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1 Overview of Linear Algebra 1

1.1 Lines and planes

A line in 3 dimensions is best described parametrically. Given a point p and a vector u, all points on the
line are described by x = p+ tu for t ∈ R.

A plane in 3 dimensions is the same; given two points and two vectors p+ u and q + v, the points on the
plane are described by x = p+ ru+ st for s, r ∈ R. This can be generalized by a1x1 + a2x2 + a3x3 = b.

Definition 1.1.1. A vector space in Rn is a set of the form {t1u1, . . . , tkuk|ti ∈ R} = span{u1, . . . , uk ∈ R}.A
vector space includes the origin.

Definition 1.1.2. An affine space in Rn is a set of the form p+ V = {p+ v|v ∈ V }, for some point p ∈ Rn
and some vector space V ∈ Rn. Here, p+ V is the affine space through p parallel to V .

Theorem 1.1.3. If U is a basis for a vector space V ∈ Rn, then the number of elements in U is at most n.
If U and W are bases for the same vector space in Rn, then they have the same number of elements. This
number is termed dimension.

Definition 1.1.4. A function A is said to be linear if the two following conditions are satisfied for some
scalar t and all x, y ∈ Rn:
A(tx) = tA(x)
A(x+ y) = A(x) +A(y)

Definition 1.1.5. A linear map L : Rn → Rm is a map of the form L(x) = Ax for some A ∈Mm×n.

Definition 1.1.6. An affine map L : Rn → Rm is a map of the form L(x) = Ax+ b for some A ∈Mm×n
and b ∈ Rn.

· Note that the span of columns is the column space of the range.

· The nullspace is perpendicular to the rowspace.

Theorem 1.1.7. Suppose that L : Rn → Rn is linear. Let x ∈ Rn be such that x = x1e1 + x2e2 + · · ·+ xnen,
where ek is the kth standard basis vector. Then L(x) = Ax for A = (L(e1) L(e2) . . . L(en)).

Theorem 1.1.8. Suppose A reduces to R in reduced row echelon form. Then the non-zero rows of R form a
basis for the row space of A. Then to obtain a basis for the nullspace of A, solve Ax = 0 using Gauss-Jordan
elimination to get x = t1v1 + · · ·+ tkvkthen {u1, . . . , uk} is a basis for null(A).

Definition 1.1.9. Given a function f : X → Y :
1. f is 1:1 or injective when for all y ∈ Y there exists at most 1 x ∈ X such that y = f(x).
2. f is onto or surjective when for all y ∈ Y there exists at least 1 x ∈ X such that y = f(x).
3. f is invertible or bijective when f is one-to-one and onto.

Theorem 1.1.10. A function is differentiable when it can be suitably approximated by an affine map.

Definition 1.1.11. Let U and V be vector spaces with dim(U) = n and dim(V ) = n. Let U = {u1, . . . , un}
and V = {v1, . . . , vn} be ordered bases for for U and V respectively. Then for x ∈ U with x = t1u1 + · · ·+ tnun,

define [x]U = t =

t1...
tn

 ∈ Rn

For a linear map L : U → V , there is a unique matrix described by [L]UV such that for all x ∈ U ,

[L(x)]V = [L]UV [x]U . This matrix is given by [L]UV =
(
[L(u1)]V . . . [L(un)]V

)
∈Mm×n

Remark 1.1.12. The matrix [L]UV is termed the matrix of L with respect to the bases U and V.
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1.2 Determinants

Theorem 1.2.1. Given matrices A,B ∈Mn×n and an equation AB = 0,
(A|ei) ∼ (I|Bi)
(A|I) ∼ (I|B)

where ei is the ith column of I and Bi is the ith column of B.

Definition 1.2.2. For n > 2 and A ∈Mn×n, given a fixed i, det(A) =

n∑
j=1

(−1)i+jAi,jdet(Ai,j)

· where Ai,j is the (n− 1)× (n− 1) matrix obtained from A by removing the ith row and jth column
· and Ai,j is the element in the ith row and jth column of A

Theorem 1.2.3. If Null(A) 6= {0}, then A is not invertible and det(A) = 0.

Definition 1.2.4. The matrix defined by Cofac(A) is termed the cofactor matrix (or classical adjoint)of A.

Theorem 1.2.5. ForA ∈Mm×n, A is invertible if and only if det(A) 6= 0, and in that caseA−1 = 1
det(A) · Cofac(A)

where (Cofac(A))k,` = (−1)k+`det(A`,k)

Theorem 1.2.6. For all A ∈Mn×n, A · Cofac(A) = det(A)I. Also, Cofac(A) = (Aadj)t.

Theorem 1.2.7. [Inversion properties]
For any A,B ∈Mn×n, det(AB) = det(A) det(B)
For any A ∈Mn×n and for t ∈ N, det(A) = det(At)

2 Operations in vector spaces

Remark 2.0.1. A vector space over a field F is a set closed over addition and multiplication.

Remark 2.0.2. Let U, V be finite dimensional vector spaces with bases U1,U2,V1,V2. For any u ∈ U and
linear map L : U → V ,

[u]U2 = [I]U1U2 [u]U1 [L]U2V2 = [I]V1V2 [L]U1V1 [I]U2U1

Definition 2.0.3. For A,B ∈Mn×n, A and B are similar when there exists an invertible matrix P such
that B = PAP−1.

2.1 The dot product in Rn

Definition 2.1.1. For u, v ∈ Rn, the dot product of u and v is u · v =

n∑
i=1

u1v1 = utv = vtu.

Theorem 2.1.2. [Properties of the dot product]
For t ∈ R and u, v, w ∈ Rn:

1. u · u > 0 with u · u = 0⇐⇒ u = 0 Positive definite
2. u · v = v · u Symmetric
3. (tu) · v = t(u · v) = u · (tv) Bilinear
4. (u+ w) · w = u · w + v · w

Remark 2.1.3. For any A ∈Mm×n and x ∈ Rn, we have Ax = (c1 . . . cn)

x1...
xn

 = c1x1 + · · ·+ cnxn.

Also note that the row space of A is equal to the column space of A.

Definition 2.1.4. For u ∈ Rn, the length of u is

√√√√ n∑
i=1

u2i =
√
u · u = |u|.

3



Theorem 2.1.5. [Properties of length]
For u, v ∈ Rn and t ∈ R,

1. |u| > 0 with |u| = 0 ⇐⇒ u = 0
2. |tu| = |t| |u|
3. u · v = 1

2 (|u+ v|2 − |u|2 − |v|2) = 1
4 (|u+ v|2 − |u− v|2)

4. |u · v| 6 |u||v| with |u · v| = |u||v| ⇐⇒ {u, v} is linearly dependent
5. |u− v| 6 |u+ v| 6 |u|+ |v|

Definition 2.1.6. For u, v ∈ Rn, the distance between u and v is d(u, v) = |u− v| = |v − u|.

Theorem 2.1.7. [Properties of distance]
For u, v, w ∈ Rn,

1. d(u, v) > 0 with d(u, v) = 0 ⇐⇒ u = v
2. d(u, v) = d(v, u)
3. d(u, v) 6 d(u,w) + d(w, v)

Definition 2.1.8. For 0 6= u, v ∈ Rn, the angle between u and v is angle(u, v) = θ. This is expressed as

θ = cos−1
(
u · v
|u||v|

)
= sin−1

(
|u× v|
|u||v|

)
.

