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1. Five-Star Theorems

1.1. Fundamental Theorem of Calculus I. Assume that f(x) is integrable on [a, b]. Let

F (x) =

∫ x

a
f(t) dt, and let c ∈ (a, b). If f(t) is continuous at t = c, then F (x) is differentiable

at x = c, and F ′(c) = f(c).

· Let ε > 0.
· Then there exists δ > 0 such that if |c− x| < δ, then |f(c)− f(x)| < ε.
· We may assume that δ < min{c− a, b− c}.
· Let 0 < |h| < δ.

· Consider
F (c+ h)− F (c)

h

=

∫ c+h

a
f(t) dt−

∫ c

a
f(t) dt

h

=

∫ c+h

a
f(t) dt+

∫ a

c
f(t) dt

h

=
1

h

∫ c+h

c
f(t) dt

· We know that if t ∈ (c, c+ h), then |t− c| 6 |h| < δ

· This implies that f(c)− ε < f(t) < f(c) + ε

· Hence f(c)− ε < 1

h

∫ c+h

c
f(t) dt < f(c) + ε

· This implies that

∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ < ε

· Therefore F ′(c) = lim
h→0

[
F (c+ h)− F (c)

h

]
= f(c)

1.2. Fundamental Theorem of Calculus II. Assume that f(t) is continuous on an interval I

containing a, b. Assume that F (t) is any antiderivative of f(t) on I. Then F (b)− F (a) =

∫ b

a
f(t) dt.

· We may assume that a < b.

· Let G(x) =

∫ x

0
f(t) dt.

· Then by the Fundamental Theorem of Calculus I, G′(x) = f(x) ∀ x ∈ (a, b).
· Then by the Mean Value Theorem, there exists a constant c such that

F (x) = G(x) + c ∀ x ∈ [a, b]
· In particular, F (b)− F (a) = (G(b) + c)− (G(a) + c)

= G(b)−G(a)

=

∫ b

0
f(t) dt−

∫ a

0
f(t) dt

=

∫ b

a
f(t) dt
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1.3. Change of Variables Theorem. Assume that g(x) is continuously differentiable on [a, b]

and that f(x) is continuous on g([a, b]). Then

∫ g(b)

g(a)
f(u) du =

∫ b

a
f(g(x))g′(x) dx.

· Let F (t) =

∫ t

g(a)
f(u) du.

· Then F (u) is differentiable and defined on the interior of g([a, b]) and is continuous on g([a, b])
with F ′(t) = f(t) by the Fundamental Theorem of Calculus I.

· Let H(x) = F (g(x)).

· Then by the chain rule, H ′(x) = F ′(g(x))g′(x) on (a, b)

= f(g(x))g′(x)

· Then by the Fundamental Theorem of Calculus I,∫ b

a
f(g(x))g′(x) dx = H(b)−H(a)

= F (g(b))− F (g(a))

=

∫ g(b)

g(a)
f(u) du−

∫ g(a)

g(a)
f(u) du

=

∫ g(b)

g(a)
f(u) du

1.4. Comparison Test for Series. Let

∞∑
n=1

an and

∞∑
n=1

bn be two positive series satisfying 0 6 an 6 bn.

Then

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

· Let Sk :=
k∑

n=1

an and Tk :=
k∑

n=1

bn be the k−th partial sums of the two series. Let T :=
∞∑
n=1

bn.

· Since Tk is nondecreasing, we have that Tk 6 T ∀ k.

· Hence Sk =
k∑

n=1

an 6
k∑

n=1

bn = Tk 6 T ∀ k

· Hence {Sk} is bounded above by T .

· Since {Sk} is nondecreasing, {Sk} converges by the Monotone Convergence Theorem.

· Part 2. is simply the contrapositive of the above and follows immediately.
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1.5. Limit Comparison Test for Series. Let {an} and {bn} be positive sequences with bk 6= 0 ∀ k.

Assume that lim
n→∞

[
an
bn

]
= L where L ∈ [0,∞) or L =∞. Then:

1. If L ∈ (0,∞), then
∞∑
n=1

an converges if and only if
∞∑
n=1

bn converges.

2. If L = 0 and
∞∑
n=1

bn converges, then
∞∑
n=1

an also converges.

3. If L =∞ and

∞∑
n=1

an converges, then

∞∑
n=1

bn also converges.

Proof for 1:
· Assume that L ∈ (0,∞).

