Contents

1	Overview of Linear Algebra 1 1.1 Lines and planes 1.2 Determinants	2 2 3
2	Operations in vector spaces	3
	2.1 The dot product in \mathbb{R}^n	3
	2.2 Orthogonal projections	4
	2.3 The cross product in \mathbb{R}^n	5
3	Applications of the cross product	6
	3.1 Geometry	6
	3.2 Spherical geometry	6
	3.3 Spherical angles	7
4	The inner product	8
	4.1 Fundamental definitions	8
	4.2 Standard inner products	8
	4.3 Orthogonal sets / compliments / projections	9
	4.4 Quotient spaces	10
	4.5 Dual spaces	11
	4.6 Normal linear maps, etc	12
5	Bilinear and guadratic forms	13
	5.1 Bilinear forms	13
	5.2 Quadratic forms	15
	5.3 Characterization and extreme values	15
6	Jordan normal form	16
	6.1 Block form	16
	6.2 Canonical form	16
7	Selected proofs	18

1 Overview of Linear Algebra 1

1.1 Lines and planes

A line in 3 dimensions is best described parametrically. Given a point p and a vector u, all points on the line are described by x = p + tu for $t \in \mathbb{R}$.

A plane in 3 dimensions is the same; given two points and two vectors p + u and q + v, the points on the plane are described by x = p + ru + st for $s, r \in \mathbb{R}$. This can be generalized by $a_1x_1 + a_2x_2 + a_3x_3 = b$.

Definition 1.1.1. A vector space in \mathbb{R}^n is a set of the form $\{t_1u_1, \ldots, t_ku_k | t_i \in \mathbb{R}\} = \text{span}\{u_1, \ldots, u_k \in \mathbb{R}\}$. A vector space includes the origin.

Definition 1.1.2. An affine space in \mathbb{R}^n is a set of the form $p + V = \{p + v | v \in V\}$, for some point $p \in \mathbb{R}^n$ and some vector space $\overline{V \in \mathbb{R}^n}$. Here, p + V is the affine space through p parallel to V.

Theorem 1.1.3. If U is a basis for a vector space $V \in \mathbb{R}^n$, then the number of elements in U is at most n. If U and W are bases for the same vector space in \mathbb{R}^n , then they have the same number of elements. This number is termed <u>dimension</u>.

Definition 1.1.4. A function A is said to be <u>linear</u> if the two following conditions are satisfied for some scalar t and all $x, y \in \mathbb{R}^n$:

A(tx) = tA(x)A(x + y) = A(x) + A(y)

Definition 1.1.5. A linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ is a map of the form L(x) = Ax for some $A \in M_{m \times n}$.

Definition 1.1.6. An affine map $L : \mathbb{R}^n \to \mathbb{R}^m$ is a map of the form L(x) = Ax + b for some $A \in M_{m \times n}$ and $b \in \mathbb{R}^n$.

- \cdot Note that the span of columns is the column space of the range.
- The nullspace is perpendicular to the rowspace.

Theorem 1.1.7. Suppose that $L : \mathbb{R}^n \to \mathbb{R}^n$ is linear. Let $x \in \mathbb{R}^n$ be such that $x = x_1e_1 + x_2e_2 + \cdots + x_ne_n$, where e_k is the kth standard basis vector. Then L(x) = Ax for $A = (L(e_1) \ L(e_2) \ \dots \ L(e_n))$.

Theorem 1.1.8. Suppose A reduces to R in reduced row echelon form. Then the non-zero rows of R form a basis for the row space of A. Then to obtain a basis for the nullspace of A, solve Ax = 0 using Gauss-Jordan elimination to get $x = t_1v_1 + \cdots + t_kv_k$ then $\{u_1, \ldots, u_k\}$ is a basis for null(A).

Definition 1.1.9. Given a function $f : X \to Y$:

- **1.** f is <u>1:1</u> or injective when for all $y \in Y$ there exists at most $1 \ x \in X$ such that y = f(x).
- **2.** f is <u>onto</u> or surjective when for all $y \in Y$ there exists at least $1 \ x \in X$ such that y = f(x).
- **3.** f is <u>invertible</u> or bijective when f is one-to-one and onto.

Theorem 1.1.10. A function is differentiable when it can be suitably approximated by an affine map.

Definition 1.1.11. Let U and V be vector spaces with $\dim(U) = n$ and $\dim(V) = n$. Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ and $\mathcal{V} = \{v_1, \ldots, v_n\}$ be ordered bases for for U and V respectively. Then for $x \in \mathcal{U}$ with $x = t_1u_1 + \cdots + t_nu_n$,

define
$$[x]_{\mathcal{U}} = t = \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \in \mathbb{R}^n$$

For a linear map $L: U \to V$, there is a unique matrix described by $[L]^{\mathcal{U}}_{\mathcal{V}}$ such that for all $x \in U$, $[L(x)]_{\mathcal{V}} = [L]^{\mathcal{U}}_{\mathcal{V}}[x]_{\mathcal{U}}$. This matrix is given by $[L]^{\mathcal{U}}_{\mathcal{V}} = ([L(u_1)]_{\mathcal{V}} \dots [L(u_n)]_{\mathcal{V}}) \in M_{m \times n}$

Remark 1.1.12. The matrix $[L]^{\mathcal{U}}_{\mathcal{V}}$ is termed the matrix of L with respect to the bases \mathcal{U} and \mathcal{V} .

1.2 Determinants

Theorem 1.2.1. Given matrices $A, B \in M_{n \times n}$ and an equation AB = 0,

- $(A|e_i) \sim (I|B_i)$
- $(A|I) \sim (I|B)$

where e_i is the *i*th column of *I* and B_i is the *i*th column of *B*.

Definition 1.2.2. For $n \ge 2$ and $A \in M_{n \times n}$, given a fixed i, $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} \det(A^{i,j})$

• where $A^{i,j}$ is the $(n-1) \times (n-1)$ matrix obtained from A by removing the i^{th} row and j^{th} column • and $A_{i,j}$ is the element in the i^{th} row and j^{th} column of A

Theorem 1.2.3. If $Null(A) \neq \{0\}$, then A is not invertible and det(A) = 0.

Definition 1.2.4. The matrix defined by Cofac(A) is termed the <u>cofactor matrix</u> (or classical adjoint) of A.

Theorem 1.2.5. For $A \in M_{m \times n}$, A is invertible if and only if $\det(A) \neq 0$, and in that case $A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{Cofac}(A)$ where $(\operatorname{Cofac}(A))_{k,\ell} = (-1)^{k+\ell} \det(A^{\ell,k})$

Theorem 1.2.6. For all $A \in M_{n \times n}$, $A \cdot \operatorname{Cofac}(A) = \det(A)I$. Also, $\operatorname{Cofac}(A) = (A^{adj})^t$.

Theorem 1.2.7. [INVERSION PROPERTIES] For any $A, B \in M_{n \times n}$, $\det(AB) = \det(A) \det(B)$ For any $A \in M_{n \times n}$ and for $t \in \mathbb{N}$, $det(A) = \det(A^t)$

2 Operations in vector spaces

Remark 2.0.1. A vector space over a field \mathbb{F} is a set closed over addition and multiplication.

Remark 2.0.2. Let U, V be finite dimensional vector spaces with bases $\mathcal{U}_1, \mathcal{U}_2, \mathcal{V}_1, \mathcal{V}_2$. For any $u \in U$ and linear map $L: U \to V$,

 $[u]_{\mathcal{U}_2} = [I]_{\mathcal{U}_2}^{\mathcal{U}_1} [u]_{\mathcal{U}_1} \qquad [L]_{\mathcal{V}_2}^{\mathcal{U}_2} = [I]_{\mathcal{V}_2}^{\mathcal{V}_1} [L]_{\mathcal{V}_1}^{\mathcal{U}_1} [I]_{\mathcal{U}_1}^{\mathcal{U}_2}$

Definition 2.0.3. For $A, B \in M_{n \times n}$, A and B are <u>similar</u> when there exists an invertible matrix P such that $B = PAP^{-1}$.

2.1 The dot product in \mathbb{R}^n

Definition 2.1.1. For $u, v \in \mathbb{R}^n$, the <u>dot product</u> of u and v is $u \cdot v = \sum_{i=1}^n u_i v_i = u^t v = v^t u$.

Theorem 2.1.2. [PROPERTIES OF THE DOT PRODUCT] For $t \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^n$:

$t \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^{n}$:	
1. $u \cdot u \ge 0$ with $u \cdot u = 0 \iff u = 0$	Positive definite
2. $u \cdot v = v \cdot u$	Symmetric
3. $(tu) \cdot v = t(u \cdot v) = u \cdot (tv)$	Bilinear
4. $(u+w) \cdot w = u \cdot w + v \cdot w$	

Remark 2.1.3. For any $A \in M_{m \times n}$ and $x \in \mathbb{R}^n$, we have $Ax = (c_1 \ldots c_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = c_1 x_1 + \cdots + c_n x_n$. Also note that the row space of A is equal to the column space of A.

Definition 2.1.4. For $u \in \mathbb{R}^n$, the <u>length</u> of u is $\sqrt{\sum_{i=1}^n u_i^2} = \sqrt{u \cdot u} = |u|$.

Theorem 2.1.5. [PROPERTIES OF LENGTH]

For $u, v \in \mathbb{R}^n$ and $t \in \mathbb{R}$, 1. $|u| \ge 0$ with $|u| = 0 \iff u = 0$

- **2.** |tu| = |t| |u|
- **3.** $u \cdot v = \frac{1}{2}(|u+v|^2 |u|^2 |v|^2) = \frac{1}{4}(|u+v|^2 |u-v|^2)$ **4.** $|u \cdot v| \le |u||v|$ with $|u \cdot v| = |u||v| \iff \{u,v\}$ is linearly dependent
- 5. $|u v| \leq |u + v| \leq |u| + |v|$

Definition 2.1.6. For $u, v \in \mathbb{R}^n$, the <u>distance</u> between u and v is d(u, v) = |u - v| = |v - u|.

Theorem 2.1.7. [PROPERTIES OF DISTANCE]

For $u, v, w \in \mathbb{R}^n$,

- **1.** $d(u, v) \ge 0$ with $d(u, v) = 0 \iff u = v$
- **2.** d(u, v) = d(v, u)
- **3.** $d(u,v) \leq d(u,w) + d(w,v)$

Definition 2.1.8. For $0 \neq u, v \in \mathbb{R}^n$, the <u>angle</u> between u and v is $angle(u, v) = \theta$. This is expressed as

$$\theta = \cos^{-1}\left(\frac{u \cdot v}{|u||v|}\right) = \sin^{-1}\left(\frac{|u \times v|}{|u||v|}\right).$$

Theorem 2.1.9. [PROPERTIES OF ANGLES]

For $0 \neq u, v \in \mathbb{R}^n$ and $\theta = \text{angle}(u, v)$:

- 1. Law of cosines: $|v u|^2 = |u|^2 + |v|^2 2|u||v|\cos(\theta)$
- 2. Pythagorean theorem: If $u \cdot (v u) = 0$, then $|v|^2 = |u|^2 + |v u|^2$
- **3.** <u>Trigonometric ratios</u>: If $u \cdot (v u) = 0$, then $\cos(\theta) = \frac{|u|}{|v|}$ and $\sin(\theta) = \frac{|v u|}{|v|}$

Theorem 2.1.10. For $t \in \mathbb{R}$ and $u, v \in \mathbb{R}^n$ and $t, u, v \neq 0$: angle $(tu, v) = \begin{cases} angle(u, v) & \text{if } t > 0 \\ \pi - angle(u, v) & \text{if } t < 0 \end{cases}$

Definition 2.1.11. For $a, b, c \in \mathbb{R}^n$ all distinct, define $\angle abc = angle(a - b, c - b)$.

