there exists an N € N such that for all n > N,
>1 = a,>b,>0 foralln>N
n

o0 o0
- By the comparison test and by series properties, if Z an converges, then so does Z by,.

n=1 n=1
3



1.6. Integral Test. Define f(n) = a, for each n € N. Assume that f(x) is continuous on [1, c0),
k

f(z) =2 0on [1,00), and f(z) is decreasing on [1,00). If Sy = Zan and S = Zan, then

k+1 k
1./ f(t)dthkg/ f(t)dt+a; foralkeN
g

2. Z a, converges if and only if / f(t) dt converges.

n= 1

3. If Zan converges, then 0 < / f(t)

n=1

Proof for 1:

k+1
- Since f(z) is decreasing, for all £k € N we have / f(t) dt <UFTY(f, Py), where P, is the
1
regular k— partition on [1,k+ 1]
k

- Then UFHL(f, Py) = Z fn)=> an =5
n=1

- SImilarly, we also have / f(x) de > L¥(f, P._1), where P,_; is the regular (k — 1)—partition
1

n [1, k].
k
- Then LE(f, P_1) Zf Zan = Sk —ay for all k > 2, but also for k = 1.
n=2
- Combining, we have that for all £ € N,

k+1 k
/ f(m)d:chkgal-f—/ f(z) dx
1 1
Proof for 2:

o
- Assume that / f(t) dt converges.
1

k 9]
- Then for each k, S; < / f(t)dt+ay < / f@) dt+ a;
1 1

- This implies that Si is bounded and increasing.
oo

- By the Monotone Convergence Theorem, Z an converges.

n=1
- Assume that / f(t) dt diverges.
1

k
- Then {/ f(t) dt} is unbounded.

1
- This implies that {Z an} = {Sk} is unbounded.

n=1

- Hence {Sj} diverges to oc.



Proof for 3:

- Assume that Z an converges. Then

n=1

00 k
0 < S-5 = Zan—Zan
n=1 n=1
oo
- S

n=k+1

J
= li
Ji)rgol Z an] forall j > k41
n=k+1

< ﬁﬁ{fj@dﬂ

< ﬁmﬂﬂﬁ

1.7. Root Test. Let 0 < a,, for all n. Then
oo
1. If limsup{ ¢/a,} = L < 1, then Z ap converges.

n=1

o0
2. If limsup{ /a,} = L > 1, then Z ay, diverges.

n=1
Proof for 1:
- Assume that L < 1.
- Then wecan find 0 < L <r < 1.
- Moreover, there exists N, such that if n > N,, then ¥/a, <r = a, < 1"

- This implies that Z r’ converges

n=1

[e.@]
- Then the Comparison Test shows that Z an converges.

n=1

Proof for 2:
- Assume that limsup{ /a,} = L > 1.

- Then there exists 1 < s < L for some s.
- Then there exists a subsequence {ay, } with s < p/a,, for each k.
- But then a,, > s" > 1 for all k.

- Hence lim a, # 0, and thus the series diverges by the Divergence Test.
n—oo



1.8. Ratio Test. Let {a,} be a sequence with a,, > 0V n and let L = lim

an+1
n—00

Gn

] . Then

oo
1. If 0 < L < 1, then Z an converges.

n=1

o0
2. If L > 1, then Z ar diverges.
n=1

Proof for 1:
- Assume that 0 < L < 1.

- Then there exists L < r < 1 for some r.
a
- Then there also exists N, € N with ntl
- This implies that
AN, +1

an,
AN, +2

AN,+1

< rforalln > N,.

Qn
<r=—an,+1 < an,”

<= an,42 < QN 41T < AN, T

an, 1k < ay,r™  This step comes from induction.
o0
- Then since 0 < r < 1, Z an, ¥ converges.
k=0

o0
- This implies that Z GN,+k COnverges.
k=0

oo (o ¢]
- This further implies that Z a, converges, as it is a tail of Z anot+k.
n=~k k=0

oo

- Hence Z ay, converges.
n=1

Proof for 2:

- Assume that L > 1.

- Then we can find 1 < s < L for some s.

- We can also find an N, such that if n > N, then

- This implies that

ANo+1

an,
AN,+2

Gp41

> s.

an
> S8 — aN,+1 > AN, S

> 5= an,42 > AN, 415 > GN, 5
AN+1

an, 1k > an,s”  This step comes from induction.