· Since lim
n→∞

[
an
bn

]
= L, there exists an N ∈ N such that if n > N , then∣∣∣∣anbn − L

∣∣∣∣ < L

2

−L
2
<
an
bn
− L < L

2
L

2
<
an
bn

<
3L

2
L

2
· bn < an <

3L

2
· bn for all n > N

· If
∞∑
n=1

an converges, then
∞∑
n=N

an converges because it is a tail of the former.

· By the Comparison Test,

∞∑
n=N

[
L

2
· bn
]

converges.

· Since L 6= 0, we must have that
∞∑
n=1

bn converges.

· Similarly, if
∞∑
n=1

bn converges, so does

∞∑
n=N

[
3L

2
· bn
]
.

· By the Comparison Test,

∞∑
n=N

an converges, so

∞∑
n=1

an converges.

Proof for 2:
· If L = 0, then there exists N ∈ N such that for all n > N ,

0 6
an
bn

6 1 =⇒ 0 6 an 6 bn for all n > N

· By the comparison test and by series properties, if

∞∑
n=1

bn converges, then so does

∞∑
n=1

an.

Proof for 3:
· If L =∞, then there exists an N ∈ N such that for all n > N ,

an
bn

> 1 =⇒ an > bn > 0 for all n > N

· By the comparison test and by series properties, if
∞∑
n=1

an converges, then so does
∞∑
n=1

bn.
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1.6. Integral Test. Define f(n) = an for each n ∈ N. Assume that f(x) is continuous on [1,∞),

f(x) > 0 on [1,∞), and f(x) is decreasing on [1,∞). If Sk =
k∑

n=1

an and S =
∞∑
n=1

an, then

1.

∫ k+1

1
f(t) dt 6 Sk 6

∫ k

1
f(t) dt+ a1 for all k ∈ N

2.
∞∑
n=1

an converges if and only if

∫ ∞
1

f(t) dt converges.

3. If

∞∑
n=1

an converges, then 0 6 S − Sk 6
∫ ∞
k

f(t) dt

Proof for 1:

· Since f(x) is decreasing, for all k ∈ N we have

∫ k+1

1
f(t) dt 6 Uk+1

1 (f, Pk), where Pk is the

regular k−partition on [1, k + 1]

· Then Uk+1
1 (f, Pk) =

k∑
n=1

f(n) =

k∑
n=1

an = Sk

· SImilarly, we also have

∫ k

1
f(x) dx > Lk1(f, Pk−1), where Pk−1 is the regular (k − 1)−partition

on [1, k].

· Then Lk1(f, Pk−1) =
k∑

n=2

f(n) =
k∑

n=2

an = Sk − a1 for all k > 2, but also for k = 1.

· Combining, we have that for all k ∈ N,∫ k+1

1
f(x) dx 6 Sk 6 a1 +

∫ k

1
f(x) dx

Proof for 2:

· Assume that

∫ ∞
1

f(t) dt converges.

· Then for each k, Sk 6
∫ k

1
f(t) dt+ a1 6

∫ ∞
1

f(t) dt+ a1

· This implies that Sk is bounded and increasing.

· By the Monotone Convergence Theorem,

∞∑
n=1

an converges.

· Assume that

∫ ∞
1

f(t) dt diverges.

· Then

{∫ k

1
f(t) dt

}
is unbounded.

· This implies that

{ ∞∑
n=1

an

}
= {Sk} is unbounded.

· Hence {Sk} diverges to ∞.
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Proof for 3:

· Assume that

∞∑
n=1

an converges. Then

0 6 S − Sk =

∞∑
n=1

an −
k∑

n=1

an

=
∞∑

n=k+1

an

= lim
j→∞

[
j∑

n=k+1

an

]
for all j > k + 1

6 lim
j→∞

[∫ j

1
f(t) dt

]
6

∫ ∞
1

f(t) dt

1.7. Root Test. Let 0 < an for all n. Then

1. If lim sup{ n
√
an} = L < 1, then

∞∑
n=1

an converges.

2. If lim sup{ n
√
an} = L > 1, then

∞∑
n=1

an diverges.

Proof for 1:
· Assume that L < 1.

· Then we can find 0 6 L < r < 1.

· Moreover, there exists N◦ such that if n > N◦, then n
√
an < r =⇒ an < rn.

· This implies that

∞∑
n=1

rn converges

· Then the Comparison Test shows that
∞∑
n=1

an converges.