Theorem 2.1.9. [Properties of angles]
For 0 6= u, v ∈ Rn and θ = angle(u, v):

1. Law of cosines: |v − u|2 = |u|2 + |v|2 − 2|u||v| cos(θ)
2. Pythagorean theorem: If u · (v − u) = 0, then |v|2 = |u|2 + |v − u|2

3. Trigonometric ratios: If u · (v − u) = 0, then cos(θ) = |u|
|v| and sin(θ) = |v−u|

|v|

Theorem 2.1.10. For t ∈ R and u, v ∈ Rn and t, u, v 6= 0:

angle(tu, v) =

{
angle(u, v) if t > 0
π − angle(u, v) if t < 0

Definition 2.1.11. For a, b, c ∈ Rn all distinct, define ∠abc = angle(a− b, c− b).

Theorem 2.1.12. For a, b, c ∈ Rn all distinct, ∠abc+ ∠cab+ ∠bca = π.

Definition 2.1.13. For 0 6= u ∈ Rn and p ∈ Rn, the hyperspace (or hyperplane) in Rn through p and
perpendicular to u is the set of points x ∈ Rn such that (x− p) · u = 0.

2.2 Orthogonal projections

Definition 2.2.1. For u, v ∈ Rn, we say that u and v are orthogonal (or perpendicular) when u · v = 0.
If u, v 6= 0, then u · v = 0 ⇐⇒ angle(u, v) = π

2 .

Definition 2.2.2. For 0 6= u ∈ Rn and x ∈ Rn, the orthogonal projection of x onto u is proju(x) = u·x
|u| .

If U = span{u}, then projU (x) = u·x
|u|2u. Note that (x− proju(x)) is orthogonal to u.

With reference to the case above, [projUx] = 1
|u|2uu

t.

Definition 2.2.3. For a vector space U ∈ Rn, the orthogonal complement of U is the vector space

U⊥ = {x ∈ Rn|x · u = 0 for all u ∈ U} = Null(U t).

The projection of x onto U⊥ is x− projUx.

Theorem 2.2.4. [Properties of the orthogonal complement]
Let U be a vector space in Rn. Then

1. For A ∈Mm×n over R, Null(A) = Row(A)⊥

2. U ∩ U⊥ = {0}
3. dim(U)+ dim(U⊥) = n
4. (U⊥)⊥ = U
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Theorem 2.2.5. For A ∈Mm×n, rank(AtA) = rank(A). Also, Null(AtA) = Null(A).

Theorem 2.2.6. Let U be a vector space in Rn and x ∈ Rn. Then there exist unique vectors u, v ∈ Rn with
u ∈ U and v ∈ U⊥ such that u+ v = x.

Corollary 2.2.7. When {u1, . . . , uk} is a basis for U and A = (u1 . . . uk) ∈Mn×k, then
· ProjU (x) = A(AtA)−1Atx
· ProjU⊥(x) = (I −A(AtA)−1At)x.

Definition 2.2.8. Let U be a subspace of Rn and let x ∈ Rn. Let u, v be the unique vectors with u ∈ U and
v ∈ U⊥ with u+ v = x. Then u is termed the orthogonal projection of x onto U and we write u = ProjU (x).

Note that since (U⊥)⊥ = U , we have v = ProjU⊥(x).

Theorem 2.2.9. Let U be a subspace of Rn with x ∈ Rn. Then the point u = ProjU (x) is the unique point
on U which is nearest to x.

Theorem 2.2.10. Given a set of data points {(x1, y1), (x2, y2), . . . , (xn, yn)}, the polynomial f ∈ Pm
with f(x) = c0 + c1x+ c2x

2 + · · ·+ cmx
m that best fits these points has coefficient vector c given by

c = (AtA)−1Aty, where

A =


1 x1 x21 · · · xm1
1 x2 x22 · · · xm2
...

...
...

. . .
...

1 xn x2n · · · xmn

, c =


c0
c1
...
cm

 and f(x) =


f(x1)
f(x2)

...
f(xn)

 = Ac, with y =


y1
y2
...
yn


Remark 2.2.11. The above polynomial is termed the least-squares best-fit polynomial for the given data,

such that

n∑
i=1

(yi − f(xi))
2 is minimized.

Remark 2.2.12. If we have at least m+ 1 distinct x-coordinates, then A has maximal rank, is invertible,
and so (AtA)−1 exists. In general, a best-fit polynomial always exists, but a unique one exists only if the
number of distinct x-values is greater than m.

2.3 The cross product in Rn

Theorem 2.3.1. Let u1, . . . , un−1 ∈ Rn. Then the cross product of these vectors is

· X(u1, . . . , un−1) = formal det

(
u1, . . . , un−1,

e1
...
en

)

=

n∑
i=1

(−1)i+n det(Ai)ei

where {e1, . . . , en} are the standard basis vectors
A = (u1 . . . un−1) ∈Mn×(n−1)
Ai = the (n− 1)× (n− 1) matrix obtained from A by removing the ith row

Theorem 2.3.2. [Properties of the cross product]
For vectors u, v ∈ Rn:

1. X(u1, . . . , tuk, . . . , un−1) = tX(u1, . . . , uk, . . . , un−1) (n− 1)-linear
2. X(u1, . . . , uk, . . . , u`, . . . , un−1) = −X(u1, . . . , u`, . . . , uk, . . . , un−1) skew-symmetric
3. X(u1, . . . , un−1) · v = det(u1 . . . un−1 v)
4. X(u1, . . . , un−1) = 0⇐⇒ {u1, . . . , un−1} is linearly dependent
5. X(u1, . . . , un−1) 6= 0 =⇒ det(u1 . . . un−1 X(u1, . . . , un−1)) > 0

Theorem 2.3.3. For u, v, w, x ∈ R3, (u× v)× w = (u · w)v − (v · w)u.
Also, (u× v) · (w × x) = (u · w)(v · x)− (u · x)(v · w)
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3 Applications of the cross product

3.1 Geometry

Definition 3.1.1. Let u1, . . . , uk ∈ Rn. The k-parallelotope on these vectors is the set of points x of the

form x =
∑k
i=1 tiui with 0 6 ti 6 1 for all i.

· The points u1, . . . , uk are termed vertices of the k-parallelotope
· If {u1, . . . , uk} is linearly dependent, then the k-parallelotope is termed degenerate

Definition 3.1.2. For a k-parallelotope n u1, . . . , uk ∈ Rn, define the k-volume recursively as follows:
V1(u1) = |u1|
Vk(u1, . . . , uk) = |uk| sin(θ)Vk−1(u1, . . . , uk−1) for k > 2

where θ is the angle from uk (or span{uk}) to span{u1, . . . , uk−1}, provided that uk 6= 0 and span{u1, . . . , uk−1} 6= 0.
If uk = 0 or span{u1, . . . , uk−1} = 0, then we define Vk = 0.

Theorem 3.1.3. Let u1, . . . , uk ∈ Rn. Then Vk(u1, . . . , uk) =
√

det(AtA), where A = (u1 . . . uk) ∈Mn×k.
In particular, Vk(u1, . . . , uk) = 0⇐⇒ {u1, . . . , uk} is linearly dependent.

Corollary 3.1.4. Vk(u1, . . . , ui, . . . , uj , . . . , uk) = Vk(u1, . . . , uj , . . . , ui, . . . , uk). Or, the k-volume is inde-
pendent of the order of vectors.

Corollary 3.1.5. Vk(u1, . . . , uk) = |det(A)|

Corollary 3.1.6. |X(u1, . . . , un−1)| = Vn−1(u1, . . . , un−1)

Definition 3.1.7. For a, b ∈ Rn, the perpendicular bisector of [a, b] is the hyperplane through a+b
2 perpen-

dicular to b− a. It is the set {x ∈ Rn
(x− a+b

2

)
· (b− a) = 0}.

3.2 Spherical geometry

Definition 3.2.1. The (standard) unit sphere in R3 is the set S2 = {x ∈ R3
|x| = 1}. More generally,

Sn−1 = {x ∈ Rn
|x| = 1}.