- Since s > 1, lim [ska]vo] = 00.
k—o0

- Hence by the Comparison Theorem for Sequences, klim l[an, k] = 0.
—00

(0.)
- This implies that lim a, = co # 0, and so by the divergence test Z a, diverges.
n—oo

n=1
6



1.9. Alternating Series Test. Assume that {a,} satisfies the following conditions:
1. a, =20

oo
2. ny1 < an Then Z(—l)”*lan converges.
3. lim anp = 0 n=1
n—oo
k 00
Moreover, if Sy, = Z(—l)"*lan and S = Z(—l)”*lan, then |S — Sk| < ag41.
n=1 n=1

- First observe that

Sok+1)—1 — S2k-1 = Sokt1 — Sak—1
2%k+1 2%—1
= Z (_1)n71an - Z (_1)7171@71
n=1 n=1
= (=D ag + (-1 gy
= —agk + Gkt
< 0

- This shows that {So;_1} is decreasing. Similarly,

Soky1) — S2k = Sogy2 — Sk
2k+2 2k
_ n—1 n—1
= > ()" an=> ()" an
n=1 n=1

_ (—1)(2k+1)_1a2k+1 + (_1)(2k+2)—1a2k+2

a2k+1 — A2k+2
> 0

- This shows that {S} is increasing. Now observe that

Sop—1 = (a1 —a2)+ (a3 —aq) + -+ + (agk—3 — agk—2) + ask—1
> 0+04+---4+0+aog
> 0

- Hence {S9;_1} is bounded below by 0. Similarly,

So, = a1 — (a2 —ag) — (s —as) — - — (a2k—2 — agg—1) — Az
< a1 —0—0—--—0—apy
< @

- Hence {Ss;} is bounded above by a;.
- By the Monotone Convergence Theorem, klim Sor—1 =L €R and klim Sor = M € R.
—00 —00

- Now let € > 0.

- We can choose a K so that we have |azx| < §,|L — Saix—1] < §, and |Sax — M| < 3.
- Then we have

|IL—M| < |L— Sk 1|+ |SKk-1— S|+ [Sex — M|
IL — Sar—1| + [(=1)* ag| + [Sax — M|
= |L— S| + |aak| + |Saxc — M|

ELe ¢
3 3 3

== €



- This shows that » (—1)"'ay = Jim Sy =S, where §:= L = M.
—00
n=1

- Finally since So is bounded above by S and Ssx_1 is bounded below by S,
Sop <5 < Sop—1
for all k € N.
- Therefore we have that
1Sk = S| < [Sk = Ska1] = [(=1)*ar41| = aps1
for all k € N.

oo
1.10. Weierstrass M-test. Suppose that {f,} C C[a,b] and that Z || fnl|oo is convergent.

n=1

Define Sy : [a,b] — R for each k € N by Si(x an ) for = € [a, b].

Then {Si} converges uniformly on [a, b] to some f, € C[a,b] such that f,(z Z fnlx
k )
- Define Ty = [ fulloo and =Y ||fulloo-
n=1 n=1
- By the assumptions, T, — T as k — o0, so T}, is Cauchy.
- Let € > 0.
k
- Then there exists N € N such that if £ > j > N, then T}, — T; = Z | folloo < €.
n=j+1

- Then for all k, j satisfying k > j > N, for all z € [a, b] we have

[Sk(2) = Sj(x)] = an(:v)

n=j+1
k

< D a2
:j+1

< Z () oo
n=j+1

< €

- Hence [|Sk(x) — Sj(x)||co < € for all k, j satisfying k > j > N,
- Hence {Si} is Cauchy in (Cla, b], dxo)-

- Since C|a, b] is complete, i.e. it is a Banach space, {Si} converges uniformly to fo € C|a,b].



1.11. Banach Contractive Mapping theorem. Suppose that I" : C|a,b] — Cla,b] is a contrac-
tive map. That is, suppose that I is such that there exists k satisfying 0 < k < 1 with

IT(w) = T'(v)lloo < K[t —v[lo
for all u,v € Cla,b]. Then there exists a unique function f € Cfa,b] such that I'(f) = f.