Theorem 2.1.12. For $a, b, c \in \mathbb{R}^n$ all distinct, $\angle abc + \angle cab + \angle bca = \pi$.

Definition 2.1.13. For $0 \neq u \in \mathbb{R}^n$ and $p \in \mathbb{R}^n$, the hyperspace (or hyperplane) in \mathbb{R}^n through p and perpendicular to u is the set of points $x \in \mathbb{R}^n$ such that $(x-p) \cdot u = 0$.

2.2**Orthogonal projections**

Definition 2.2.1. For $u, v \in \mathbb{R}^n$, we say that u and v are orthogonal (or perpendicular) when $u \cdot v = 0$. If $u, v \neq 0$, then $u \cdot v = 0 \iff \text{angle}(u, v) = \frac{\pi}{2}$.

Definition 2.2.2. For $0 \neq u \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$, the orthogonal projection of x onto u is $\operatorname{proj}_u(x) = \frac{u \cdot x}{|u|}$. If $U = \operatorname{span}\{u\}$, then $\operatorname{proj}_U(x) = \frac{u \cdot x}{|u|^2} u$. Note that $(x - \operatorname{proj}_u(x))$ is orthogonal to u.

With reference to the case above, $[\operatorname{proj}_U x] = \frac{1}{|u|^2} u u^t$.

Definition 2.2.3. For a vector space $U \in \mathbb{R}^n$, the orthogonal complement of U is the vector space $U^{\perp} = \{ x \in \mathbb{R}^n | x \cdot u = 0 \text{ for all } u \in U \} = \text{Null}(U^t).$

The projection of x onto U^{\perp} is $x - \operatorname{proj}_{U} x$.

Theorem 2.2.4. [PROPERTIES OF THE ORTHOGONAL COMPLEMENT]

- Let U be a vector space in \mathbb{R}^n . Then **1.** For $A \in M_{m \times n}$ over \mathbb{R} , $\operatorname{Null}(A) = \operatorname{Row}(A)^{\perp}$ **2.** $U \cap U^{\perp} = \{0\}$ 3. dim(U) + dim (U^{\perp}) = n
 - **4.** $(U^{\perp})^{\perp} = U$

Theorem 2.2.5. For $A \in M_{m \times n}$, rank $(A^t A) = \operatorname{rank}(A)$. Also, Null $(A^t A) = \operatorname{Null}(A)$.

Theorem 2.2.6. Let U be a vector space in \mathbb{R}^n and $x \in \mathbb{R}^n$. Then there exist unique vectors $u, v \in \mathbb{R}^n$ with $u \in U$ and $v \in U^{\perp}$ such that u + v = x.

Corollary 2.2.7. When $\{u_1, \ldots, u_k\}$ is a basis for U and $A = (u_1 \ldots u_k) \in M_{n \times k}$, then $\cdot \operatorname{Proj}_U(x) = A(A^t A)^{-1} A^t x$ $\cdot \operatorname{Proj}_{U^{\perp}}(x) = (I - A(A^t A)^{-1} A^t) x.$

Definition 2.2.8. Let U be a subspace of \mathbb{R}^n and let $x \in \mathbb{R}^n$. Let u, v be the unique vectors with $u \in U$ and $v \in U^{\perp}$ with u + v = x. Then u is termed the orthogonal projection of x onto U and we write $u = \operatorname{Proj}_U(x)$. Note that since $(U^{\perp})^{\perp} = U$, we have $v = \operatorname{Proj}_{U^{\perp}}(x)$.

Theorem 2.2.9. Let U be a subspace of \mathbb{R}^n with $x \in \mathbb{R}^n$. Then the point $u = \operatorname{Proj}_U(x)$ is the unique point on U which is nearest to x.

Theorem 2.2.10. Given a set of data points $\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$, the polynomial $f \in P_m$ with $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_m x^m$ that best fits these points has coefficient vector c given by $c = (A^t A)^{-1} A^t y$, where

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^m \\ 1 & x_2 & x_2^2 & \cdots & x_2^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^m \end{bmatrix}, \ c = \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_m \end{pmatrix} \text{ and } f(x) = \begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{pmatrix} = Ac, \text{ with } y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Remark 2.2.11. The above polynomial is termed the <u>least-squares best-fit polynomial</u> for the given data, such that $\sum_{i=1}^{n} (y_i - f(x_i))^2$ is minimized.

Remark 2.2.12. If we have at least m + 1 distinct x-coordinates, then A has maximal rank, is invertible, and so $(A^tA)^{-1}$ exists. In general, a best-fit polynomial always exists, but a unique one exists only if the number of distinct x-values is greater than m.

2.3 The cross product in \mathbb{R}^n

Theorem 2.3.1. Let $u_1, \ldots, u_{n-1} \in \mathbb{R}^n$. Then the cross product of these vectors is

$$X(u_1, \dots, u_{n-1}) = \text{formal } \det\left(u_1, \dots, u_{n-1}, e_i\right)$$
$$= \sum_{i=1}^n (-1)^{i+n} \det(A^i)e_i$$

where $\{e_1, \ldots, e_n\}$ are the standard basis vectors

 $A = (u_1 \dots u_{n-1}) \in M_{n \times (n-1)}$ $A^i = \text{the } (n-1) \times (n-1) \text{ matrix obtained from } A \text{ by removing the } i\text{th row}$

Theorem 2.3.2. [PROPERTIES OF THE CROSS PRODUCT]

For vectors $u, v \in \mathbb{R}^n$:

- 5. $X(u_1, \ldots, u_{n-1}) \neq 0 \implies \det(u_1 \ldots u_{n-1} X(u_1, \ldots, u_{n-1})) > 0$

Theorem 2.3.3. For $u, v, w, x \in \mathbb{R}^3$, $(u \times v) \times w = (u \cdot w)v - (v \cdot w)u$. Also, $(u \times v) \cdot (w \times x) = (u \cdot w)(v \cdot x) - (u \cdot x)(v \cdot w)$

3 Applications of the cross product

3.1 Geometry

Definition 3.1.1. Let $u_1, \ldots, u_k \in \mathbb{R}^n$. The <u>k-parallelotope</u> on these vectors is the set of points x of the form $x = \sum_{i=1}^k t_i u_i$ with $0 \leq t_i \leq 1$ for all i.

• The points u_1, \ldots, u_k are termed <u>vertices</u> of the k-parallelotope

· If $\{u_1, \ldots, u_k\}$ is linearly dependent, then the k-parallelotope is termed degenerate

Definition 3.1.2. For a k-parallelotope n $u_1, \ldots, u_k \in \mathbb{R}^n$, define the <u>k-volume</u> recursively as follows: $V_1(u_1) = |u_1|$

 $V_k(u_1, \dots, u_k) = |u_k| \sin(\theta) V_{k-1}(u_1, \dots, u_{k-1})$ for $k \ge 2$

where θ is the angle from u_k (or span $\{u_k\}$) to span $\{u_1, \ldots, u_{k-1}\}$, provided that $u_k \neq 0$ and span $\{u_1, \ldots, u_{k-1}\} \neq 0$. If $u_k = 0$ or span $\{u_1, \ldots, u_{k-1}\} = 0$, then we define $V_k = 0$.

Theorem 3.1.3. Let $u_1, \ldots, u_k \in \mathbb{R}^n$. Then $V_k(u_1, \ldots, u_k) = \sqrt{\det(A^t A)}$, where $A = (u_1 \ldots u_k) \in M_{n \times k}$. In particular, $V_k(u_1, \ldots, u_k) = 0 \iff \{u_1, \ldots, u_k\}$ is linearly dependent.

Corollary 3.1.4. $V_k(u_1, \ldots, u_i, \ldots, u_j, \ldots, u_k) = V_k(u_1, \ldots, u_j, \ldots, u_i, \ldots, u_k)$. Or, the k-volume is independent of the order of vectors.

Corollary 3.1.5. $V_k(u_1, \ldots, u_k) = |\det(A)|$

Corollary 3.1.6. $|X(u_1, \ldots, u_{n-1})| = V_{n-1}(u_1, \ldots, u_{n-1})$

Definition 3.1.7. For $a, b \in \mathbb{R}^n$, the perpendicular bisector of [a, b] is the hyperplane through $\frac{a+b}{2}$ perpendicular to b-a. It is the set $\{x \in \mathbb{R}^n \mid (x - \frac{a+b}{2}) \cdot (b-a) = 0\}$.

3.2 Spherical geometry

Definition 3.2.1. The (standard) <u>unit sphere</u> in \mathbb{R}^3 is the set $\mathbb{S}^2 = \{x \in \mathbb{R}^3 \mid |x| = 1\}$. More generally, $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n \mid |x| = 1\}$.

Definition 3.2.2. Given $u \in \mathbb{S}^2$, the <u>line</u> in \mathbb{S}^2 with poles $\pm u$ is the set $L_u = \{x \in \mathbb{S}^2 \mid x \cdot u = 0\} = \mathbb{S}^2 \cap P_u$, where $P_u = \{x \in \mathbb{R}^3 \mid x \cdot u = 0\}$

Axiom 3.2.3. [AXIOMS OF SPHERICAL GEOMETRY]

For $u, v \in \mathbb{S}^2$ and $u \neq \pm v$:

1. $L_u = L_v \iff u = \pm v$

2. There exists a unique line on S^2 through u and v, given by $L_w = \frac{u \times v}{|u \times v|}$

3. There exists a unique line on S^2 through v and perpendicular to L_u

4. $L_u \cap L_v = \{\pm w\}$ for some $w \in \mathbb{S}^2$

Definition 3.2.4. The (spherical) <u>distance</u> between $u, v \in \mathbb{S}^2$ is given by $dist_{\mathbb{S}^2}(u, v) = angle_{\mathbb{R}^3}(u, v)$.

Theorem 3.2.5. For $u, v, w, x \in \mathbb{R}^3$, $(u \times v) \times w = (u \cdot w)v - (v \cdot w)u$ $(u \times v) \cdot (w \times x) = (u \cdot w)(v \cdot x) - (u \cdot x)(v \cdot w)$

Remark 3.2.6. Properties for spherical distance are identical to properties for distance on the plane.

Definition 3.2.7. Given $u \in \mathbb{S}^2$, $r \in (0, \pi)$, the <u>circle</u> on \mathbb{S}^2 centered at u of radius r is the set $C(u, r) = \{x \in \mathbb{S}^2 \mid \operatorname{dist}(x, u) = r\}$ $= x \in \mathbb{S}^2 \mid x \cdot u = \cos(r)\}$ $= P \cap \mathbb{S}^2$ where P is the plane in \mathbb{R}^3 with equation $x \cdot u = \cos(r)$

So P is the plane perpendicular to u which goes through the point $\cos(r)u \cdot u$.