Proof for 2:
· Assume that lim sup{ n

√
an} = L > 1.

· Then there exists 1 < s < L for some s.

· Then there exists a subsequence {ank
} with s < n

√
ank

for each k.

· But then ank
> sn > 1 for all k.

· Hence lim
n→∞

an 6= 0, and thus the series diverges by the Divergence Test.
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1.8. Ratio Test. Let {an} be a sequence with an > 0 ∀ n and let L = lim
n→∞

[
an+1

an

]
. Then

1. If 0 < L < 1, then
∞∑
n=1

an converges.

2. If L > 1, then

∞∑
n=1

an diverges.

Proof for 1:
· Assume that 0 < L < 1.

· Then there exists L < r < 1 for some r.

· Then there also exists N◦ ∈ N with
an+1

an
< r for all n > N◦.

· This implies that
aN◦+1

aN◦
< r =⇒ aN◦+1 < aN◦r

aN◦+2

aN◦+1
< r =⇒ aN◦+2 < aN◦+1r < aN◦r

2

...

aN◦+k < aN◦r
k This step comes from induction.

· Then since 0 < r < 1,
∞∑
k=0

aN◦r
k converges.

· This implies that
∞∑
k=0

aN◦+k converges.

· This further implies that
∞∑
n=k

an converges, as it is a tail of
∞∑
k=0

aN ◦+k.

· Hence
∞∑
n=1

an converges.

Proof for 2:
· Assume that L > 1.

· Then we can find 1 < s < L for some s.

· We can also find an N◦ such that if n > N◦, then
an+1

an
> s.

· This implies that
aN◦+1

aN◦
> s =⇒ aN◦+1 > aN◦s

aN◦+2

aN◦+1
> s =⇒ aN◦+2 > aN◦+1s > aN◦s

2

...

aN◦+k > aN◦s
k This step comes from induction.

· Since s > 1, lim
k→∞

[
skaN◦

]
=∞.

· Hence by the Comparison Theorem for Sequences, lim
k→∞

[aN◦+k] =∞.

· This implies that lim
n→∞

an =∞ 6= 0, and so by the divergence test
∞∑
n=1

an diverges.
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1.9. Alternating Series Test. Assume that {an} satisfies the following conditions:

1. an > 0
2. an+1 6 an
3. lim

n→∞
an = 0

 Then

∞∑
n=1

(−1)n−1an converges.

Moreover, if Sk =

k∑
n=1

(−1)n−1an and S =

∞∑
n=1

(−1)n−1an, then |S − Sk| 6 ak+1.

· First observe that

S2(k+1)−1 − S2k−1 = S2k+1 − S2k−1

=

2k+1∑
n=1

(−1)n−1an −
2k−1∑
n=1

(−1)n−1an

= (−1)2k−1a2k + (−1)(2k+1)−1a2k+1

= −a2k + a2k+1

6 0

· This shows that {S2k−1} is decreasing. Similarly,

S2(k+1) − S2k = S2k+2 − S2k

=

2k+2∑
n=1

(−1)n−1an −
2k∑
n=1

(−1)n−1an

= (−1)(2k+1)−1a2k+1 + (−1)(2k+2)−1a2k+2

= a2k+1 − a2k+2

> 0

· This shows that {S2k} is increasing. Now observe that

S2k−1 = (a1 − a2) + (a3 − a4) + · · ·+ (a2k−3 − a2k−2) + a2k−1

> 0 + 0 + · · ·+ 0 + a2k−1

> 0

· Hence {S2k−1} is bounded below by 0. Similarly,

S2k = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2k−2 − a2k−1)− a2k
6 a1 − 0− 0− · · · − 0− a2k
6 a1

· Hence {S2k} is bounded above by a1.

· By the Monotone Convergence Theorem, lim
k→∞

S2k−1 = L ∈ R and lim
k→∞

S2k = M ∈ R.

· Now let ε > 0.

· We can choose a K so that we have |a2K | < ε
3 , |L− S2K−1| <

ε
3 , and |S2K −M | < ε

3 .
· Then we have

|L−M | 6 |L− S2K−1|+ |S2K−1 − S2K |+ |S2K −M |
= |L− S2K−1|+ |(−1)2K−1a2K |+ |S2K −M |
= |L− S2K−1|+ |a2K |+ |S2K −M |

<
ε

3
+
ε

3
+
ε

3
= ε
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· This shows that

∞∑
n=1

(−1)n−1an := lim
k→∞

Sk = S, where S := L = M .