- Let fo € Cla,b].
- For each n € N, define f,, :=T'(fn—1).
- Set gn = fnt+1 — fn for each n € NU {0}. Then

gtllso = I1f2 = filloo = IIT(f1) = T(fo)llso < Kllf1 — folloo = k' l|g0]] o
g2llso = 113 = falloo = IIT(f2) = T(f1)llso < Kllf2 = filloo < k[0l
gslloo = I1f4 = fslloo = IIT(f3) = T(f2)lloo < kllfs — folloo < k*[g0]]o

lgnlloo = I fns1 — fulloo = [T (fn) = T(fa1)lloo < kl[fa — fr-1lloo < E™[|g0]loo

- By induction we see that ||gn||co < £"||g0||co for all n € N.

o o
- Since 0 < k < 1, by the geometric series test, Z E™|g0lleo = |l90]]00 Z k™ converges.

n=0 n=1

o0
- Then by the comparison test Z ||gn||co converges.

n=1

o0
- Then by the Weierstrass M-test, Z gn converges uniformly to some g € C|a, b].
n=0

- Note that
o= fori—fo=(—fo)+(Fa=F)+ -+ (fmr1r = fn) = i1 — fo
n=0 n=0

- Hence fin41 — fo = g asm — o0 in do, O frne1 — g+ fo.
Let f= lim fu =g+ fo
- Claim: T'(f) = f. Observe that for each n € N,

0<|lfn = T(Plloe = T (fa1) = T(Flloo < k[l fam1 = flloo
- Since || frn—1 — flleoc = 0 as n — o0, by the squeeze theorem li_)m | fr = T(f)|loc = 0.
- Hence f, = I'(f) as n — oc.
- From above, f, — f as n — oo, and since limits are unique, I'(f) = f.
- Claim: f is the only function that satisfies I'(f) = f.
- Suppose that h € C|a, b] satisfies I'(h) = h. Then

0 <A = flloo = [IT(h) = T(Hlloo < Kllh = flloo

- Since 0 < k < 1, we have 0 < (1 — k)||h — f]|co < 0.
- Then ||h — f|loc =0, and h = f.



2. FUNCTION CHARACTERISTICS I

2.1. Continuity implies integrability. If f(z) is continuous on [a.b], then f(z) is integrable on
[a, b].

- Let € > 0.
- Since f(z) is uniformly continuous on [a, b], we can find é > 0 such that if |z — y| < § with
T,y € [CL, b]a then |f(33) - f(y)‘ < ﬁ'
-Let P={a =129 <z <--- <z, = b} be a partition with ||P| < ¢, so Az; < Vi.
- Let M; = max{f(z): x € [zi_1, 2]}
m; = min{ f(x) : & € [z;—1, 7]}
- By the Extreme Value Theorem, there exist ¢;,d; € [x;—1,z;] with f(¢;) = m; and f(d;) = M;.
- But ‘C,‘ — dZ’ < HP” < 5, which implies that M; —m; = f(dz) — f(cz) < .

b—a
- Now U(f,P) — L(f,P) = Z M;Az; — Zmimi
i=1 i=1

2.2. Bounded conditional integrability. A bounded function f(z) is integrable on [a, b] if and
only if for every € > 0 there exists a partition P of [a, b] such that U(f, P) — L(f, P) < e.

- Assume that f(z) is integrable.
- Let € > 0.
- We can find partitions P;, P, such that

b

b
/af(a;) dx—;<L(f,P1)<U(f,P2)</f(x) d

a

-Let Q=P U Ps.

- Then
b € b €
/af(;v)dac—2 = af(a:)dm—§
< L(f,h) < L(f,Q) < U/,Q <U(f P)
< abf(a;)da:+;
b €
= f(x)dx+§

a

- This implies that U(f,Q) — L(f,Q) < e.

- Now assume that for each € > 0 we can find P with U(f, P) — L(f,P) <.
10



- Let € > 0.

- Choose P as above, then

b b
LUP) < [ @) da < [ @) do<U(P)

/abf(x) dx —/abf(:c) dx

b b
- Since € is arbitrary, we have / flz)de = / f(z) du.

- Therefore f(x) is integrable on [a, b].

- This implies that

gU(f7P)_L(f7P)<6

o0
2.3. Absolute convergence implies convergence. If a series Z a, converges absolutely, then

. n=1
1S converges.