Definition 3.2.8. Given $v \neq \pm u \in \mathbb{S}^2$, define the <u>unit direction vector</u> from u to v to be $u_v = \frac{(u \times v) \times u}{|(u \times v) \times u|} = \frac{v - \operatorname{Proj}_u(v)}{|v - \operatorname{Proj}_u(v)|} = \frac{v - (v \cdot u)u}{|u \times v|}$

Remark 3.2.9. The set $\{u, u_v\}$ is an orthonormal basis for span $\{u, v\}$.

Remark 3.2.10. The line segment $[u, v] \in \mathbb{S}^2$ is given parametrically by $x(t) = \cos(t)u + \sin(t)u_v$ with $0 \leq t \leq \operatorname{dist}(u, v) = \cos^{-1}(u \cdot v)$

Theorem 3.2.11. Two parallel planes a distance $0 \leq \ell \leq 2r$ apart slicing a sphere of radius r enclose an area of $2\pi r\ell$ on the surface of the sphere.

Theorem 3.2.12. Two planes each bisecting a sphere of radius r with an angle θ to each other enclose an area of $2\theta r^2$ on the surface of the sphere.

With reference to the unit sphere on the left:

$$\begin{aligned} a &= a' & b = b' & c = c' \\ \alpha &= \alpha' & \beta = \beta' & \gamma = \gamma' \\ u &= |u'| & |v| = |v'| & |w| = |w'| \\ \iota' &= \frac{v \times w}{|v \times w|} \quad v' = \frac{w \times u}{|w \times u|} \quad w' = \frac{u \times v}{|u \times v|} \end{aligned}$$

[u', v', w'] is the polar triangle of [u, v, w]

Thm 3.1.9. [Spherical law of sines]

$$\frac{\sin(\alpha)}{\sin(a)} = \frac{\sin(\beta)}{\sin(b)} = \frac{\sin(\gamma)}{\sin(c)}$$

Thm 3.1.10. [Spherical law of cosines]

$$\cos(a) = \frac{\cos(\alpha) + \cos(\beta)\cos(\gamma)}{\sin(\beta)\sin(\gamma)}$$
$$\cos(\alpha) = \frac{\cos(a) - \cos(b)\cos(c)}{\sin(b)\sin(c)}$$

3.3 Spherical angles

Definition 3.3.1. A non-degenerate triangle on \mathbb{S}^2 is determined by 3 non-colinear points $u, v, w \in \mathbb{S}^2$. Note that u, v, w are colinear $\iff u, v, w$ lie on a plane in \mathbb{R}^3 through u

 $\iff \{u, v, w\} \text{ is linearly dependent} \\ \iff \{u, v, w\} \text{ is linearly dependent} \\ \iff \det(u \ v \ w) = 0$

Definition 3.3.2. An ordered triangle may be defined as an ordered triple [u, v, w] = (u, v, w) with $u, v, w \in \mathbb{S}^2$ and $\det(u \ v \ w) \neq 0$. An ordered triangle is positively oriented when $\det(u \ v \ w) > 0$ and negatively oriented when $\det(u \ v \ w) < 0$.

Definition 3.3.3. For $u, v, w \in \mathbb{S}^2$ with $v \neq \pm u$ and $w \neq \pm u$, define the <u>oriented</u> angle angle (u, v, w) to be the angle $\theta \in [0, 2\pi]$ such that

$$\cos(\theta) = u_v \cdot u_w$$

$$\sin(\theta) = (u_v \times u_w) \cdot u = \det(u \ u_v \ u_w) = \frac{\det(u \ v \ w)}{|u \times v||u \times w}$$

Theorem 3.3.4. Let [u, v, w] be a positively oriented triangle on \mathbb{S}^2 with angles α, β, γ . Then the area of [u, v, w] is $A = (\alpha + \beta + \gamma) - \pi$.

4 The inner product

4.1 Fundamental definitions

Definition 4.1.1. Let U be a vector space over \mathbb{R} . An inner product on U is a function $\langle , \rangle : U^2 \to \mathbb{R}$ such that for all $u, v \in U$ and $c \in \mathbb{R}$

- **1.** $\langle u, u \rangle \ge 0$ with $\langle u, u \rangle = 0 \iff u = 0$
- **2.** $\langle u, v \rangle = \langle v, u \rangle$
- **3.** $\langle cu, v \rangle = c \langle u, v \rangle = \langle u, cv \rangle$
- 4. $\langle u+v,w\rangle = \langle u,v\rangle + \langle v,w\rangle$

A vector space closed under an inner product is termed an inner product space.

Definition 4.1.2. Let U be a vector space over \mathbb{C} . An inner product on U is a function $\langle , \rangle : U^2 \to \mathbb{C}$ such that for all $u, v \in U$ and $c \in \mathbb{C}$

- 1. $\langle u, u \rangle \in \mathbb{R}$ $\langle u, u \rangle \ge 0$ with $\langle u, u \rangle = 0 \iff u = 0$ 2. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ 3. $\langle cu, v \rangle = c \langle u, v \rangle$ $\langle u, cv \rangle = \overline{c} \langle u, v \rangle$
- 4. $\langle u + v, w \rangle = \langle u, v \rangle + \langle v, w \rangle$ $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$

A vector space over $\mathbb C$ closed under an inner product is termed an inner product space over $\mathbb C$.

Definition 4.1.3. The vector v^* is termed the <u>conjugate transpose</u>, or the adjoint, or the Hermitian transpose of v, such that $v^* = \overline{v}^t$.

4.2 Standard inner products

Remark 4.2.1. The standard inner product on the following spaces is given by:

on
$$\mathbb{R}^n$$
: $\langle u, v \rangle = \sum_{\substack{i=1 \\ i=1}}^{n} u_i v_i = u^t v = v^t u$
on \mathbb{C}^n : $\langle u, v \rangle = \sum_{\substack{i=1 \\ i=1}}^{n} u_i \overline{v_i} = u^t \overline{v} = v^* u$
on $M_{m \times n}(\mathbb{R}) : \langle A, B \rangle = \sum_{\substack{i,j \\ i,j}}^{n} A_{ij} \overline{B_{ij}} = \operatorname{trace}(A^t \overline{B}) = \operatorname{trace}(B^t A)$
on $M_{m \times n}(\mathbb{C}) : \langle A, B \rangle = \sum_{\substack{i,j \\ i,j}}^{n} A_{ij} \overline{B_{ij}} = \operatorname{trace}(A^t \overline{B}) = \operatorname{trace}(B^* A)$
on $C[a, b] : \langle f, g \rangle = \int_a^b fg$

Definition 4.2.2. Let U be an inner product space over \mathbb{F} . Then for $u \in U$, define the <u>norm</u> or <u>length</u> of u to be $|u| = ||u|| = \sqrt{\langle u, u \rangle}$. Also, a <u>unit vector</u> is a vector of length 1.

Theorem 4.2.3.* [PROPERTIES OF THE NORM]

Let U be an inner product space over \mathbb{R} or \mathbb{C} . Then for $u, v \in U$ and $c \in \mathbb{R}$ or \mathbb{C} , we have

- **1.** $|u| \ge 0$ with $|u| = 0 \iff u = 0$
- **2.** |cu| = |c||u|
- **3.** $|\langle u, v \rangle| \leq |u||v|$ with $|\langle u, v \rangle| = |u||v| \iff u, v$ are linearly dependent
- 4. $|u+v| \leq |u|+|v|$

Remark 4.2.4. For a vector space U, a map $| : U \to \mathbb{R}$ which satisfies **1.**, **2.**, **3.** above is termed a <u>norm</u> on U.

Theorem 4.2.5. [POLARIZATION IDENTITY]

In an inner product space U over \mathbb{R} , we have $\langle u, v \rangle = \frac{1}{2} (|u+v|^2 - |u-v|^2)$. In an inner product space V over \mathbb{C} , we have $\langle u, v \rangle = \frac{1}{4} (|u+v|^2 + i|u+iv|^2 - |u-v|^2 - |u-iv|^2)$. **Remark 4.2.6.** For any non-empty set X a map $d: X \times X \to \mathbb{R}$ which satisfies 1., 2., 3. above is termed a <u>metric</u> on X.

Definition 4.2.7. Let U be an inner product space over \mathbb{R} . For $0 \neq u, v \in U$, define than angle between u and v to be $angle(u, v) = \cos^{-1}\left(\frac{\langle u, v \rangle}{|u||v|}\right)$

Definition 4.2.8. Let U be an inner product space over \mathbb{R} or \mathbb{C} . For $u, v \in U$, we say that u and v are orthogonal if $\langle u, v \rangle = 0$.

Theorem 4.2.9. [Pythagoras]

Let U be an inner product space over \mathbb{R} or \mathbb{C} . Let $0 \neq u, v \in U$. Suppose $\langle u, v \rangle = 0$. Then $|v - u|^2 = |v|^2 + |u|^2$.

4.3 Orthogonal sets / compliments / projections

Definition 4.3.1. Let U be an inner product space over \mathbb{R} or \mathbb{C} . A set of vectors $\{u_1, \ldots, u_n\}$ in U is termed an <u>orthogonal</u> set when $\langle u_i, u_j \rangle = 0$ for all $i \neq j$, or each pair of vectors is orthogonal. The set is termed <u>orthonormal</u> if $\langle u_i, u_j \rangle = 0$ for all $i \neq j$ and $\langle u_i, u_i \rangle = 1$ for all i.

Remark 4.3.2. Note that $\{u_1, \ldots, u_k\} \in \mathbb{R}^n$ is orthogonal $\iff A^t A$ is diagonal for $A = (u_1 \ldots u_k) \in M_{n \times k}$. Similarly, $\{u_1, \ldots, u_k\} \in \mathbb{R}^n$ is orthonormal $\iff A^t A = I$ for $A = (u_1 \ldots u_k) \in M_{n \times k}$.

The same may be extended to vectors over \mathbb{C}^n , but with conjugate transpose in place of transpose.

Theorem 4.3.3. Let U be an inner product space over \mathbb{R} or \mathbb{C} . Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ be an orthogonal set of non-zero vectors. Then \mathcal{U} is linearly independent, and also for $x \in \text{span}\{U\}$, $([x]_{\mathcal{U}})_k = \frac{\langle x, u_k \rangle}{|u_k|^2}$.

Theorem 4.3.4. [GRAM-SCHMIDT PROCEDURE]

Let W be an inner product space. Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ be a linearly independent set of vectors in W. So $U = \operatorname{span}(\mathcal{U})$ is an n-dimensional subspace of W. Define vectors v_1, \ldots, v_n recursively by

$$v_1 = u_1$$
$$v_k = u_k - \sum_{i=1}^{k-1} \frac{\langle u_k, v_i \rangle}{|v_i|^2} v_i$$

Then for each k = 1, ..., n, the set $\{v_1, ..., v_k\}$ is an orthogonal set of non-zero vectors with $\operatorname{span}\{v_1, \ldots, v_{k-1}\} = \operatorname{span}\{u_1, \ldots, u_{k-1}\}.$

Corollary 4.3.5. Every finite-dimensional inner product space has an orthonormal basis.

Corollary 4.3.6. Let W be a finite-dimensional inner product space. Let V be a subspace of W. Then every orthonormal basis of U extends to an orthonormal basis of W.

Definition 4.3.7. Let U and V be inner product spaces over \mathbb{R} or \mathbb{C} . An isomorphism (of inner product spaces) from U to V is a map $L: U \to V$ such that L is linear, bijective, and preserves inner products $(\langle L(x), L(y) \rangle = \langle x, y \rangle$ for all $x, y \in U$).