· Finally since S2k is bounded above by S and S2k−1 is bounded below by S,

S2k 6 S 6 S2k−1

for all k ∈ N.

· Therefore we have that

|Sk − S| 6 |Sk − Sk+1| = |(−1)kak+1| = ak+1

for all k ∈ N.

1.10. Weierstrass M-test. Suppose that {fn} ⊂ C[a, b] and that
∞∑
n=1

||fn||∞ is convergent.

Define Sk : [a, b]→ R for each k ∈ N by Sk(x) =
k∑

n=1

fn(x) for x ∈ [a, b].

Then {Sk} converges uniformly on [a, b] to some f◦ ∈ C[a, b] such that f◦(x) =

∞∑
n=1

fn(x).

· Define Tk =

k∑
n=1

||fn||∞ and T =
∞∑
n=1

||fn||∞.

· By the assumptions, Tk → T as k →∞, so Tk is Cauchy.

· Let ε > 0.

· Then there exists N ∈ N such that if k > j > N , then Tk − Tj =
k∑

n=j+1

||fn||∞ < ε.

· Then for all k, j satisfying k > j > N , for all x ∈ [a, b] we have

|Sk(x)− Sj(x)| =

∣∣∣∣∣∣
k∑

n=j+1

fn(x)

∣∣∣∣∣∣
6

k∑
n=j+1

|fn(x)|

6
k∑

n=j+1

||fn(x)||∞

< ε

· Hence ||Sk(x)− Sj(x)||∞ < ε for all k, j satisfying k > j > N ,

· Hence {Sk} is Cauchy in (C[a, b], d∞).

· Since C[a, b] is complete, i.e. it is a Banach space, {Sk} converges uniformly to f◦ ∈ C[a, b].
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1.11. Banach Contractive Mapping theorem. Suppose that Γ : C[a, b]→ C[a, b] is a contrac-
tive map. That is, suppose that Γ is such that there exists k satisfying 0 6 k < 1 with

||Γ(u)− Γ(v)||∞ 6 k||u− v||∞
for all u, v ∈ C[a, b]. Then there exists a unique function f ∈ C[a, b] such that Γ(f) = f .

· Let f◦ ∈ C[a, b].

· For each n ∈ N, define fn := Γ(fn−1).

· Set gn := fn+1 − fn for each n ∈ N ∪ {0}. Then

||g1||∞ = ||f2 − f1||∞ = ||Γ(f1)− Γ(f0)||∞ 6 k||f1 − f0||∞ = k1||g0||∞
||g2||∞ = ||f3 − f2||∞ = ||Γ(f2)− Γ(f1)||∞ 6 k||f2 − f1||∞ 6 k2||g0||∞
||g3||∞ = ||f4 − f3||∞ = ||Γ(f3)− Γ(f2)||∞ 6 k||f3 − f2||∞ 6 k3||g0||∞

...

||gn||∞ = ||fn+1 − fn||∞ = ||Γ(fn)− Γ(fn−1)||∞ 6 k||fn − fn−1||∞ 6 kn||g0||∞

· By induction we see that ||gn||∞ 6 kn||g0||∞ for all n ∈ N.

· Since 0 6 k < 1, by the geometric series test,
∞∑
n=0

kn||g0||∞ = ||g0||∞
∞∑
n=1

kn converges.

· Then by the comparison test
∞∑
n=1

||gn||∞ converges.

· Then by the Weierstrass M-test,

∞∑
n=0

gn converges uniformly to some g ∈ C[a, b].

· Note that
m∑
n=0

gn =

m∑
n=0

fn+1 − fn = (f1 − f0) + (f2 − f1) + · · ·+ (fm+1 − fm) = fm+1 − f0

· Hence fm+1 − f0 → g as m→∞ in d∞, or fm+1 → g + f0.

· Let f = lim
m→∞

fm = g + f0.

· Claim: Γ(f) = f . Observe that for each n ∈ N,

0 6 ||fn − Γ(f)||∞ = ||Γ(fn−1)− Γ(f)||∞ 6 k||fn−1 − f ||∞
· Since ||fn−1 − f ||∞ → 0 as n→∞, by the squeeze theorem lim

n→∞
||fn − Γ(f)||∞ = 0.

· Hence fn → Γ(f) as n→∞.

· From above, fn → f as n→∞, and since limits are unique, Γ(f) = f .