Definition 3.2.2. Given u ∈ S2, the line in S2 with poles ±u is the set Lu = {x ∈ S2
x · u = 0} = S2 ∩ Pu,

where Pu = {x ∈ R3
x · u = 0}

Axiom 3.2.3. [Axioms of spherical geometry]
For u, v ∈ S2 and u 6= ±v:

1. Lu = Lv ⇐⇒ u = ±v
2. There exists a unique line on S2 through u and v, given by Lw = u×v

|u×v|
3. There exists a unique line on S2 through v and perpendicular to Lu
4. Lu ∩ Lv = {±w} for some w ∈ S2

Definition 3.2.4. The (spherical) distance between u, v ∈ S2 is given by distS2(u, v) = angleR3(u, v).

Theorem 3.2.5. For u, v, w, x ∈ R3,
(u× v)× w = (u · w)v − (v · w)u
(u× v) · (w × x) = (u · w)(v · x)− (u · x)(v · w)

Remark 3.2.6. Properties for spherical distance are identical to properties for distance on the plane.

Definition 3.2.7. Given u ∈ S2, r ∈ (0, π), the circle on S2 centered at u of radius r is the set
C(u, r) = {x ∈ S2

 dist(x, u) = r}
= x ∈ S2

x · u = cos(r)}
= P ∩ S2 where P is the plane in R3 with equation x · u = cos(r)

So P is the plane perpendicular to u which goes through the point cos(r)u · u.

Definition 3.2.8. Given v 6= ±u ∈ S2, define the unit direction vector from u to v to be

uv = (u×v)×u
|(u×v)×u| = v−Proju(v)

|v−Proju(v)|
= v−(v·u)u

|u×v|
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Remark 3.2.9. The set {u, uv} is an orthonormal basis for span{u, v}.

Remark 3.2.10. The line segment [u, v] ∈ S2 is given parametrically by
x(t) = cos(t)u+ sin(t)uv with 0 6 t 6 dist(u, v) = cos−1(u · v)

Theorem 3.2.11. Two parallel planes a distance 0 6 ` 6 2r apart slicing a sphere of
radius r enclose an area of 2πr` on the surface of the sphere.

Theorem 3.2.12. Two planes each bisecting a sphere of radius r with an
angle θ to each other enclose an area of 2θr2 on the surface of the sphere.

O

With reference to the unit sphere on the left:

a = a′ b = b′ c = c′

α = α′ β = β′ γ = γ′

|u| = |u′| |v| = |v′| |w| = |w′|

u′ =
v × w
|v × w|

v′ =
w × u
|w × u|

w′ =
u× v
|u× v|

[u′, v′, w′] is the polar triangle of [u, v, w]

Thm 3.1.9. [Spherical law of sines]

sin(α)

sin(a)
=

sin(β)

sin(b)
=

sin(γ)

sin(c)

Thm 3.1.10. [Spherical law of cosines]

cos(a) =
cos(α) + cos(β) cos(γ)

sin(β) sin(γ)

cos(α) =
cos(a)− cos(b) cos(c)

sin(b) sin(c)

3.3 Spherical angles

Definition 3.3.1. A non-degenerate triangle on S2 is determined by 3 non-colinear points u, v, w ∈ S2.

Note that u, v, w are colinear ⇐⇒ u, v, w lie on a plane in R3 through u
⇐⇒ {u, v, w} is linearly dependent
⇐⇒ det(u v w) = 0

Definition 3.3.2. An ordered triangle may be defined as an ordered triple [u, v, w] = (u, v, w) with

u, v, w ∈ S2 and det(u v w) 6= 0. An ordered triangle is positively oriented when det(u v w) > 0 and
negatively oriented when det(u v w) < 0.

Definition 3.3.3. For u, v, w ∈ S2 with v 6= ±u and w 6= ±u, define the oriented
angle angle(u, v, w) to be the angle θ ∈ [0, 2π] such that

cos(θ) = uv · uw
sin(θ) = (uv × uw) · u = det(u uv uw) =

det(u v w)

|u× v||u× w|

Theorem 3.3.4. Let [u, v, w] be a positively oriented triangle on S2 with
angles α, β, γ. Then the area of [u, v, w] is A = (α+ β + γ)− π.
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4 The inner product

4.1 Fundamental definitions

Definition 4.1.1. Let U be a vector space over R. An inner product on U is a function 〈 , 〉 : U2 → R such
that for all u, v ∈ U and c ∈ R

1. 〈u, u〉 > 0 with 〈u, u〉 = 0 ⇐⇒ u = 0
2. 〈u, v〉 = 〈v, u〉
3. 〈cu, v〉 = c 〈u, v〉 = 〈u, cv〉
4. 〈u+ v, w〉 = 〈u, v〉+ 〈v, w〉

A vector space closed under an inner product is termed an inner product space.

Definition 4.1.2. Let U be a vector space over C. An inner product on U is a function 〈 , 〉 : U2 → C such
that for all u, v ∈ U and c ∈ C

1. 〈u, u〉 ∈ R
〈u, u〉 > 0 with 〈u, u〉 = 0 ⇐⇒ u = 0

2. 〈u, v〉 = 〈v, u〉
3. 〈cu, v〉 = c 〈u, v〉
〈u, cv〉 = c 〈u, v〉

4. 〈u+ v, w〉 = 〈u, v〉+ 〈v, w〉
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

A vector space over C closed under an inner product is termed an inner product space over C.

Definition 4.1.3. The vector v∗ is termed the conjugate transpose, or the adjoint, or the Hermitian trans-

pose of v, such that v∗ = vt.

4.2 Standard inner products

Remark 4.2.1. The standard inner product on the following spaces is given by:

on Rn: 〈u, v〉 =

n∑
i=1

uivi = utv = vtu

on Cn: 〈u, v〉 =

n∑
i=1

uivi = utv = v∗u

on Mm×n(R) : 〈A,B〉 =
∑
i,j

AijBij = trace(AtB) = trace(BtA)

on Mm×n(C) : 〈A,B〉 =
∑
i,j

AijBij = trace(AtB) = trace(B∗A)

on C[a, b] : 〈f, g〉 =

∫ b

a

fg

Definition 4.2.2. Let U be an inner product space over F. Then for u ∈ U , define the norm or length of u

to be |u| = ||u|| =
√
〈u, u〉. Also, a unit vector is a vector of length 1.

Theorem 4.2.3.∗ [Properties of the norm]
Let U be an inner product space over R or C. Then for u, v ∈ U and c ∈ R or C, we have

1. |u| > 0 with |u| = 0 ⇐⇒ u = 0
2. |cu| = |c||u|
3. |〈u, v〉| 6 |u||v| with |〈u, v〉| = |u||v| ⇐⇒ u, v are linearly dependent
4. |u+ v| 6 |u|+ |v|

Remark 4.2.4. For a vector space U , a map | | : U → R which satisfies 1., 2., 3. above is termed a norm
on U .

Theorem 4.2.5. [Polarization identity]
In an inner product space U over R, we have 〈u, v〉 = 1

2

(
|u+ v|2 − |u− v|2

)
.

In an inner product space V over C, we have 〈u, v〉 = 1
4

(
|u+ v|2 + i|u+ iv|2 − |u− v|2 − |u− iv|2

)
.
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Remark 4.2.6. For any non-empty set X a map d : X ×X → R which satisfies 1., 2., 3. above is termed
a metric on X.

Definition 4.2.7. Let U be an inner product space over R. For 0 6= u, v ∈ U , define than angle between u

and v to be angle(u, v) = cos−1
(
〈u,v〉
|u||v|

)
Definition 4.2.8. Let U be an inner product space over R or C. For u, v ∈ U , we say that u and v are
orthogonal if 〈u, v〉 = 0.