It follows as a consequence that the inverse is also linear and also preserves inner products.

The map need only be onto, because the preservation of inner products implies that it is 1:1.

Definition 4.3.8. Two inner product spaces U, V are said to be isomorphic when there exists an isomorphism $L: U \to V$.

Corollary 4.3.9. Every *n*-dimensional inner product space over \mathbb{F} for $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , is isomorphic to \mathbb{F}^n .

Definition 4.3.10. Let W be an inner product space over \mathbb{R} or \mathbb{C} . Let U be a subspace of W. Then the orthogonal compliment of U is the vector space $U^{\perp} = \{x \in W \mid \langle x, u \rangle = 0 \text{ for all } u \in U\}$.

Definition 4.3.11. Let U be a vector space over \mathbb{F} . For a set of vectors \mathcal{U} , a linear combination of the elements of \mathcal{U} is always a finite sum of the form $\sum_{i=1}^{n} c_i u_i$ for $c_i \in \mathbb{F}$ and $u_i \in \mathcal{U}$.

Theorem 4.3.12. [PROPERTIES OF THE ORTHOGONAL COMPLIMENT]

Let W be an inner product space over \mathbb{R} or \mathbb{C} , and let U be a subspace of W. Then

1. $U \cap U^{\perp} = \{0\}$

2.
$$U \subset (U^{\perp})^{\perp}$$

If W is finite-dimensional, then we also have

- **3.** If $\mathcal{U} = \{u_1, \ldots, u_k\}$ is an orthogonal (orthonormal) basis for U, and $\mathcal{W} = \{u_1, \ldots, u_k, v_1, \ldots, v_\ell\}$ is an orthogonal (orthonormal) basis for W, then $\mathcal{V} = \mathcal{V} \setminus \mathcal{U} = \{v_1, \ldots, v_\ell\}$ is an orthogonal (orthonormal) basis for U^{\perp} .
- 4. If $\mathcal{U} = \{u_1, \ldots, u_k\}$ is an orthogonal (orthonormal) basis for U, and $\mathcal{V} = \{v_1, \ldots, v_\ell\}$ is an orthogonal (orthonormal) basis for U^{\perp} , then $\mathcal{W} = \mathcal{U} \cup \mathcal{V}$ is an orthogonal (orthonormal) basis for W.
- 5. $\dim(U) + \dim(U^{\perp}) = \dim(W)$
- **6.** Given any $x \in W$, there exist unique vectors $u, v \in W$ with $u \in U$ and $v \in U^{\perp}$ such that u + v = w. **7.** $W = U \oplus U^{\perp}$

Theorem 4.3.13.*[ORTHOGONAL PROJECTIONS]

Let W be a (possibly infinite-dimensional) inner product space over \mathbb{R} or \mathbb{C} and let U be a finite dimensional subspace of W. Then given $x \in W$, there exist unique vectors $u, v \in W$ with $u \in U$ and $v \in U^{\perp}$ such that u + v = x. In addition, the vector u is the unique vector in U which is nearest to x.

Moreover, if $\mathcal{U} = \{u_1, \ldots, u_n\}$ is any orthogonal basis for U, then $u = \sum_{k=1}^n \frac{\langle x, u_k \rangle}{|u_k|^2} u_k$.

Definition 4.3.14. Let W be an inner product space over \mathbb{R} or \mathbb{C} and let U be a finite-dimensional subspace. Given $x \in W$, the unique vector u in the above theorem is termed the orthogonal projection of x onto U, and is expressed $u = \operatorname{Proj}_{U}(x)$.

4.4 Quotient spaces

Definition 4.4.1. Let W be any vector space over \mathbb{F} . Let U be a subspace of W. For any $w \in W$, define the <u>coset</u> of U containing w to be

$$\{w\} + U = \{w + u \mid u \in U\} = w + U$$

Definition 4.4.2. Let W be any vector space over \mathbb{F} . Let U be a subspace of W. Then the <u>quotient space</u>, or the collection of all cosets of U, is the vector space

$$W/U = \{p + U \mid p \in W\}$$

with (p+U) + (q+U) = (p+q) + U c(p+U) = cp + U0 = 0 + U = U

Definition 4.4.3. The <u>codimension</u> of U in W is the dimension of W/U.

Definition 4.4.4. A hyperspace of *W* is a subspace of codimension 1.

Theorem 4.4.5. Let W be a vector space over \mathbb{F} . Let U be a subspace of W. If \mathcal{U} is a basis for U and \mathcal{U} extends to a basis \mathcal{W} for W, and if we let $\mathcal{V} = \mathcal{W} \setminus \mathcal{U}$, then $\{v + U \mid v \in \mathcal{V}\}$ is a basis for W/U, and the dimension of the quotient space is the number of vectors in \mathcal{V} , or the cardinality of \mathcal{V} , and $\dim(W/U) = |\mathcal{V}|$. Further, if W is finite dimensional, then $\dim(U) + \dim(W/U) = \dim(W)$.

Theorem 4.4.6. With respect to the above, $W \cong U \oplus W/U$, or $W \cong U \times W/U$.

Definition 4.4.7. If U, V are subspaces of W with $U \cap V = \{0\}$ such that for all $w \in W$, there exist $u \in U, v \in V$ with u + v = w, then W is the internal direct sum of U and V, and we write $W = U \oplus V$.

Definition 4.4.8. Given two vector spaces U, V, the <u>external direct sum</u> (or <u>direct product</u>) of U and V is the vector space

$$U \times V = \{(u, v) \mid u \in U, v \in V\}$$

with
$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2)$$

 $c(u + v) = (cu + cv)$

Remark 4.4.9. If U, V are subspaces of W, then $U \oplus V \cong U \times V$. Also, $U \times \{0\} = \{(u, 0) \mid u \in U\} \subset U \times V$.

Definition 4.4.10. Given a set A and vector spaces U_{α} with $\alpha \in A$, define the <u>direct sum</u> of the spaces to be the vector space

$$\sum_{\alpha \in A} U_{\alpha} = \{ f : A \to \bigcup_{\alpha \in A} U_{\alpha} \mid f(\alpha) \in U_{\alpha} \text{ for all } \alpha \in A \text{ with } f(\alpha) \neq 0 \text{ for only finitely many } \alpha \in A \}$$

and we define the direct product of the vector spaces U_{α} to be

$$\prod_{\alpha \in A} U_{\alpha} = \{ f : A \to \bigcup_{\alpha \in A} U_{\alpha} \mid f(\alpha) \in U_{\alpha} \text{ for all } \alpha \in A \}$$

When A is a finite, these are equal. When A is infinite, $\sum_{\alpha \in A} U_{\alpha} \subsetneq \prod_{\alpha \in A} U_{\alpha}$

Theorem 4.4.11. Suppose $L: W \to V$ is linear. Then $W/\ker(L) \cong \operatorname{Range}(L)$ is an isomorphism given by $\overline{L}: W/\ker(L) \to \operatorname{Range}(L)$ with $\overline{L}(p + \ker(L)) = L(p) \in L$.

4.5 Dual spaces

Definition 4.5.1. Let U be a vector space over \mathbb{F} . The dual vector space of U is the vector space

$$U^* = \operatorname{Lin}(U, \mathbb{F}) = \{ f : U \to \mathbb{F} \mid f \text{ is linear} \}$$

Theorem 4.5.2.* Let U be a finite-dimensional vector space over \mathbb{F} . Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ be a basis for U. For $k = 1, \ldots, n$, define $f_k \in U^*$, so $f_k : U \to \mathbb{F}$, to be the unique linear map with $f_k(u_i) = \delta_{ki}$. Then $\mathcal{F} = \{f_1, \ldots, f_n\}$ is a basis for U^* .

Definition 4.5.3. The set $\mathcal{F} = \{f_1, \ldots, f_n\}$ in the above theorem is termed the <u>dual basis</u> of \mathcal{U} for U.

Then
$$f = \sum_{k=1}^{n} f(u_k) f_k$$
.

Definition 4.5.4. Let U, V be vector spaces over \mathbb{F} . Let $L: U \to V$ be linear. Define the <u>dual</u> (or the transpose) map $L^t: V^* \to U^*$ given by $L^t(g) = g \circ L$ for all $g \in V^*$.

Theorem 4.5.5. Let U, V be finite dimensional vector spaces over \mathbb{F} . Let $L: U \to V$ be linear. \mathcal{U}, \mathcal{V} be bases for U, V. Let \mathcal{F}, \mathcal{G} be the dual bases for U^* and V^* . Then $[L^t]_{\mathcal{F}}^{\mathcal{G}} = ([L]_{\mathcal{V}}^{\mathcal{U}})^t$

Definition 4.5.6. Let U be a vector space over \mathbb{F} . The evaluation map $E: U \to U^{**}$ is given by E(u)(f) = f(u) for all $u \in U$ and $f \in U^*$.

Theorem 4.5.7. Let U be a finite dimensional vector space over \mathbb{F} . Then the evaluation map $E: U \to U^{**}$ is a (natural) isomorphism.

Remark 4.5.8. Given a basis $\mathcal{U} = \{u_1, \ldots, u_n\}$ for a vector space U, we obtain a (non-natural) isomorphism $L_{\mathcal{U}}: U \to U^*$ given by $L_m F(u_i) = f_i$. This is an isomorphism, since $\mathcal{F} = \{f_1, \ldots, f_n\}$ is a basis for U^* .

Theorem 4.5.9. Let U be a finite dimensional inner product space over \mathbb{R} or \mathbb{C} . Given $f \in U^*$, there exists a unique vector $u \in U$ such that $f(x) = \langle x, u \rangle$ for all $x \in U$.

Corollary 4.5.10. Let U be a finite dimensional inner product space over \mathbb{R} . Then the map $L: U \to U^*$ given by $L(u)(x) = \langle x, u \rangle$ is an isomorphism.

Definition 4.5.11. Let W be a vector space over \mathbb{F} . Let U be a subspace of W. Then the <u>annihilator</u> of U in W^* is the space $V^\circ = \{f \in W^* \mid f(u) = 0 \text{ for all } u \in U\}.$

Theorem 4.5.12. Let U, V be finite-dimensional inner product spaces over \mathbb{R} or \mathbb{C} . Let $L: U \to V$ be a linear map. Then there exists a unique linear map $L^*: V \to U$ such that $\langle L(x), y \rangle = \langle x, L^*(y) \rangle$ for all $x \in U$ and $y \in V$.

Definition 4.5.13. The above map L^* is termed the adjoint of L. In case U and/or V are infinite dimensional, such a map need not exist, but if it does, then it is termed the adjoint of L.

Corollary 4.5.14. Let U, V be finite dimensional inner product spaces. Let \mathcal{U}, \mathcal{V} be orthonormal bases for U, V. Let $L: U \to V$ be linear. Then $[L^*]_{\mathcal{U}}^{\mathcal{V}} = ([L]_{\mathcal{V}}^{\mathcal{U}})^*$

4.6 Normal linear maps, etc

Theorem 4.6.1. Let U, V be finite dimensional vector spaces over \mathbb{F} . Let $L: U \to V$ be linear with $\operatorname{rank}(L) = r$. Then there exist bases \mathcal{U}, \mathcal{V} for U and V such that $[L]_{\mathcal{V}}^{\mathcal{U}}$ is of the form $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

Lemma 4.6.2.* For every $A \in M_{n \times n}(\mathbb{F})$ whose characteristic polynomial splits, there exists a unitary matrix P (and so $P^{-1} = P^*$) such that $T = P^*AP$ is upper triangular. Further, the diagonal values of T are the eigenvalues of A, repeated by their algebraic multiplicity.