· Claim: f is the only function that satisfies Γ(f) = f .

· Suppose that h ∈ C[a, b] satisfies Γ(h) = h. Then

0 6 ||h− f ||∞ = ||Γ(h)− Γ(f)||∞ 6 k||h− f ||∞
· Since 0 6 k < 1, we have 0 6 (1− k)||h− f ||∞ 6 0.

· Then ||h− f ||∞ = 0, and h = f .
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2. Function Characteristics I

2.1. Continuity implies integrability. If f(x) is continuous on [a.b], then f(x) is integrable on
[a, b].

· Let ε > 0.
· Since f(x) is uniformly continuous on [a, b], we can find δ > 0 such that if |x− y| < δ with

x, y ∈ [a, b], then |f(x)− f(y)| < ε
b−a .

· Let P = {a = x0 < x1 < · · · < xn = b} be a partition with ‖P‖ < ε, so ∆xi < δ ∀i.
· Let Mi = max{f(x) : x ∈ [xi−1, xi]}

mi = min{f(x) : x ∈ [xi−1, xi]}
· By the Extreme Value Theorem, there exist ci, di ∈ [xi−1, xi] with f(ci) = mi and f(di) = Mi.
· But |ci − di| 6 ‖P‖ < δ, which implies that Mi −mi = f(di)− f(ci) <

ε
b−a .

· Now U(f, P )− L(f, P ) =

n∑
i=1

Mi∆xi −
n∑
i=1

mi∆xi

=
n∑
i=1

(Mi −mi)∆xi

<
n∑
i=1

ε

b− a
∆xi

=
ε

b− a

n∑
i=1

∆xi

= ε

2.2. Bounded conditional integrability. A bounded function f(x) is integrable on [a, b] if and
only if for every ε > 0 there exists a partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

· Assume that f(x) is integrable.

· Let ε > 0.

· We can find partitions P1, P2 such that∫
a

b

f(x) dx− ε

2
< L(f, P1) 6 U(f, P2) <

∫ b

a
f(x) dx

· Let Q = P1 ∪ P2.

· Then ∫ b

a
f(x) dx− ε

2
=

∫
a

b

f(x) dx− ε

2

< L(f, P1) 6 L(f,Q) 6 U(f,Q) 6 U(f, P2)

<

∫ b

a
f(x) dx+

ε

2

=

∫ b

a
f(x) dx+

ε

2

· This implies that U(f,Q)− L(f,Q) < ε.

· Now assume that for each ε > 0 we can find P with U(f, P )− L(f, P ) < ε.
10



· Let ε > 0.

· Choose P as above, then

L(f, P ) 6
∫
a

b

f(x) dx 6
∫ b

a
f(x) dx 6 U(f, P )

· This implies that ∣∣∣∣∣
∫ b

a
f(x) dx−

∫
a

b

f(x) dx

∣∣∣∣∣ 6 U(f, P )− L(f, P ) < ε

· Since ε is arbitrary, we have

∫
a

b

f(x) dx =

∫ b

a
f(x) dx.

· Therefore f(x) is integrable on [a, b].

2.3. Absolute convergence implies convergence. If a series

∞∑
n=1

an converges absolutely, then

is converges.

· Assume that

∞∑
n=1

|an| converges.

· Let Tk =

k∑
n=1

|an|. Note that Tk is Cauchy.

· Let Sk =

k∑
n=1

an. We claim that Sk is Cauchy.

· Let ε > 0.

· We can find N ∈ N such that if N 6 k < j, then

|Tj − Tk| =
j∑

n=k+1

|an| < ε

· Let N 6 k < j. Then ∣∣∣∣∣
j∑

n=1

an −
k∑

n=1

an

∣∣∣∣∣ 6
j∑

n=k+1

|an| = Tj − Tk < ε

· This implies that {Sk} is Cauchy.

· This implies that {Sk} converges.
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3. Function Characteristics II

3.1. Power series radius of convergence. If a power series

∞∑
n=1

anx
n converges at x◦ 6= 0, then

it also converges absolutely at any x1 with 0 6 |x1| < |x◦|.

· Since

∞∑
n=1

anx
n
◦ converges, lim

n→∞
[anx

n
◦ ] = 0.

· In particular, there exists an M such that |anxn◦ | 6M for all n.

· Suppose that |x1| < |x◦|.