Theorem 4.2.9. [Pythagoras]
Let U be an inner product space over R or C. Let 0 6= u, v ∈ U . Suppose 〈u, v〉 = 0.
Then |v − u|2 = |v|2 + |u|2.

4.3 Orthogonal sets / compliments / projections

Definition 4.3.1. Let U be an inner product space over R or C. A set of vectors {u1, . . . , un} in U is
termed an orthogonal set when 〈ui, uj〉 = 0 for all i 6= j, or each pair of vectors is orthogonal. The set is
termed orthonormal if 〈ui, uj〉 = 0 for all i 6= j and 〈ui, ui〉 = 1 for all i.

Remark 4.3.2. Note that {u1, . . . , uk} ∈ Rn is orthogonal ⇐⇒ AtA is diagonal forA = (u1 . . . uk) ∈Mn×k.
Similarly, {u1, . . . , uk} ∈ Rn is orthonormal ⇐⇒ AtA = I for A = (u1 . . . uk) ∈Mn×k.

The same may be extended to vectors over Cn, but with conjugate transpose in place of transpose.

Theorem 4.3.3. Let U be an inner product space over R or C. Let U = {u1, . . . , un} be an orthogonal set

of non-zero vectors. Then U is linearly independent, and also for x ∈ span{U},
(
[x]U

)
k

= 〈x,uk〉
|uk|2 .

Theorem 4.3.4. [Gram-Schmidt procedure]
Let W be an inner product space. Let U = {u1, . . . , un} be a linearly independent set of vectors in W . So
U = span(U) is an n-dimensional subspace of W . Define vectors v1, . . . , vn recursively by

v1 = u1

vk = uk −
k−1∑
i=1

〈uk, vi〉
|vi|2

vi

Then for each k = 1, . . . , n, the set {v1, . . . , vk} is an orthogonal set of non-zero vectors with
span{v1, . . . , vk−1} = span{u1, . . . , uk−1}.

Corollary 4.3.5. Every finite-dimensional inner product space has an orthonormal basis.

Corollary 4.3.6. Let W be a finite-dimensional inner product space. Let V be a subspace of W . Then
every orthonormal basis of U extends to an orthonormal basis of W .

Definition 4.3.7. Let U and V be inner product spaces over R or C. An isomorphism (of inner product
spaces) from U to V is a map L : U → V such that L is linear, bijective, and preserves inner products
(〈L(x), L(y)〉 = 〈x, y〉 for all x, y ∈ U).

It follows as a consequence that the inverse is also linear and also preserves inner products.
The map need only be onto, because the preservation of inner products implies that it is 1 : 1.

Definition 4.3.8. Two inner product spaces U, V are said to be isomorphic when there exists an isomorphism
L : U → V .

Corollary 4.3.9. Every n-dimensional inner product space over F for F = R or C, is isomorphic to Fn.

Definition 4.3.10. Let W be an inner product space over R or C. Let U be a subspace of W . Then the
orthogonal compliment of U is the vector space U⊥ = {x ∈W

 〈x, u〉 = 0 for all u ∈ U}.

Definition 4.3.11. Let U be a vector space over F. For a set of vectors U , a linear combination of the
elements of U is always a finite sum of the form

∑n
i=1 ciui for ci ∈ F and ui ∈ U .
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Theorem 4.3.12. [Properties of the orthogonal compliment]
Let W be an inner product space over R or C, and let U be a subspace of W . Then

1. U ∩ U⊥ = {0}
2. U ⊂ (U⊥)⊥

If W is finite-dimensional, then we also have
3. If U = {u1, . . . , uk} is an orthogonal (orthonormal) basis for U , and W = {u1, . . . , uk, v1, . . . , v`} is an

orthogonal (orthonormal) basis for W , then V = V \ U = {v1, . . . , v`} is an orthogonal (orthonormal)
basis for U⊥.

4. If U = {u1, . . . , uk} is an orthogonal (orthonormal) basis for U , and V = {v1, . . . , v`} is an orthogonal
(orthonormal) basis for U⊥, then W = U ∪ V is an orthogonal (orthonormal) basis for W .

5. dim(U) + dim(U⊥) = dim(W )
6. Given any x ∈W , there exist unique vectors u, v ∈W with u ∈ U and v ∈ U⊥ such that u+ v = w.
7. W = U ⊕ U⊥

Theorem 4.3.13.∗[Orthogonal projections]
Let W be a (possibly infinite-dimensional) inner product space over R or C and let U be a finite dimensional
subspace of W . Then given x ∈W , there exist unique vectors u, v,∈W with u ∈ U and v ∈ U⊥ such that
u+ v = x. In addition, the vector u is the unique vector in U which is nearest to x.

Moreover, if U = {u1, . . . , un} is any orthogonal basis for U , then u =

n∑
k=1

〈x, uk〉
|uk|2

uk.

Definition 4.3.14. Let W be an inner product space over R or C and let U be a finite-dimensional subspace.
Given x ∈W , the unique vector u in the above theorem is termed the orthogonal projection of x onto U ,
and is expressed u = ProjU (x).

4.4 Quotient spaces

Definition 4.4.1. Let W be any vector space over F. Let U be a subspace of W . For any w ∈W , define
the coset of U containing w to be

{w}+ U = {w + u
u ∈ U} = w + U

Definition 4.4.2. Let W be any vector space over F. Let U be a subspace of W . Then the quotient space,
or the collection of all cosets of U , is the vector space

W/U = {p+ U
p ∈W}

with (p+ U) + (q + U) = (p+ q) + U
c(p+ U) = cp+ U
0 = 0 + U = U

Definition 4.4.3. The codimension of U in W is the dimension of W/U .

Definition 4.4.4. A hyperspace of W is a subspace of codimension 1.

Theorem 4.4.5. Let W be a vector space over F. Let U be a subspace of W . If U is a basis for U and
U extends to a basis W for W , and if we let V =W \ U , then {v + U

v ∈ V} is a basis for W/U , and the
dimension of the quotient space is the number of vectors in V, or the cardinality of V, and dim(W/U) = |V|.
Further, if W is finite dimensional, then dim(U)+ dim(W/U) = dim(W ).

Theorem 4.4.6. With respect to the above, W ∼= U ⊕W/U , or W ∼= U ×W/U .

Definition 4.4.7. If U, V are subspaces of W with U ∩ V = {0} such that for all w ∈W , there exist
u ∈ U, v ∈ V with u+ v = w, then W is the internal direct sum of U and V , and we write W = U ⊕ V .

Definition 4.4.8. Given two vector spaces U, V , the external direct sum (or direct product) of U and V is
the vector space
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U × V = {(u, v)
u ∈ U, v ∈ V }

with (u1, v1) + (u2, v2) = (u1 + u2, v1 + v2)
c(u+ v) = (cu+ cv)

Remark 4.4.9. If U, V are subspaces ofW , then U ⊕ V ∼= U × V . Also, U × {0} = {(u, 0)
u ∈ U} ⊂ U × V .

Definition 4.4.10. Given a set A and vector spaces Uα with α ∈ A, define the direct sum of the spaces to
be the vector space∑

α∈A
Uα = {f : A→

⋃
α∈A

Uα
f(α) ∈ Uα for all α ∈ A with f(α) 6= 0 for only finitely many α ∈ A}

and we define the direct product of the vector spaces Uα to be∏
α∈A

Uα = {f : A→
⋃
α∈A

Uα
f(α) ∈ Uα for all α ∈ A}

When A is a finite, these are equal. When A is infinite,
∑
α∈A

Uα (
∏
α∈A

Uα

Theorem 4.4.11. Suppose L : W → V is linear. Then W/ker(L) ∼= Range(L) is an isomorphism given by
L̄ : W/ker(L)→ Range(L) with L̄(p+ ker(L)) = L(p) ∈ L.