Theorem 4.6.3.* [SCHUR]

Let U be a finite dimensional inner product space over \mathbb{R} or \mathbb{C} . Let $L: U \to U$ be linear. Suppose the characteristic polynomial f_L splits over \mathbb{F} (always occurs for \mathbb{C} , for \mathbb{R} only when eigenvalues (roots) are real). Then there exists an orthonormal basis \mathcal{U} such that $T = [L]_{\mathcal{U}}$ is upper triangular. Moreover, the diagonal values of T are the eigenvalues of L, repeated according to their algebraic multiplicity.

Remark 4.6.4. The following statements are equivalent:

- \cdot The linear map L is diagonalizable.
- \cdot There exists a basis of eigenvectors of L for L.
- $\cdot \dim(E_{\lambda_i}) = m_i$ for all i

where E_{λ_i} is the eigenspace of the eigenvalue λ_i of L, and m_i is the algebraic multiplicity of eigenvalue λ_i .

Definition 4.6.5. Let U be a finite-dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L: U \to V$ be linear. The map L is <u>unitarily triangularziable</u> if there exists an orthonormal basis \mathcal{U} for U such that $[L]_{\mathcal{U}}$ is upper triangular. Similarly, L is <u>unitarily diagonalizable</u> if there exists an orthonormal basis \mathcal{U} for U such that $[L]_{\mathcal{U}}$ is diagonal.

Corollary 4.6.6. [FROM SCHUR, FOR $\mathbb{F} = \mathbb{C}$]

Let U be a finite dimensional inner product space over \mathbb{C} . Let $L: U \to U$ be linear.

- **1.** $L^*L = LL^* \iff L$ is unitarily diagonalizable
- **2.** $L^* = L \iff L$ is unitarily diagonalizable and the eigenvalues of L are real.
- $L^* = -L \iff L$ is unitarily diagonalizable and the eigenvalues of L are imaginary.
- **4.** $L^*L = I \iff L$ is unitarily diagonalizable and the eigenvalues of L have unit norm.

Corollary 4.6.7. [FROM SCHUR, FOR $\mathbb{F} = \mathbb{R}$]

Let U be a finite dimensional inner product space over \mathbb{R} . Let $L: U \to U$ be linear.

- **1.** $L^*L = LL^* \iff L$ is orthogonally diagonalizable
- **2.** $L^* = L$ and $L^*L = I \iff L$ is orthogonally diagonalizable and every eigenvalue of L is ± 1

Definition 4.6.8. Let U be an inner product space over \mathbb{R} or \mathbb{C} . Let $L: U \to U$ be linear.

- when $L^*L = LL^*$, then L is normal
- when $L^* = L$, then L is self-adjoint or <u>Hermitian</u>
- when $L^* = L$, then L is skew-Hermitian

when $L^*L = I$, then L is unitary

Remark 4.6.9. For any field \mathbb{F} , we have the following matrix groups:

 $\begin{aligned} GL(n,\mathbb{F}) &= \{A \in M_{n \times n}(\mathbb{F}) \mid \det(A) \neq 0\} & \text{general linear group} \\ SL(n,\mathbb{F}) &= \{A \in M_{n \times n}(\mathbb{F}) \mid \det(A) = 1\} & \text{special linear group} - preserves orientation} \\ O(n,\mathbb{F}) &= \{A \in M_{n \times n}(\mathbb{F}) \mid A^t A = I\} & \text{orthogonal group} - preserves distance} \\ SO(n,\mathbb{F}) &= \{A \in M_{n \times n}(\mathbb{F}) \mid A^t A = I, \det(A) = 1\} & \text{special orthogonal group} \\ U(n,\mathbb{F}) &= \{A \in M_{n \times n}(\mathbb{C}) \mid A^* A = I\} & \text{unitary group} \\ SU(n,\mathbb{F}) &= \{A \in M_{n \times n}(\mathbb{C}) \mid A^* A = I, \det(A) = 1\} & \text{special unitary group} \end{aligned}$

Corollary 4.6.10. Let U be a finite-dimensional inner product space over \mathbb{R} . Let $L: U \to U$ be linear. Then $L^*L = LL^*$ if and only if there is an orthonormal basis \mathcal{U} for U such that $[L]_{\mathcal{U}}$ is in the block diagonal form

where each λ_j is a real eigenvalue, and each $\mu_j = a_j \pm ib_j$ is a pair of complex eigenvalues

for $k \ge 0, \ell \ge 0, k + 2\ell = n$

Corollary 4.6.11. For the same conditions as above, if $L^*L = I$, then there exists an orthonormal basis \mathcal{U} for U such that $[L]_{\mathcal{U}}$ has the above form, except each real eigenvalue is ± 1 , and each block matrix of complex eigenvalues has become the block rotation matrix.

Corollary 4.6.12. If L is orthogonally diagonalizable and $\lambda = \pm 1$ for all eigenvalues, the map L represents a reflection in the space spanned by the columns in L with $\lambda = 1$.

Corollary 4.6.13. L is a reflection matrix if and only if $L^* = L$ and $L^*L = I$.

Corollary 4.6.14. L is an orthogonal projection if and only if $L^* = L$ and $L^2 = L$.

Definition 4.6.15. For $\mathcal{U} = \{u_1, \ldots, u_n\}$ an orthonormal basis for U a subspace of an inner product space W

the <u>scaling map</u> by λ_k in the direction of u_k is represented by the matrix $[\text{scale}_{\lambda_k, u_k}]_{\mathcal{U}} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \lambda_k & \\ & & & 1 \end{pmatrix}$

the <u>orthogonal projection map</u> onto span{ u_k } is given by the matrix $[\operatorname{Proj}_{u_k}]_{\mathcal{U}} = \begin{pmatrix} & & & \\ & 0 & & \\ & & 1 & \\ & & & 0 \end{pmatrix}$

Theorem 4.6.16. [CAYLEY-HAMILTON THEOREM]

Let U be a finite-dimensional vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and $L : U \to U$ linear. If f_L is the characteristic polynomial of L, then $f_L(L) = 0$.

5 Bilinear and quadratic forms

5.1 Bilinear forms

Definition 5.1.1. Let U be a vector space over \mathbb{F} . A <u>bilinear form</u> on U is a map $S: U \times U \to \mathbb{F}$ such that for all $x, y, z \in U$ and $c \in \mathbb{F}$

1. S(x, y + z) = S(x + y) + S(y + z)

2. S(x+y,z) = S(x+z) + S(y+z)

3. $S(cx, y) = c \cdot S(x, y) = S(x, cy)$

A bilinear form S is symmetric if S(x, y) = S(y, x)

A bilinear form is skew-symmetric or alternating if S(x,y) = -S(y,x)

A bilinear form is non-degenerate if S(u, x) = 0 for all $x \in U \iff u = 0$ for all $u \in U$

Remark 5.1.2. If \mathcal{U} is a basis for U, then a bilinear form S on U is determined completely by the values S(u, v) for $u, v \in \mathcal{U}$. Indeed, if we have $x = \sum_{i=1}^{n} t_i u_i$ and $y = \sum_{j=1}^{n} r_j u_j$ for $u_i, u_j \in \mathcal{U}$, then

$$S(x,y) = S\left(\sum_{i=1}^{n} t_{i}u_{i}, \sum_{j=1}^{n} r_{i}u_{i}\right) = \sum_{i,j} t_{i}r_{j}S(u_{i}, u_{j})$$

Note that this argument also holds for the infinite-dimensional case, since linear combinations are still finite.

Remark 5.1.3. $\operatorname{Bilin}(U \times U) \cong \prod_{(u,v) \in U \times U} \mathbb{F}$

Definition 5.1.4. Let U be a finite dimensional vector space over \mathbb{F} . Let $S: U \times U \to \mathbb{F}$ be a bilinear form. Let \mathcal{U} be a basis for U. Then the <u>matrix</u> of S with respect to the basis \mathcal{U} is defined to be the matrix $[S]^{\mathcal{U}}$ such that $S(u, v) = [u]_{\mathcal{U}}^t[S]^{\mathcal{U}}[v]_{\mathcal{U}}$. Furthermore, the (i, j) entry of $[S]^{\mathcal{U}}$ is $S(u_i, u_j)$.

Remark 5.1.5. Let U be a finite-dimensional vector space over \mathbb{F} . Let $S: U \times U$ be a bilinear form. Let \mathcal{U}, \mathcal{V} be bases for U. Then $[S]^{\mathcal{V}} = [I]_{\mathcal{U}}^{\mathcal{V}^t}[S]^{\mathcal{U}}[I]_{\mathcal{U}}^{\mathcal{V}}$.

Definition 5.1.6. For $A, B \in M_{n \times n}(\mathbb{F})$, we say that A and B are congruent if there exists an invertible matrix Q such that $B = Q^t A Q$. Note that congruent matrices have the same rank.

Definition 5.1.7. The <u>rank</u> of a bilinear form S on a finite dimensional vector space U is the rank of $[S]^{\mathcal{U}}$ for any basis \mathcal{U} of U.

Remark 5.1.8. A bilinear form S on a finite-dimensional vector space U is symmetric \iff the matrix $[S]^{\mathcal{U}}$ is symmetric for any basis \mathcal{U} of U.

Theorem 5.1.9. Let U be a finite-dimensional vector space over \mathbb{F} . Let S be a symmetric bilinear form. **1.** If $\operatorname{char}(\mathbb{F}) \neq 2$, (that is, $1 + 1 \neq 0$), then there exists a basis \mathcal{U} for U such that $[S]^{\mathcal{U}}$ is diagonal. **2.** If $\mathbb{F} = \mathbb{C}$, then there exists a basis \mathcal{U} such that $[S]^{\mathcal{U}} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ for $r = \operatorname{rank}(S)$.

- **3.** If $\mathbb{F} = \mathbb{R}$, then there exists a basis \mathcal{U} for U such that $[S]^{\mathcal{U}} = \begin{pmatrix} I_k & I_{r-k} \\ & 0 \end{pmatrix}$ for some k.
- **4.** If $\mathbb{F} = \mathbb{R}$, then there exists an orthonormal basis U for U such that $[S]^{\mathcal{U}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k & 0 \end{pmatrix}$ for non-zero
- eigenvalues λ₁,..., λ_k of [S]^U.
 5. If F = R and D = [S]^U is diagonal for U a basis for U, then the number of positive entries of D does not depend on U.

Theorem 5.1.10. [Sylvester]

Let U be a finite-dimensional vector space over U. Let $S: U \times U \to \mathbb{R}$ be a symmetric bilinear form. Let \mathcal{U} and \mathcal{V} be two bases for U such that $[S]^{\mathcal{U}}$ and $[S]^{\mathcal{V}}$ are both diagonal. Then the number of positive entries in $[S]^{\mathcal{U}}$ is the number of positive entries in $[S]^{\mathcal{V}}$.

Remark 5.1.11. We write $\operatorname{Bilin}(U) = \operatorname{Bilin}(U \times U, \mathbb{F})$ for the space of bilinear forms $S : U \times U \to \mathbb{F}$. Given a basis \mathcal{U} of *n*-dimensional U, the map $\psi_n : \operatorname{Bilin}(U) \to M_{n \times n}(\mathbb{F})$ is a vector space isomorphic map.