· Hence |anxn1 | = |an| ·
∣∣∣∣x1x◦
∣∣∣∣n · |x◦|n

6 M

∣∣∣∣x1x◦
∣∣∣∣n

· By the geometric series test and the comparison test,
∞∑
n=1

|anxn1 | converges.

3.2. Power series uniform convergence. Suppose

∞∑
n=0

anx
n has radius of convergence R > 0.

Let 0 6 x1 < R. Let fk(x) =

k∑
n=0

anx
n. Then {fk} converges uniformly on [−x1, x1] to

∞∑
n=0

anx
n.

· Since 0 6 x1 < R, the sum
∞∑
n=0

anx
n
1 converges absolutely.

· Let ε > 0.

· Define Tk :=

k∑
n=0

|anxn1 |.

· Since {Tk} is Cauchy, there exists anN ∈ N such that ifm > j > N , then Tm − Tj =

m∑
n=j+1

|anxn1 | < ε.

· Let x ∈ [−x1, x1]. Then

|fm(x)− fj(x)| =

∣∣∣∣∣∣
m∑

n=j+1

anx
n

∣∣∣∣∣∣
6

m∑
n=j+1

|anxn|

6
m∑

n=j+1

|anxn1 |

< ε

· Hence ||fm − fj ||∞ < ε.

· Hence {fk} is Cauchy on (C[−x1, x1], || · ||∞).

· Hence {fk} converges uniformly on [−x1, x1].
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3.3. Uniform convergence and differentiation. Suppose {Fn} ⊂ C[a, b] with lim
n→∞

[Fn(a)] = a◦.

If {Fn} has continuous derivatives F ′n(x) = fn(x), such that {fn} converges uniformly on [a, b]
to g(x) ∈ C[a, b], then {Fn} converges uniformly to a continuous function G ∈ C[a, b] such that
G′(x) = g(x) for all x ∈ (a, b).

· For every n ∈ N and x ∈ [a, b], FTCII states that Fn(x) =

∫ x

a
fn(t) dt+ Fn(a).

· For each x ∈ [a, b], define G : [a, b]→ R by G(x) =

∫ x

a
g(t) dt+ a◦.

· Let ε > 0.

· Then there exists an N ∈ N such that if n > N , then ||fn − g||∞ < ε
2(b−a) and |Fn(a)− a◦| < ε

2 .

· Hence for n > N and x ∈ [a, b]:

|Fn(x)−G(x)| =

∣∣∣∣(∫ x

a
fn(t) dt+ Fn(a)

)
−
(∫ x

a
g(t) dt+ a◦

)∣∣∣∣
=

∣∣∣∣∫ x

a
(fn(t)− g(t)) dt+ (Fn(a)− a◦)

∣∣∣∣
6

∣∣∣∣∫ x

a
(fn(t)− g(t)) dt

∣∣∣∣+ |Fn(a)− a◦|

6
∫ x

a
|fn(t)− g(t)| dt+ |Fn(a)− a◦|

6
∫ x

a
||fn(t)− g(t)||∞ dt+ |Fn(a)− a◦|

= (x− a)||fn − g||∞ + |Fn(a)− a◦|
6 (b− a)||fn − g||∞ + |Fn(a)− a◦|

< (b− a)
ε

2(b− a)
+
ε

2

=
ε

2
+
ε

2
= ε

· Hence ||Fn −G||∞ < ε for all n > N .

· Hence {Fn} → G as n→∞ with respect to d∞.

· So by FTCI, G(x) is differentiable on (a, b) with G′(x) = g(x) for each x ∈ (a, b).
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3.4. Uniform continuous convergence. If {fn} ⊂ C[a, b] converges uniformly on S to f(x), and
if each fn is continuous at x◦ relative to S, then f(x) is continuous at x◦ relative to S.

· Let ε > 0.

· Then there exists some N ∈ N such that if n > N , then |f(x)− fn(x)| < ε
3 .

· Since fN (x) is continuous at x◦ relative to S, we can find δ > 0 such that if |x− x◦| < δ and
x ∈ S, then |fN (x)− fN (x◦)| < ε

3 .

· Let |x− x◦| < δ for x ∈ S. Then

|f(x)− f(x◦)| = |f(x)− fN (x) + fN (x)− fN (x◦) + fN (x◦)− f(x◦)|
6 |f(x)− fN (x)|+ |fN (x)− fN (x◦)|+ |fN (x◦)− f(x◦)|

<
ε

3
+
ε

3
+
ε

3
= ε
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