4.5 Dual spaces

Definition 4.5.1. Let U be a vector space over F. The dual vector space of U is the vector space

U∗ = Lin(U,F) = {f : U → F
f is linear}

Theorem 4.5.2.∗ Let U be a finite-dimensional vector space over F. Let U = {u1, . . . , un} be a basis for
U . For k = 1, . . . , n, define fk ∈ U∗, so fk : U → F, to be the unique linear map with fk(ui) = δki. Then
F = {f1, . . . , fn} is a basis for U∗.

Definition 4.5.3. The set F = {f1, . . . , fn}in the above theorem is termed the dual basis of U for U .

Then f =

n∑
k=1

f(uk)fk.

Definition 4.5.4. Let U, V be vector spaces over F. Let L : U → V be linear. Define the dual (or the
transpose) map Lt : V ∗ → U∗ given by Lt(g) = g ◦ L for all g ∈ V ∗.

Theorem 4.5.5. Let U, V be finite dimensional vector spaces over F. Let L : U → V be linear. U ,V be

bases for U, V . Let F ,G be the dual bases for U∗ and V ∗. Then [Lt]
G

F
=
(

[L]
U

V

)t
Definition 4.5.6. Let U be a vector space over F. The evaluation map E : U → U∗∗ is given by
E(u)(f) = f(u) for all u ∈ U and f ∈ U∗.

Theorem 4.5.7. Let U be a finite dimensional vector space over F. Then the evaluation map E : U → U∗∗

is a (natural) isomorphism.

Remark 4.5.8. Given a basis U = {u1, . . . , un} for a vector space U , we obtain a (non-natural) isomorphism
LU : U → U∗ given by LmF (ui) = fi. This is an isomorphism, since F = {f1, . . . , fn} is a basis for U∗.

Theorem 4.5.9. Let U be a finite dimensional inner product space over R or C. Given f ∈ U∗, there exists
a unique vector u ∈ U such that f(x) = 〈x, u〉 for all x ∈ U .

Corollary 4.5.10. Let U be a finite dimensional inner product space over R. Then the map L : U → U∗

given by L(u)(x) = 〈x, u〉 is an isomorphism.
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Definition 4.5.11. Let W be a vector space over F. Let U be a subspace of W . Then the annihilator of U
in W ∗ is the space V ◦ = {f ∈W ∗

f(u) = 0 for all u ∈ U}.

Theorem 4.5.12. Let U, V be finite-dimensional inner product spaces over R or C. Let L : U → V be a
linear map. Then there exists a unique linear map L∗ : V → U such that 〈L(x), y〉 = 〈x, L∗(y)〉 for all x ∈ U
and y ∈ V .

Definition 4.5.13. The above map L∗ is termed the adjoint of L. In case U and/or V are infinite dimen-
sional, such a map need not exist, but if it does, then it is termed the adjoint of L.

Corollary 4.5.14. Let U, V be finite dimensional inner product spaces. Let U ,V be orthonormal bases for

U, V . Let L : U → V be linear. Then [L∗]
V

U
=
(

[L]
U

V

)∗
4.6 Normal linear maps, etc

Theorem 4.6.1. Let U, V be finite dimensional vector spaces over F. Let L : U → V be linear with

rank(L) = r. Then there exist bases U ,V for U and V such that [L]UV is of the form

(
Ir 0
0 0

)
.

Lemma 4.6.2.∗ For every A ∈Mn×n(F) whose characteristic polynomial splits, there exists a unitary matrix
P (and so P−1 = P ∗) such that T = P ∗AP is upper triangular. Further, the diagonal values of T are the
eigenvalues of A, repeated by their algebraic multiplicity.

Theorem 4.6.3.∗ [Schur]
Let U be a finite dimensional inner product space over R or C. Let L : U → U be linear. Suppose the
characteristic polynomial fL splits over F (always occurs for C, for R only when eigenvalues (roots) are real).
Then there exists an orthonormal basis U such that T = [L]U is upper triangular. Moreover, the diagonal
values of T are the eigenvalues of L, repeated according to their algebraic multiplicity.

Remark 4.6.4. The following statements are equivalent:
· The linear map L is diagonalizable.
· There exists a basis of eigenvectors of L for L.
· dim(Eλi

) = mi for all i
where Eλi

is the eigenspace of the eigenvalue λi of L, and mi is the algebraic multiplicity of eigenvalue λi.

Definition 4.6.5. Let U be a finite-dimensional inner product space over F = R or C. Let L : U → V be
linear. The map L is unitarily triangularziable if there exists an orthonormal basis U for U such that [L]U
is upper triangular. Similarly, L is unitarily diagonalizable if there exists an orthonormal basis U for U such
that [L]U is diagonal.

Corollary 4.6.6. [from Schur, for F = C]
Let U be a finite dimensional inner product space over C. Let L : U → U be linear.

1. L∗L = LL∗ ⇐⇒ L is unitarily diagonalizable
2. L∗ = L ⇐⇒ L is unitarily diagonalizable and the eigenvalues of L are real.

L∗ = −L ⇐⇒ L is unitarily diagonalizable and the eigenvalues of L are imaginary.
4. L∗L = I ⇐⇒ L is unitarily diagonalizable and the eigenvalues of L have unit norm.

Corollary 4.6.7. [from Schur, for F = R]
Let U be a finite dimensional inner product space over R. Let L : U → U be linear.

1. L∗L = LL∗ ⇐⇒ L is orthogonally diagonalizable
2. L∗ = L and L∗L = I ⇐⇒ L is orthogonally diagonalizable and every eigenvalue of L is ±1

Definition 4.6.8. Let U be an inner product space over R or C. Let L : U → U be linear.
when L∗L = LL∗, then L is normal
when L∗ = L, then L is self-adjoint or Hermitian
when L∗ = L, then L is skew-Hermitian
when L∗L = I, then L is unitary
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Remark 4.6.9. For any field F, we have the following matrix groups:
GL(n,F) = {A ∈Mn×n(F)

det(A) 6= 0} general linear group
SL(n,F) = {A ∈Mn×n(F)

det(A) = 1} special linear group - preserves orientation
O(n,F) = {A ∈Mn×n(F)

AtA = I} orthogonal group - preserves distance
SO(n,F) = {A ∈Mn×n(F)

AtA = I, det(A) = 1} special orthogonal group
U(n,F) = {A ∈Mn×n(C)

A∗A = I} unitary group
SU(n,F) = {A ∈Mn×n(C)

A∗A = I, det(A) = 1} special unitary group

Corollary 4.6.10. Let U be a finite-dimensional inner product space over R. Let L : U → U be linear.
Then L∗L = LL∗ if and only if there is an orthonormal basis U for U such that [L]U is in the block diagonal
form

[L]U =



λ1
. . .

λk
a1 b1
−b1 a1

. . .

a` b`
b` a`



where each λj is a real eigenvalue, and
each µj = aj ± ibj is a pair of complex eigenvalues

for k > 0, ` > 0, k + 2` = n

Corollary 4.6.11. For the same conditions as above, if L∗L = I, then there exists an orthonormal basis U
for U such that [L]U has the above form, except each real eigenvalue is ±1, and each block matrix of complex
eigenvalues has become the block rotation matrix.

Corollary 4.6.12. If L is orthogonally diagonalizable and λ = ±1 for all eigenvalues, the map L represents
a reflection in the space spanned by the columns in L with λ = 1.

Corollary 4.6.13. L is a reflection matrix if and only if L∗ = L and L∗L = I.

Corollary 4.6.14. L is an orthogonal projection if and only if L∗ = L and L2 = L.