Remark 5.1.12. An inner product in a real inner product space is a positive definite symmetric bilinear form. Also, a bilinear form $S: U \times U \to \mathbb{R}$ is non-degenerate when S(u, x) = 0 for all $x \in U \iff u = 0$ for all $u \in U$.

5.2Quadratic forms

Definition 5.2.1. A polynomial $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ is of the form

$$f(x_1, x_2, \dots, x_n) = \sum_{0 \le i_1, \dots, i_n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

with only finitely many of the $a_{i_1,\ldots,i_n} = 0$.

Definition 5.2.2. A polynomial homogeneous of degree d may be expressed as

$$K(x) = \sum_{d=0}^{m} \left(\sum_{\substack{0 \le i_1, \dots, i_n \\ i_1 + \dots + i_n = d}} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n} \right)$$

Definition 5.2.3. Let U be a vector space over \mathbb{F} . A quadratic form on U is a map $K: U \to \mathbb{F}$ of the form K(u) = S(u, u) for some symmetric bilinear form S. If char(\mathbb{F}) $\neq 2$, then

K(u + v) = S(u + v, u + v) = S(u, u) + 2S(u, v) + S(v, v) = K(u) + 2S(u, v) + K(v)

Theorem 5.2.4. A quadratic form may be diagonalized if $char(\mathbb{F}) \neq 2$.

Theorem 5.2.5. Let U be an n-dimensional vector space over \mathbb{R} . Let $K: U \to \mathbb{R}$ be a quadratic form on U, and let $S: U \times U \to \mathbb{R}$ be the corresponding symmetric bilinear form. Then the following are equivalent:

- **1.** K (or S) is positive definite
- 2. the eigenvalues of $[K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ are all positive for some (hence any) basis \mathcal{U} for U
- **3.** for $A = [K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ we have $\det(A^{k \times k}) > 0$ with $1 \leq k \leq n$

Remark 5.2.6. For $A \in M_{n \times m}(\mathbb{F})$ the notation $A^{k \times \ell}$ denotes the $k \times \ell$ upper left submatrix of A such that $1 \leq k \leq n$ and $1 \leq \ell \leq m$.

5.3Characterization and extreme values

Recall that $K: U \to \mathbb{R}$ or $S: U \times U \to \mathbb{R}$ is positive definite or symmetric bilinear when K(u) = S(u, u) > 0for $u \neq 0$.

Theorem 5.3.1.*[CHARACTERIZATION OF POSITIVE DEFINITE FORMS]

Let U be an n-dimensional inner product space over \mathbb{R} . Let $K: U \to \mathbb{R}$ be a quadratic form on U, and let $S: U \times U \to \mathbb{R}$ be the corresponding symmetric bilinear form. Then the following statements are equivalent: **1.** K (or S) is positive definite

- 2. the eigenvalues of $[K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ are all positive for some (hence any) basis \mathcal{U} for U3. for $A = [K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ we have $\det(A^{k \times k}) > 0$

where $A^{k \times k}$ represents the $k \times k$ upper-left submatrix of A.

Theorem 5.3.2. Let $A \in M_{n \times n}(\mathbb{F})$. Suppose $A^* = A$. Recall that the eigenvalues of A are real. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A listed according to algebraic multiplicity in increasing order. Then $\max_{|x|=1} \{x^*Ax\} = \lambda_n$ and $\min_{|x|=1} \{x^*Ax\} = \lambda_1$.

Corollary 5.3.3. Let U be an n-dimensional inner product space over \mathbb{R} . Let $S: U \times U \to \mathbb{R}$ be a symmetric bilinear form and let $K: U \to \mathbb{R}$ be the corresponding quadratic form on U. Let $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$ be the eigenvalues listed according to algebraic multiplicity in increasing order, of $[K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ for some (hence any) orthonormal basis \mathcal{U} for U. Then $\max_{|u|=1} \{K(u)\} = \lambda_n$ and $\min_{|u|=1} \{K(u)\} = \lambda_1$.

Definition 5.3.4. Let U, V be inner product spaces over \mathbb{F} . If a map $L: U \to V$ has an adjoint, then define the singular values of L to be the square roots of the eigenvalues of L^*L .

Let U, V be finite dimensional inner product spaces over \mathbb{F} . Let $L: U \to V$ be linear. Let $0 \leq \sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$ be the singular values of L listed in increasing order, repeated according to algebraic multiplicity. Then $\max_{|u|=1} \{|L(u)|\} = \sigma_n$ and $\min_{|u|=1} \{|L(u)|\} = \sigma_1$. |u|=1

Definition 5.3.5. The <u>spectrum</u> of a linear map $L: U \to U$ over an inner product space U is the set of eigenvalues of L.

Theorem 5.3.6.* Let U, V be inner product spaces over \mathbb{F} . Let $L: U \to V$ be linear. Then there exist orthonormal bases \mathcal{U}, \mathcal{V} for U, V such that $[L]_{\mathcal{V}}^{\mathcal{U}}$ is in the form

$$[L]_{\mathcal{V}}^{\mathcal{U}} = \Sigma = \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & 0 \\ & & \sigma_r & \\ & 0 & & 0 \end{pmatrix}$$

Corollary 5.3.7. For $A \in M_{m \times n}(\mathbb{F})$, there exist $P \in M_{m \times n}(\mathbb{F})$ and $Q \in M_{n \times n}(\mathbb{F})$ with $P^*P = I_m$ and $Q^*Q = I_n$ such that

$$P^*AQ = \Sigma = \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & 0 \\ & & \sigma_r & \\ \hline & 0 & & 0 \end{pmatrix}$$

This is termed the singular value decomposition of $A = [L]^{\mathcal{U}}$ with the singular values as described above.

6 Jordan normal form

6.1 Block form

Definition 6.1.1. The $m \times m$ <u>Jordan block</u> for the eigenvalue $\lambda \in \mathbb{F}$ over \mathbb{F} is the $m \times m$ matrix

$$J_{\lambda}^{m} = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & & \lambda \end{pmatrix}$$

Definition 6.1.2. A matrix $B \in M_{n \times n}(\mathbb{F})$ is in <u>Jordan form</u> when it is in the block diagonal form

$$B = \begin{pmatrix} J_{\lambda_1}^{m_1} & & & \\ & J_{\lambda_2}^{m_2} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & J_{\lambda_\ell}^{m_\ell} \end{pmatrix}$$

6.2 Canonical form

Theorem 6.2.1. Let U be a finite-dimensional vector space over \mathbb{F} . Let $L: U \to U$ be linear. Suppose that the characteristic polynomial $f_L(t)$ of L splits over \mathbb{F} . Then there exists a basis \mathcal{U} for U such that $[L]_{\mathcal{U}} = B$ is in Jordan form. The matrix B is uniquely determined by L up to the order of the Jordan blocks.

Definition 6.2.2. A generalized eigenvector of a map $L: U \to U$ for an eigenvalue λ of L is a non-zero vector $u \in U$ such that $(L - \lambda I)^P u = 0$ for some $p \ge 0$.

Definition 6.2.3. A cycle of generalized eigenvectors of length m for the eigenvalue λ is an ordered set of vectors $C = \{u_1, \ldots, u_m\}$ such that

$$u_{m-1} = (L - \lambda I)u_m$$
$$u_{m-2} = (L - \lambda I)^2 u_m$$
$$\vdots$$
$$u_1 = (L - \lambda I)^{m-1} u_m$$
$$0 = (L - \lambda I)^m u_m$$

Definition 6.2.4. The generalized eigenspace for λ is $K_{\lambda} = \{u \in U \mid (L - \lambda I)^p u = 0 \text{ for some } p \ge 0\}$

Theorem 6.2.5.* Let U be a finite-dimensional vector space over \mathbb{F} with $L: U \to U$ linear. Then for every eigenvalue λ of L, there exists a basis of cycles corresponding to λ for K_{λ} .

Definition 6.2.6. Let $L: U \to U$ for U a finite-dimensional vector space over \mathbb{F} be linear. The minimal polynomial of L is the unique monic polynomial $f_L(x)$ of minimum possible degree such that $\overline{f_L(L)} = 0$.

Note that the minimal polynomial is always a factor of the characteristic polynomial, and the roots of the minimal polynomial are the same as the roots of the characteristic polynomial.

7 Selected proofs

Theorem 4.2.3. [PROPERTIES OF THE NORM]

Let U be an inner product space over \mathbb{R} or \mathbb{C} . Then for $u, v \in U$ and $c \in \mathbb{R}$ or \mathbb{C} , we have

- 1. $|u| \ge 0$ with $|u| = 0 \iff u = 0$
- **2.** |cu| = |c||u|
- **3.** $|\langle u, v \rangle| \leq |u| |v|$ with $|\langle u, v \rangle| = |u| |v| \iff u, v$ are linearly dependent
- **4.** $|u+v| \leq |u|+|v|$

Proof: For 2.:

$$|cu|^{2} = \langle cu, cu \rangle = c \langle u, cu \rangle = c\overline{c} \langle u, u \rangle = |c|^{2} |u|^{2} \implies |cu| = |c||u|$$

For **3.**: Suppose $\{u, v\}$ is linearly dependent, say u = cv for $c \in \mathbb{C}$.

$$|\langle u, v \rangle| = |c \langle v, v \rangle| = |c||v|^2 = |cv||v| = |u||v|$$

Suppose $\{u, v\}$ is linearly independent.

$$\langle v - \operatorname{Proj}_{u} v, u \rangle = \left\langle v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u, u \right\rangle = \langle v, u \rangle - \left\langle \frac{\langle v, u \rangle}{\langle u, u \rangle} u, u \right\rangle = \langle v, u \rangle - \frac{\langle v, u \rangle}{\langle u, u \rangle} \langle u, u \rangle = 0$$

Since $\{u, v\}$ is linearly independent, $v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u \neq 0$, so

$$0 < \left| v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u \right|^{2} = \left\langle v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u, v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u \right\rangle = \left\langle v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u, v \right\rangle - 0 = \langle v, v \rangle - \frac{\langle v, u \rangle}{\langle u, u \rangle} \langle u, v \rangle$$

$$\begin{split} \langle v, u \rangle \langle u, v \rangle &< \langle u, u \rangle \langle v, v \rangle \\ \langle v, u \rangle \overline{\langle v, u \rangle} &< |u|^2 |v|^2 \\ &| \langle u, v \rangle|^2 &< |u|^2 |v|^2 \\ &| \langle u, v \rangle| &< |u| |v| \end{split}$$

For **4**.:

$$\begin{aligned} |u+v|^2 &= \langle u+v, u+v \rangle \\ &= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \\ &= |u|^2 + \langle u, v \rangle + \overline{\langle u, v \rangle} + |v|^2 \\ &= |u|^2 + 2 \operatorname{Re}(\langle u, v \rangle) + |v|^2 \\ &\leqslant |u|^2 + 2 |\operatorname{Re}(\langle u, v \rangle)| + |v|^2 \\ &\leqslant |u|^2 + 2 |\langle u, v \rangle| + |v|^2 \\ &\leqslant |u|^2 + 2 |u||v| + |v|^2 \\ &= (|u| + |v|)^2 \\ &|u+v| \leqslant |u| + |v| \end{aligned}$$

Theorem 4.2.2. Let U be a finite-dimensional vector space over \mathbb{F} . Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ be a basis for U. For $k = 1, \ldots, n$, define $f_k \in U^*$, so $f_k : U \to \mathbb{F}$, to be the unique linear map with $f_k(u_i) = \delta_{ki}$. Then $\mathcal{F} = \{f_1, \ldots, f_n\}$ is a basis for U^* .