[e.e]
- Assume that Z |ay| converges.

n=1

k
- Let Ty, = Z |an|. Note that T} is Cauchy.

n=1

k
- Let S, = Z an. We claim that S; is Cauchy.
n=1

- Let € > 0.
- We can find N € N such that if N < k < 7, then

J

T-Ti = Y Janl <e
n=k+1

- Let N <k < j. Then

J k
D an = an
n=1 n=1
- This implies that {Sg} is Cauchy.
- This implies that {S;} converges.

J
< |an\ = T] —Tp <e€
n=k+1

11



3. FuNcTION CHARACTERISTICS II

(0.)
3.1. Power series radius of convergence. If a power series E anx” converges at x, # 0, then

n=1
it also converges absolutely at any x1 with 0 < |z1| < |zo].

o0
- Since Zansvg converges, n11—>Hc;lo [anzh] = 0.

n=1
- In particular, there exists an M such that |a,z2| < M for all n.
- Suppose that |z1] < |zo].

n
€1

n

- Hence |a,z}| = lan|- o]

{L‘1n
< M|=

Lo

- By the geometric series test and the comparison test, Z |an x| converges.

n=1
oo
3.2. Power series uniform convergence. Suppose Z anx” has radius of convergence R > 0.
n=0
k 0
Let 0 < 21 < R. Let fi(x) = Z anz". Then {fi} converges uniformly on [—x1,z1] to Zanx".
n=0 n=0

oo
- Since 0 < 1 < R, the sum Z anx] converges absolutely.

n=0
- Let € > 0.
k
- Define Ty, := Z |anxl|.
n=0
m
- Since {7} } is Cauchy, there exists an N € Nsuch that if m > j > N, then T;,, — Tj = Z lanx’| < €.
n=j+1
- Let o € [—z1,x1]. Then
m
(@) = fi@)] = | > ana”
n=j+1
m
< D lana”
n=j+1
m
<Y lanad]
n=j+1
< €
- Hence || fm — fjlloo < €.
- Hence {fy} is Cauchy on (C[—z1,z1],]|| - ||oo)-

- Hence { fx} converges uniformly on [—z1,z1].
12



3.3. Uniform convergence and differentiation. Suppose {F,,} C C|[a,b] with ILm [Fn(a)] = ao.

If {F,} has continuous derivatives F)(z) = fn(x), such that {f,} converges uniformly on [a,b]
to g(z) € Cla,b], then {F,} converges uniformly to a continuous function G € Cfa,b] such that

G'(x) = g(z) for all z € (a,b).

- For every n € N and = € [a, b], FTCII states that F,( / fn(t) dt + F(a).

- For each z € [a, b], define G : [a,b] — R by G(x) = / g(t) dt + ao.

- Let € > 0.

- Then there exists an N € N such that if n > N, then ||f, — g/|oc < 35—y and |Fu(a) — ao] < §.

- Hence for n > N and z € [a, b]:

[Fn(z) — G(2)| =

N

N

N

N

A

- Hence ||F}, — Gl|oo < € for all n >

(/ Fult) di + Fn(a)> _ (/:g(t) dt + a>‘

[ 0 - g0yt + (Fofa) — o)

[ 0~ dt' T Fa(a) - adl
/!fn — g(®)dt + | Fu(a) - ao

an = 9(B)lloc dt + |Fn(a) — aol

(@ = a)|[fn = glloo + [Fn(a) — aol

(0= a)llfn = glloc + [Frla) — aol
b-a55—a T2
272

N.

- Hence {F,,} — G as n — oo with respect to d
- So by FTCI, G(x) is differentiable on (a,b) with G'(z) = g(z) for each x € (a,b).

13



3.4. Uniform continuous convergence. If {f,} C CJa,b] converges uniformly on S to f(x), and
if each f,, is continuous at z, relative to S, then f(x) is continuous at z, relative to S.

- Let € > 0.

- Then there exists some N € N such that if n > N, then |f(z) — fu(z)] < 5.

- Since fy(x) is continuous at z, relative to S, we can find § > 0 such that if |x — z,| < § and
r €S, then |fn(x) — fn(zo)] < §.

- Let | — 25| < d for x € S. Then

[f(@) = flzo)l = [f(@) = fn(x) + fn(@) — fn(@o) + fv (o) — f (o)
< f@) = In(@) + [fn(@) = fn(@o)| + [fn (o) — ()]
< s+5t3

€

14