Definition 4.6.15. For U = {u1, . . . , un} an orthonormal basis for U a subspace of an inner product space W

the scaling map by λk in the direction of uk is represented by the matrix [scaleλk,uk
]U =


1
·
1

λk
1
·
1


the orthogonal projection map onto span{uk} is given by the matrix [Projuk

]U =


0
·
0

1
0
·
0


Theorem 4.6.16. [Cayley-Hamilton theorem]
Let U be a finite-dimensional vector space over F = R or C and L : U → U linear. If fL is the characteristic
polynomial of L, then fL(L) = 0.

5 Bilinear and quadratic forms

5.1 Bilinear forms

Definition 5.1.1. Let U be a vector space over F. A bilinear form on U is a map S : U × U → F such that
for all x, y, z ∈ U and c ∈ F

1. S(x, y + z) = S(x+ y) + S(y + z)
2. S(x+ y, z) = S(x+ z) + S(y + z)
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3. S(cx, y) = c · S(x, y) = S(x, cy)
A bilinear form S is symmetric if S(x, y) = S(y, x)
A bilinear form is skew-symmetric or alternating if S(x, y) = −S(y, x)
A bilinear form is non-degenerate if S(u, x) = 0 for all x ∈ U ⇐⇒ u = 0 for all u ∈ U

Remark 5.1.2. If U is a basis for U , then a bilinear form S on U is determined completely by the values
S(u, v) for u, v ∈ U . Indeed, if we have x =

∑n
i=1 tiui and y =

∑n
j=1 rjuj for ui, uj ∈ U , then

S(x, y) = S
(∑n

i=1 tiui,
∑n
j=1 riui

)
=
∑
i,j tirjS(ui, uj)

Note that this argument also holds for the infinite-dimensional case, since linear combinations are still finite.

Remark 5.1.3. Bilin(U × U) ∼=
∏

(u,v)∈U×U

F

Definition 5.1.4. Let U be a finite dimensional vector space over F. Let S : U × U → F be a bilinear form.
Let U be a basis for U . Then the matrix of S with respect to the basis U is defined to be the matrix [S]U

such that S(u, v) = [u]tU [S]U [v]U . Furthermore, the (i, j) entry of [S]U is S(ui, uj).

Remark 5.1.5. Let U be a finite-dimensional vector space over F. Let S : U × U be a bilinear form. Let

U ,V be bases for U . Then [S]V = [I]VU
t
[S]U [I]VU .

Definition 5.1.6. For A,B ∈Mn×n(F), we say that A and B are congruent if there exists an invertible
matrix Q such that B = QtAQ. Note that congruent matrices have the same rank.

Definition 5.1.7. The rank of a bilinear form S on a finite dimensional vector space U is the rank of [S]U

for any basis U of U .

Remark 5.1.8. A bilinear form S on a finite-dimensional vector space U is symmetric ⇐⇒ the matrix
[S]U is symmetric for any basis U of U .

Theorem 5.1.9. Let U be a finite-dimensional vector space over F. Let S be a symmetric bilinear form.
1. If char(F) 6= 2, (that is, 1 + 1 6= 0), then there exists a basis U for U such that [S]U is diagonal.
2. If F = C, then there exists a basis U such that [S]U =

(
Ir 0
0 0

)
for r = rank(S).

3. If F = R, then there exists a basis U for U such that [S]U =

(
Ik
−Ir−k

0

)
for some k.

4. If F = R, then there exists an orthonormal basis U for U such that [S]U =

 λ1

. . .
λk

0

 for non-zero

eigenvalues λ1, . . . , λk of [S]U .
5. If F = R and D = [S]U is diagonal for U a basis for U , then the number of positive entries of D does

not depend on U .

Theorem 5.1.10. [Sylvester]
Let U be a finite-dimensional vector space over U . Let S : U × U → R be a symmetric bilinear form. Let U
and V be two bases for U such that [S]U and [S]V are both diagonal. Then the number of positive entries in
[S]U is the number of positive entries in [S]V .

Remark 5.1.11. We write Bilin(U) = Bilin(U × U,F) for the space of bilinear forms S : U × U → F. Given
a basis U of n-dimensional U , the map ψn : Bilin(U)→Mn×n(F) is a vector space isomorphic map.

Remark 5.1.12. An inner product in a real inner product space is a positive definite symmetric bilinear
form. Also, a bilinear form S : U × U → R is non-degenerate when S(u, x) = 0 for all x ∈ U ⇐⇒ u = 0 for
all u ∈ U .
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5.2 Quadratic forms

Definition 5.2.1. A polynomial f ∈ F[x1, x2, . . . , xn] is of the form

f(x1, x2, . . . , xn) =
∑

06i1,...,in

ai1,...,inx
i1
1 · · ·xinn

with only finitely many of the ai1,...,in = 0.

Definition 5.2.2. A polynomial homogeneous of degree d may be expressed as

K(x) =

m∑
d=0

 ∑
06i1,...,in

i1+···+in=d

ai1,...,inx
i1
1 · · ·xinn


Definition 5.2.3. Let U be a vector space over F. A quadratic form on U is a map K : U → F of the form
K(u) = S(u, u) for some symmetric bilinear form S. If char(F) 6= 2, then

K(u+ v) = S(u+ v, u+ v) = S(u, u) + 2S(u, v) + S(v, v) = K(u) + 2S(u, v) +K(v)

Theorem 5.2.4. A quadratic form may be diagonalized if char(F) 6= 2.

Theorem 5.2.5. Let U be an n-dimensional vector space over R. Let K : U → R be a quadratic form on
U , and let S : U × U → R be the corresponding symmetric bilinear form. Then the following are equivalent:

1. K (or S) is positive definite
2. the eigenvalues of [K]U = [S]U are all positive for some (hence any) basis U for U
3. for A = [K]U = [S]U we have det(Ak×k) > 0 with 1 6 k 6 n

Remark 5.2.6. For A ∈Mn×m(F) the notation Ak×` denotes the k × ` upper left submatrix of A such that
1 6 k 6 n and 1 6 ` 6 m.

5.3 Characterization and extreme values

Recall that K : U → R or S : U × U → R is positive definite or symmetric bilinear when K(u) = S(u, u) > 0
for u 6= 0.

Theorem 5.3.1.∗[Characterization of positive definite forms]
Let U be an n-dimensional inner product space over R. Let K : U → R be a quadratic form on U , and let
S : U × U → R be the corresponding symmetric bilinear form. Then the following statements are equivalent:

1. K (or S) is positive definite
2. the eigenvalues of [K]U = [S]U are all positive for some (hence any) basis U for U
3. for A = [K]U = [S]U we have det(Ak×k) > 0

where Ak×k represents the k × k upper-left submatrix of A.

Theorem 5.3.2. Let A ∈Mn×n(F). Suppose A∗ = A. Recall that the eigenvalues of A are real. Let
λ1,6 λ2 6 · · · 6 λn be the eigenvalues of A listed according to algebraic multiplicity in increasing order.
Then max

|x|=1
{x∗Ax} = λn and min

|x|=1
{x∗Ax} = λ1.

Corollary 5.3.3. Let U be an n-dimensional inner product space over R. Let S : U × U → R be a symmetric
bilinear form and let K : U → R be the corresponding quadratic form on U . Let λ1,6 λ2 6 · · · 6 λn be the
eigenvalues listed according to algebraic multiplicity in increasing order, of [K]U = [S]U for some (hence any)
orthonormal basis U for U . Then max

|u|=1
{K(u)} = λn and min

|u|=1
{K(u)} = λ1.

Definition 5.3.4. Let U, V be inner product spaces over F. If a map L : U → V has an adjoint, then define
the singular values of L to be the square roots of the eigenvalues of L∗L.