Proof: It is claimed that \mathcal{F} is linearly independent.

Suppose that $\sum_{i=1}^{n} c_i f_i = 0$ Then $\sum_{i=1}^{n} c_i f_i(x) = 0$ for all $x \in U$, in particular for all k = 1, 2, ..., n, so $0 = \sum_{i=1}^{n} c_i f_i(u_k) = c_k$ It is claimed that \mathcal{F} spans U^* . Let $g \in U^*$. That is, $g: U \to \mathbb{F}$ is linear. It is claimed that $g = \sum_{i=1}^{n} g(u_i) f_i$ Indeed, for each k = 1, 2, ..., n we have

$$\left(\sum_{i=1}^{n} g(u_i)f_i\right)(u_k) = \sum_{i=1}^{n} g(u_i)f(u_k) = g(u_k)$$

Therefore $g = \sum_{i=1}^{n} g(u_i) f_i$ as claimed.

Theorem 4.3.13. [ORTHOGONAL PROJECTIONS]

Let W be a (possibly infinite-dimensional) inner product space over \mathbb{R} or \mathbb{C} and let U be a finite dimensional subspace of W. Then given $x \in W$, there exist unique vectors $u, v \in W$ with $u \in U$ and $v \in U^{\perp}$ such that u + v = x. In addition, the vector u is the unique vector in U which is nearest to x.

Moreover, if $\mathcal{U} = \{u_1, \dots, u_n\}$ is any orthogonal basis for U, then $u = \sum_{k=1}^n \frac{\langle x, u_k \rangle}{|u_k|^2} u_k$.

Proof: <u>Uniqueness:</u> Suppose $u, v, x \in W$ with $u \in U, v \in U^{\perp}$ and u + v = x.

Let
$$\mathcal{U} = \{u_1, \dots, u_n\}$$
 be an orthogonal basis for U .
Then $\langle x, u_k \rangle = \langle u + v, u_k \rangle = \langle u, u_k \rangle + \langle v, u_k \rangle = \langle u, u_k \rangle$
Therefore $u = \sum_{k=1}^n \frac{\langle u, u_k \rangle}{|u_k|^2} u_k = \sum_{k=1}^n \frac{\langle x, u_k \rangle}{|u_k|^2} u_k$
And so we have $v = x - u$.

So u and v are uniquely determined in terms of x and \mathcal{U} .

<u>*Existence:*</u> Let x be given.

Let $u = \sum_{k=1}^{n} \frac{\langle x, u_k \rangle}{|u_k|^2} u_k$ and let v = x - u. Clearly $u \in \operatorname{span}\{U\}$ and u + v = x.

To show that $v \in U^{\perp}$, note that for each k we have

$$\begin{aligned} \langle v, u_k \rangle &= \langle x - u, u_k \rangle \\ &= \langle x, u_k \rangle - \langle u, u_k \rangle \\ &= \langle x, u_k \rangle - \left\langle \sum_{i=1}^n \frac{\langle x, u_i \rangle}{|u_i|^2} u_i, u_k \right\rangle \\ &= \langle x, u_k \rangle - \sum_{i=1}^n \frac{\langle x, u_i \rangle}{|u_i|^2} \langle u_i, u_k \rangle \\ &= \langle x, u_k \rangle - \frac{\langle x, u_k \rangle}{|u_k|^2} \langle u_k, u_k \rangle \\ &= 0 \end{aligned}$$

Finally, by Pythagoras' theorem, u is the unique point in U nearest to x.

Lemma 4.6.2. For every $A \in M_{n \times n}(\mathbb{F})$ whose characteristic polynomial splits, there exists a unitary matrix P (and so $P^{-1} = P^*$) such that $T = P^*AP$ is upper triangular. Further, the diagonal values of T are the eigenvalues of A, repeated by their algebraic multiplicity.

Proof: This will be done by induction on n.

For n = 1, this is clearly true, and we take P = I = [1].

Suppose that for every $(n-1) \times (n-1)$ matrix B whose characteristic polynomial splits, there is an $(n-1) \times (n-1)$ unitary matrix Q such that Q^*BQ is upper triangular.

Let $A \in M_{n \times n}(\mathbb{F})$ such that its characteristic polynomial splits.

Let λ_1 be an eigenvalue of A with u_1 the corresponding eigenvector such that $|u_1| = 1$.

Extend $\{u_1\}$ to an orthonormal basis $\{u_1, \ldots, u_n\}$ for \mathbb{F}^n .

Let $P = (u_1 \ldots u_n)$.

Since $\{u_1, \ldots, u_n\}$ is orthonormal, we have $P^*P = I$, so P is unitary. Then we have

$$P^*AP = \begin{pmatrix} u_1^* \\ \vdots \\ u_n^* \end{pmatrix} A(u_1 \dots u_n) = \begin{pmatrix} u_1^* \\ \vdots \\ u_n^* \end{pmatrix} (\lambda_1 u_1 \quad A(u_1 \dots u_n))$$
$$= \begin{pmatrix} \lambda_1 u_1^* u_1 & u_1^* A(u_2 \dots u_n) \\ \lambda_1 u_2^* u_1 & \begin{pmatrix} u_2^* \\ \vdots \\ \lambda_1 u_n^* u_1 & \begin{pmatrix} u_2^* \\ \vdots \\ u_n^* \end{pmatrix} A(u_2 \dots u_n) \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & X \\ 0 & B \end{pmatrix}$$

Since $\begin{pmatrix} \lambda_1 & X \\ 0 & B \end{pmatrix}$ is similar to A, they share a common characteristic polynomial, so

$$(\lambda_1 - t)\det(B - tI) = f_A(t) = (-1)^n (t - \lambda_1)^{k_1} \cdots (t - \lambda_\ell)^{k_\ell}$$

Therefore $f_B(t) = (-1)^{n+1} (t - \lambda_1)^{k_1 - 1} (t - \lambda_2)^{k_2} \cdots (t - \lambda_\ell)^{k_\ell}$, so it splits.

By the induction hypothesis, we can choose $Q \in M_{(n-1)\times(n-1)}$ with $Q^{-1} = Q^*$, so that Q^*BQ is upper triangular.

Then we have

$$\begin{pmatrix} 1 & 0 \\ 0 & Q^* \end{pmatrix} P^* A P \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} = \begin{pmatrix} \lambda_1 & XQ \\ 0 & Q^* BQ \end{pmatrix}$$

Theorem 4.6.3. [SCHUR]

Let U be a finite dimensional inner product space over \mathbb{R} or \mathbb{C} . Let $L: U \to U$ be linear. Suppose the characteristic polynomial f_L splits over \mathbb{F} (always occurs for \mathbb{C} , for \mathbb{R} only when eigenvalues (roots) are real). Then there exists an orthonormal basis \mathcal{U} such that $T = [L]_{\mathcal{U}}$ is upper triangular. Moreover, the diagonal values of T are the eigenvalues of L, repeated according to their algebraic multiplicity.

Proof: Let \mathcal{U}_o be an orthonormal basis for U.

Let $A = [L]_{\mathcal{U}_o}$. Note that $f_A(t) = f_L(t)$. Choose $P \in M_{n \times n}(\mathbb{F})$ (for $n = \dim(\mathcal{U})$) with $P^*P = I$, so that P^*AP is upper triangular. Let \mathcal{U} be the basis for \mathcal{U} such that $[I]_{\mathcal{U}_o}^{\mathcal{U}} = P$. Then $[L]_{\mathcal{U}} = [I]_{\mathcal{U}}^{\mathcal{U}_o}[L]_{\mathcal{U}_o}^{\mathcal{U}_o}[I]_{\mathcal{U}_o}^{\mathcal{U}}$ $= P^{-1}AP$ $= P^*AP$ And we have that \mathcal{U} is orthonormal since $P^*P = I$. Indeed, if $u_k, u_\ell \in \mathcal{U}$, then $\langle u_k, u_\ell \rangle = \langle [u_k]_{\mathcal{U}_o}, [u_\ell]_{\mathcal{U}_o} \rangle$ $= \langle k$ th column of P, ℓ th column of $P \rangle$ $= \delta_{k,\ell}$

Theorem 5.3.6. [CHARACTERIZATION OF POSITIVE DEFINITE FORMS]

Let U be an n-dimensional inner product space over \mathbb{R} . Let $K: U \to \mathbb{R}$ be a quadratic form on U, and let $S: U \times U \to \mathbb{R}$ be the corresponding symmetric bilinear form. Then the following statements are equivalent:

- **1.** K (or S) is positive definite
- 2. the eigenvalues of $[K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ are all positive for some (hence any) basis \mathcal{U} for U3. for $A = [K]^{\mathcal{U}} = [S]^{\mathcal{U}}$ we have $\det(A^{k \times k}) > 0$

Proof: 1. \Longrightarrow 2. Suppose S is positive definite.

Let \mathcal{U} be a basis for U and $A = [S]^{\mathcal{U}}$, so that $S(u, v) = [u]_{\mathcal{U}}^t [S]^{\mathcal{U}} [v]_{\mathcal{U}} = x^t A y$. Since S(u, u) > 0 for all $0 \neq u \in U$, $x^t A x > 0$ for all $x \neq 0$. Let λ be an eigenvalue of A. Let x be an eigenvector of A so that $Ax = \lambda x$. Then we have

$$x^{t}Ax = x^{t}\lambda x = \lambda x^{t}x = \lambda |x|^{2}$$

Therefore $\lambda = \frac{x^t A x}{|x|^2} > 0$

2. \Longrightarrow **1**. Suppose that the eigenvalues of $[S]^{\mathcal{U}} = A$ are all positive for some basis \mathcal{U} of U. Since S is symmetric, A is symmetric, and so A is orthogonally diagonalizable.

Suppose
$$P^*AP = D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 for P unitary and $\lambda_i > 0$ for $a \leq i \leq n$ and $P \in M_{n \times n}(\mathbb{R})$.
So $A = PDP^*$, and
 $x^tAx = x^tPDP^*x = y^tDy = \lambda_1y_1^2 + \dots + \lambda_ny_n^2 > 0$ for $y \neq 0$

 $1 \implies 3$. Suppose S is positive definite.

Let \mathcal{U} be a basis for U and let $A = [S]^{\mathcal{U}}$.

Since S is positive definite, $x^t A x > 0$ for all $x = [u]_{\mathcal{U}} \neq 0$ and $x \in \mathbb{R}^n$.

For k = 1, ..., n, $\begin{pmatrix} x \\ 0 \end{pmatrix}^t A \begin{pmatrix} x \\ 0 \end{pmatrix}$ for all $x \in \mathbb{R}^k$. So the matrix $A^{k \times k}$ is positive definite.

So the eigenvalues of this $k \times k$ submatrix are all positive, so $\det(A^{k \times k}) > 0$, since the determinant of a diagonalizable matrix is the product of the eigenvalues.

3. \Longrightarrow **1**. Suppose det $(A^{k \times k}) > 0$ for $k = 1, \ldots, n$.

Let \mathcal{U} be a basis for U and let $A = [S]^{\mathcal{U}}$.