Let U, V be finite dimensional inner product spaces over F. Let L : U → V be linear. Let
0 6 σ1 6 σ2 6 · · · 6 σn be the singular values of L listed in increasing order, repeated according to alge-
braic multiplicity. Then max

|u|=1
{|L(u)|} = σn and min

|u|=1
{|L(u)|} = σ1.
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Definition 5.3.5. The spectrum of a linear map L : U → U over an inner product space U is the set of
eigenvalues of L.

Theorem 5.3.6.∗ Let U, V be inner product spaces over F. Let L : U → V be linear. Then there exist
orthonormal bases U ,V for U, V such that [L]UV is in the form

[L]UV = Σ =


σ1

. . . 0
σr

0 0


Corollary 5.3.7. For A ∈Mm×n(F), there exist P ∈Mm×n(F) and Q ∈Mn×n(F) with P ∗P = Im and
Q∗Q = In such that

P ∗AQ = Σ =


σ1

. . . 0
σr

0 0


This is termed the singular value decomposition of A = [L]U with the singular values as described above.

6 Jordan normal form

6.1 Block form

Definition 6.1.1. The m×m Jordan block for the eigenvalue λ ∈ F over F is the m×m matrix

Jmλ =


λ 1

. . .
. . .

. . . 1
λ


Definition 6.1.2. A matrix B ∈Mn×n(F) is in Jordan form when it is in the block diagonal form

B =


Jm1

λ1

Jm2

λ2

. . .

Jm`

λ`


6.2 Canonical form

Theorem 6.2.1. Let U be a finite-dimensional vector space over F. Let L : U → U be linear. Suppose that
the characteristic polynomial fL(t) of L splits over F. Then there exists a basis U for U such that [L]U = B
is in Jordan form. The matrix B is uniquely determined by L up to the order of the Jordan blocks.

Definition 6.2.2. A generalized eigenvector of a map L : U → U for an eigenvalue λ of L is a non-zero

vector u ∈ U such that (L− λI)Pu = 0 for some p > 0.

Definition 6.2.3. A cycle of generalized eigenvectors of length m for the eigenvalue λ is an ordered set of
vectors C = {u1, . . . , um} such that

um−1 = (L− λI)um

um−2 = (L− λI)2um

...

u1 = (L− λI)m−1um

0 = (L− λI)mum

16



Definition 6.2.4. The generalized eigenspace for λ is Kλ = {u ∈ U
(L− λI)pu = 0 for some p > 0}

Theorem 6.2.5.∗ Let U be a finite-dimensional vector space over F with L : U → U linear. Then for every
eigenvalue λ of L, there exists a basis of cycles corresponding to λ for Kλ.

Definition 6.2.6. Let L : U → U for U a finite-dimensional vector space over F be linear. The
minimal polynomial of L is the unique monic polynomial fL(x) of minimum possible degree such that
fL(L) = 0.

Note that the minimal polynomial is always a factor of the characteristic polynomial, and the roots of the
minimal polynomial are the same as the roots of the characteristic polynomial.

17



7 Selected proofs

Theorem 4.2.3. [Properties of the norm]
Let U be an inner product space over R or C. Then for u, v ∈ U and c ∈ R or C, we have

1. |u| > 0 with |u| = 0 ⇐⇒ u = 0
2. |cu| = |c||u|
3. |〈u, v〉| 6 |u||v| with |〈u, v〉| = |u||v| ⇐⇒ u, v are linearly dependent
4. |u+ v| 6 |u|+ |v|

Proof: For 2.:

|cu|2 = 〈cu, cu〉 = c 〈u, cu〉 = cc 〈u, u〉 = |c|2 |u|2 =⇒ |cu| = |c||u|

For 3.: Suppose {u, v} is linearly dependent, say u = cv for c ∈ C.

|〈u, v〉| = |c 〈v, v〉| = |c||v|2 = |cv||v| = |u||v|

Suppose {u, v} is linearly independent.

〈v − Projuv, u〉 =

〈
v − 〈v, u〉
〈u, u〉

u, u

〉
= 〈v, u〉 −

〈
〈v, u〉
〈u, u〉

u, u

〉
= 〈v, u〉 − 〈v, u〉

〈u, u〉
〈u, u〉 = 0

Since {u, v} is linearly independent, v − 〈v,u〉〈u,u〉u 6= 0, so

0 <

v − 〈v, u〉〈u, u〉
u

2

=

〈
v − 〈v, u〉
〈u, u〉

u, v − 〈v, u〉
〈u, u〉

u

〉
=

〈
v − 〈v, u〉
〈u, u〉

u, v

〉
− 0 = 〈v, v〉 − 〈v, u〉

〈u, u〉
〈u, v〉

〈v, u〉 〈u, v〉 < 〈u, u〉 〈v, v〉

〈v, u〉 〈v, u〉 < |u|2 |v|2

|〈u, v〉|2 < |u|2 |v|2

|〈u, v〉| < |u| |v|

For 4.:

|u+ v|2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

= |u|2 + 〈u, v〉+ 〈u, v〉+ |v|2

= |u|2 + 2Re(〈u, v〉) + |v|2

6 |u|2 + 2 |Re(〈u, v〉)|+ |v|2

6 |u|2 + 2 |〈u, v〉|+ |v|2

6 |u|2 + 2 |u||v|+ |v|2

= (|u|+ |v|)2

|u+ v| 6 |u|+ |v|

18



Theorem 4.2.2. Let U be a finite-dimensional vector space over F. Let U = {u1, . . . , un} be a basis for
U . For k = 1, . . . , n, define fk ∈ U∗, so fk : U → F, to be the unique linear map with fk(ui) = δki. Then
F = {f1, . . . , fn} is a basis for U∗.

Proof: It is claimed that F is linearly independent.
Suppose that

∑n
i=1 cifi = 0

Then
∑n
i=1 cifi(x) = 0 for all x ∈ U , in particular for all k = 1, 2, . . . , n, so 0 =

∑n
i=1 cifi(uk) = ck

It is claimed that F spans U∗.
Let g ∈ U∗. That is, g : U → F is linear.
It is claimed that g =

∑n
i=1 g(ui)fi

Indeed, for each k = 1, 2, . . . , n we have(
n∑
i=1

g(ui)fi

)
(uk) =

n∑
i=1

g(ui)f(uk) = g(uk)

Therefore g =
∑n
i=1 g(ui)fi as claimed.

Theorem 4.3.13. [Orthogonal projections]
Let W be a (possibly infinite-dimensional) inner product space over R or C and let U be a finite dimensional
subspace of W . Then given x ∈W , there exist unique vectors u, v,∈W with u ∈ U and v ∈ U⊥ such that
u+ v = x. In addition, the vector u is the unique vector in U which is nearest to x.

Moreover, if U = {u1, . . . , un} is any orthogonal basis for U , then u =

n∑
k=1

〈x, uk〉
|uk|2

uk.

Proof: Uniqueness: Suppose u, v, x ∈W with u ∈ U , v ∈ U⊥ and u+ v = x.
Let U = {u1, . . . , un} be an orthogonal basis for U .
Then 〈x, uk〉 = 〈u+ v, uk〉 = 〈u, uk〉+ 〈v, uk〉 = 〈u, uk〉

Therefore u =

n∑
k=1

〈u, uk〉
|uk|2

uk =

n∑
k=1

〈x, uk〉
|uk|2

uk

And so we have v = x− u.
So u and v are uniquely determined in terms of x and U .

Existence: Let x be given.

Let u =
∑n
k=1

〈x,uk〉
|uk|2

uk and let v = x− u.