Consider the algorithm used to diagonalize a symmetric matrix (or bilinear form) by using row and column operations.

Since det $(A^{k \times k}) > 0$, we have $A_{11} > 0$ in the form $\begin{pmatrix} A_{11} & * \\ * & * \end{pmatrix}$ Now eliminate $A_{1i} = A_{i1}$ for i = 2, ..., n by using $C_i \mapsto C_i - \frac{A_{1i}}{A_{11}}C_1$ and $R_i \mapsto R_i - \frac{A_{i1}}{A_{11}}R_1$, so now the matrix is of the form $\begin{pmatrix} A_{1,1} & 0 \\ 0 & B \end{pmatrix}$

So we have $\det(A^{k \times k}) = A_{11} \cdot \det(B^{(k-1) \times (k-1)})$, so $\det(B^{j \times j}) = \frac{\det(A^{(j+1) \times (j+1)})}{A_{11}} > 0$ By repeating the procedure, we obtain an invertible matrix Q such that

$$Q^{t}AQ = D = \begin{pmatrix} d_{1} & & \\ & \ddots & \\ & & d_{n} \end{pmatrix} \text{ with } d_{i} > 0 \text{ for all } i$$

Then we have

$$x^{t}Ax = x^{t}(Q^{-1})^{t}DQ^{-1}x = y^{t}Dy = d_{1}y_{1}^{2} + \dots + d_{n}y_{n}^{2} > 0$$

Theorem 5.3.6. Let U, V be inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \to V$ be linear. Then there exist orthonormal bases \mathcal{U}, \mathcal{V} for U, V such that $[L]_{\mathcal{V}}^{\mathcal{U}}$ is in the form

$$[L]_{\mathcal{V}}^{\mathcal{U}} = \Sigma = \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & 0 \\ & & \sigma_r & & \\ & 0 & & 0 \end{pmatrix}$$

where $\sigma_1, \ldots, \sigma_r$ are the singular values of L.

- **Proof:** <u>Uniqueness:</u> Suppose \mathcal{U}, \mathcal{V} are orthonormal bases of U, V such that $[L]_{\mathcal{V}}^{\mathcal{U}}$ is in the form above. Note that $r = \operatorname{rank}(L)$.
 - For $\mathcal{U} = \{u_1, \dots, u_n\}$ and $\mathcal{V} = \{v_1, \dots, v_m\}$ we have $L(u_i) = \begin{cases} \sigma_i v_i & \text{for } 1 \leq i \leq r \\ 0 & \text{for } r+1 \leq i \leq n \end{cases}$ Note that we also have $[L^*]_{\mathcal{U}}^{\mathcal{V}} = ([L]_{\mathcal{V}}^{\mathcal{U}})^* \in M_{n \times m}(\mathbb{F}).$ Therefore we have $L^*(v_i) = \begin{cases} \sigma_i u_i & \text{for } 1 \leq i \leq r \\ 0 & \text{for } r+1 \leq i \leq m \end{cases}$ Therefore $\{v_1, \dots, v_r\}$ is a basis for range(L) and $\{v_{r+1}, \dots, v_m\}$ is a basis for range(L)^{\perp}. Since $L(u_i) = \sigma_i v_i$ and $L^*(v_i) = \sigma_i u_i$ for $1 \leq i \leq r$

$$L^*(L(u_i)) = L^*(\sigma_i v_i) = \sigma_i \sigma_i u_i = \sigma_i^2 u_i$$

So for $1 \leq i \leq r$, $\lambda_i = \sigma_i^2$ is an eigenvalue of L^*L and u_i is the corresponding eigenvector. Note also that $\operatorname{rank}(L^*L) = \operatorname{rank}(L)$, with $\operatorname{null}(L^*L) = \operatorname{null}(L)$. Therefore for $r + 1 \leq i \leq n$ we take $\lambda_i = 0$ since $\sigma_i = 0$.

<u>Existence</u>: Given $L: U \to V$ linear, consider $L^*L: U \to U$.

Since $(L^*L)^* = L^*L$, L^*L has non-negative real eigenvalues. Let $\lambda_1 \ge \cdots \ge \lambda_r > 0$ and $\lambda_{r+1} = \cdots = \lambda_n = 0$ be the eigenvalues, so $r = \operatorname{rank}(L^*L) = \operatorname{rank}(L)$. The map L^*L can then be orthogonally diagonalized with an orthonormal basis of eigenvectors. Let $\mathcal{U} = \{u_1, \ldots, u_n\}$ for L^*L be such a basis, so

$$[L^*L]_{\mathcal{U}} = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & 0 \\ & & \lambda_r & \\ & 0 & & 0 \end{pmatrix}$$

We want to have $L(u_i) = \sigma_i v_i$ for $1 \le i \le r$. Choose $v_i = \frac{L(u_i)}{r}$ for $1 \le i \le r$.

Choose $v_i = \frac{L(u_i)}{\sigma_i}$ for $1 \leq i \leq r$. Note that $\{v_1, \ldots, v_r\}$ is orthonormal, because

$$\langle L(u_i), L(u_j) \rangle = \langle u_i, L^*L(u_j) \rangle = \langle u_i, \lambda_j u_j \rangle = \overline{\lambda_j} \langle u_i, u_j \rangle = \lambda_j \delta_{ij} = \sigma_j^2 \delta_{ij}$$

Therefore $\langle v_i, v_j \rangle = \left\langle \frac{L(u_i)}{\sigma_i}, \frac{L(u_j)}{\sigma_j} \right\rangle = \delta_{ij}.$ Extend $\{v_1, \dots, v_r\}$ to an orthonormal basis $\mathcal{V} = \{v_1, \dots, v_r, v_{r+1}, \dots, v_m\}$ for $\mathcal{V}.$

It follows that
$$[L]_{\mathcal{V}}^{\mathcal{U}} = \begin{bmatrix} & \ddots & & 0 \\ & \sigma_r & & \\ & 0 & & 0 \end{pmatrix}$$

Theorem 6.2.5. Let U be a finite-dimensional vector space over \mathbb{F} with $L: U \to U$ linear. Then for every eigenvalue λ of L, there exists a basis of cycles corresponding to λ for K_{λ} .

Proof: Fix an eigenvalue λ of L. Choose m so that $U = \operatorname{range}(L - \lambda I)^0 \supseteq \operatorname{range}(L - \lambda I)^1 \supseteq \cdots \supseteq \operatorname{range}(L - \lambda I)^m = \operatorname{range}(L - \lambda I)^{m+1} = \cdots$ Previously we saw that range $(L - \lambda I)^m = \bigoplus K_\mu$ for an eigenvalue μ of L. $\mu \neq \lambda$ We also have that $\{0\} = \operatorname{null}(L - \lambda I)^0 \subsetneq \operatorname{null}(L - \lambda I)^1 \subsetneq \cdots \subsetneq \operatorname{null}(L - \lambda I)^m = \operatorname{null}(L - \lambda I)^{m+1} = \cdots$ Note that $\operatorname{null}(L - \lambda I) = E_{\lambda}$ and $\operatorname{null}(L - \lambda I)^m = K_{\lambda}$. Now follows the algorithm for finding a basis of cycles for K_{λ} . **Step 1.** Choose a basis $\{u_1^1, \ldots, u_1^{\ell_1}\}$ for range $(L - \lambda I)^{m-1} \cap K_{\lambda} = \operatorname{range}(L - \lambda I)^{m-1} \cap E_{\lambda}$. Then we obtain cycles $\{u_1^1\}, \{u_1^2\}, \dots, \{u_1^{\ell_1}\}.$ **Step 2.** For $1 \leq j \leq \ell_1$, choose $u_2^j \in \text{range}(L - \lambda I)^{m-2} \cap K_\lambda$ so that $(L - \lambda I)u_2^j = u_1^j$. Also, extend $\{u_1^1, \dots, u_1^{\ell_1}\}$ to a basis $\{u_1^1, \dots, u_1^{\ell_2}\}$ for $\text{range}(L - \lambda I)^{m-2} \cap E_\lambda$. We obtain the cycles $\{u_1^1, u_2^1\}, \dots, \{u_1^{\ell_1}, u_2^{\ell_1}\}, \{u_1^{\ell_1+1}\}, \dots, \{u_1^{\ell_2}\}$ Suppose we have constructed cycles $B^j = \{u_1^j, \ldots, u_{n_j-1}^j\}$ for $1 \leq j \leq \ell_{k-1}$ such that Step k: $\{u_1^1, \ldots, u_1^{\ell_{k-1}}\}$ is a basis for range $(L - \lambda I)^{m-(k-1)} \cap E_{\lambda}$ and such that $\bigcup^{\ell_{k-1}} B^j$ is a basis for range $(L - \lambda I)^{m-(k-1)} \cap K_{\lambda}$. For $1 \leq j \leq \ell_{k-1}$, choose $u_{n_j}^j \in \operatorname{range}(L - \lambda I)^{m-k} \cap K_{\lambda}$ so that $(L - \lambda I)u_{n_j}^j = u_{n_j-1}^j$. Then let $C_j = \{u_1^j, \dots, u_{n_j}^j\} = B^j \cup \{u_{n_j}^j\}$. Also, extend $\{u_1^1, \ldots, u_1^{\ell_{k-1}}\}$ to a basis $\{u_1^1, \ldots, u_1^{\ell_k}\}$ for range $(L - \lambda I)^{m-k} \cap E_{\lambda}$. Now it is claimed that $\bigcup_{k=1}^{\infty} C^{j}$ is a basis for range $(L - \lambda I)^{m-k} \cap K_{\lambda}$. To see that $\bigcup C^j$ is linearly independent, let $V = \operatorname{span} \bigcup C^j \subset \operatorname{range}(L - \lambda I)^{m-k} \cap K_\lambda$ $W = \operatorname{span} \bigcup B^j = \operatorname{range}(L - \lambda I)^{m - (k-1)} \cap K_{\lambda}$ M = the restriction $M = (L - \lambda I) : V \to W$ Note that $\operatorname{null}(M) = \operatorname{range}(L - \lambda I)^{m-k} \cap E_{\lambda}$ and $\operatorname{nullity}(M) = \ell_k$ by definition, so M is onto. Therefore $\dim(V) = \operatorname{rank}(M) + \operatorname{nullity}(M) = \dim(W) + \ell_k = \left| \bigcup B^j \right| + \ell_k = \left| \bigcup C^j \right|$ Therefore $\bigcup C^{j}$ is a basis for V. Therefore $\bigcup C^{j}$ is linearly independent. To see that $\bigcup C^j$ spans range $(L - \lambda I)^{m-k} \cap K_{\lambda}$, let $= \operatorname{range}(L - \lambda I)^{m-k} \cap K_{\lambda}$ V_2 $W = \operatorname{range}(L - \lambda I)^{m - (k - 1)} \cap K_{\lambda}$ M_2 = the restriction $M_2 = (L - \lambda I) : V_2 \to W$ Now we have that M_2 is onto and $\operatorname{null}(M_2) = \operatorname{range}(L - \lambda I)^{m-k} \cap E_{\lambda}$ with $\operatorname{nullity}(M_2) = \ell_k$. So then $\dim(V_2) = \dim(W) + \ell_k = \left| \bigcup B^j \right| + \ell_k = \left| \bigcup C^j \right| = \dim(V)$ Therefore $V_2 = V = \text{span} \bigcup C^j$.