Clearly u ∈ span{U} and u+ v = x.
To show that v ∈ U⊥, note that for each k we have

〈v, uk〉 = 〈x− u, uk〉
= 〈x, uk〉 − 〈u, uk〉

= 〈x, uk〉 −

〈
n∑
i=1

〈x, ui〉
|ui|2

ui, uk

〉

= 〈x, uk〉 −
n∑
i=1

〈x, ui〉
|ui|2

〈ui, uk〉

= 〈x, uk〉 −
〈x, uk〉
|uk|2

〈uk, uk〉

= 0

Finally, by Pythagoras’ theorem, u is the unique point in U nearest to x.
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Lemma 4.6.2. For every A ∈Mn×n(F) whose characteristic polynomial splits, there exists a unitary matrix
P (and so P−1 = P ∗) such that T = P ∗AP is upper triangular. Further, the diagonal values of T are the
eigenvalues of A, repeated by their algebraic multiplicity.

Proof: This will be done by induction on n.
For n = 1, this is clearly true, and we take P = I =

[
1
]
.

Suppose that for every (n− 1)× (n− 1) matrix B whose characteristic polynomial splits, there is an
(n− 1)× (n− 1) unitary matrix Q such that Q∗BQ is upper triangular.

Let A ∈Mn×n(F) such that its characteristic polynomial splits.
Let λ1 be an eigenvalue of A with u1 the corresponding eigenvector such that |u1| = 1.
Extend {u1} to an orthonormal basis {u1, . . . , un} for Fn.
Let P = (u1 . . . un).
Since {u1, . . . , un} is orthonormal, we have P ∗P = I, so P is unitary.
Then we have

P ∗AP =

u
∗
1
...
u∗n

A(u1 . . . un) =

u
∗
1
...
u∗n

(λ1u1 A(u1 . . . un)
)

=


λ1u

∗
1u1 u∗1A(u2 . . . un)

λ1u
∗
2u1
...

λ1u
∗
nu1

u
∗
2
...
u∗n

A(u2 . . . un)


=

(
λ1 X
0 B

)
Since

(
λ1 X
0 B

)
is similar to A, they share a common characteristic polynomial, so

(λ1 − t)det(B − tI) = fA(t) = (−1)n(t− λ1)k1 · · · (t− λ`)k`

Therefore fB(t) = (−1)n+1(t− λ1)k1−1(t− λ2)k2 · · · (t− λ`)k` , so it splits.
By the induction hypothesis, we can choose Q ∈M(n−1)×(n−1) with Q−1 = Q∗, so that Q∗BQ is upper

triangular.
Then we have (

1 0
0 Q∗

)
P ∗AP

(
1 0
0 Q

)
=

(
λ1 XQ
0 Q∗BQ

)
Theorem 4.6.3. [Schur]
Let U be a finite dimensional inner product space over R or C. Let L : U → U be linear. Suppose the
characteristic polynomial fL splits over F (always occurs for C, for R only when eigenvalues (roots) are real).
Then there exists an orthonormal basis U such that T = [L]U is upper triangular. Moreover, the diagonal
values of T are the eigenvalues of L, repeated according to their algebraic multiplicity.

Proof: Let Uo be an orthonormal basis for U .
Let A = [L]Uo .
Note that fA(t) = fL(t).
Choose P ∈Mn×n(F) (for n = dim(U)) with P ∗P = I, so that P ∗AP is upper triangular.
Let U be the basis for U such that [I]UUo = P .

Then [L]U = [I]UoU [L]UoUo [I]UUo
= P−1AP
= P ∗AP

And we have that U is orthonormal since P ∗P = I.
Indeed, if uk, u` ∈ U , then 〈uk, u`〉 = 〈[uk]Uo , [u`]Uo〉

= 〈kth column of P, `th column of P 〉
= δk,`
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Theorem 5.3.6. [Characterization of positive definite forms]
Let U be an n-dimensional inner product space over R. Let K : U → R be a quadratic form on U , and let
S : U × U → R be the corresponding symmetric bilinear form. Then the following statements are equivalent:

1. K (or S) is positive definite
2. the eigenvalues of [K]U = [S]U are all positive for some (hence any) basis U for U
3. for A = [K]U = [S]U we have det(Ak×k) > 0

Proof: 1. =⇒ 2. Suppose S is positive definite.
Let U be a basis for U and A = [S]U , so that S(u, v) = [u]tU [S]U [v]U = xtAy.
Since S(u, u) > 0 for all 0 6= u ∈ U , xtAx > 0 for all x 6= 0.
Let λ be an eigenvalue of A.
Let x be an eigenvector of A so that Ax = λx.
Then we have

xtAx = xtλx = λxtx = λ |x|2

Therefore λ = xtAx
|x|2 > 0

2. =⇒ 1. Suppose that the eigenvalues of [S]U = A are all positive for some basis U of U .
Since S is symmetric, A is symmetric, and so A is orthogonally diagonalizable.

Suppose P ∗AP = D =

λ1 . . .

λn

 for P unitary and λi > 0 for a 6 i 6 n and P ∈Mn×n(R).

So A = PDP ∗, and

xtAx = xtPDP ∗x = ytDy = λ1y
2
1 + · · ·+ λny

2
n > 0 for y 6= 0

1. =⇒ 3. Suppose S is positive definite.
Let U be a basis for U and let A = [S]U .
Since S is positive definite, xtAx > 0 for all x = [u]U 6= 0 and x ∈ Rn.

For k = 1, . . . , n,

(
x
0

)t
A

(
x
0

)
for all x ∈ Rk.

So the matrix Ak×k is positive definite.
So the eigenvalues of this k × k submatrix are all positive, so det(Ak×k) > 0, since the determinant of a

diagonalizable matrix is the product of the eigenvalues.

3. =⇒ 1. Suppose det(Ak×k) > 0 for k = 1, . . . , n.
Let U be a basis for U and let A = [S]U .
Consider the algorithm used to diagonalize a symmetric matrix (or bilinear form) by using row and

column operations.

Since det(Ak×k) > 0, we have A11 > 0 in the form

(
A11 ∗
∗ ∗

)
Now eliminate A1i = Ai1 for i = 2, . . . n by using Ci 7→ Ci − A1i

A11
C1 and Ri 7→ Ri − Ai1

A11
R1, so now the

matrix is of the form

(
A1,1 0
0 B

)
So we have det(Ak×k) = A11 · det(B(k−1)×(k−1)), so det(Bj×j) =

det(A(j+1)×(j+1))

A11
> 0

By repeating the procedure, we obtain an invertible matrix Q such that

QtAQ = D =

d1 . . .

dn

 with di > 0 for all i

Then we have

xtAx = xt(Q−1)tDQ−1x = ytDy = d1y
2
1 + · · · dny2n > 0
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Theorem 5.3.6. Let U, V be inner product spaces over F = R or C. Let L : U → V be linear. Then there
exist orthonormal bases U ,V for U, V such that [L]UV is in the form

[L]UV = Σ =


σ1

. . . 0
σr

0 0


where σ1, . . . , σr are the singular values of L.

Proof: Uniqueness: Suppose U ,V are orthonormal bases of U, V such that [L]UV is in the form above.
Note that r = rank(L).

For U = {u1, . . . , un} and V = {v1, . . . , vm} we have L(ui) =

{
σivi for 1 6 i 6 r
0 for r + 1 6 i 6 n

Note that we also have [L∗]VU =
(
[L]UV

)∗ ∈Mn×m(F).

Therefore we have L∗(vi) =

{
σiui for 1 6 i 6 r
0 for r + 1 6 i 6 m

Therefore {v1, . . . , vr} is a basis for range(L) and {vr+1, . . . , vm} is a basis for range(L)⊥.
Since L(ui) = σivi and L∗(vi) = σiui for 1 6 i 6 r

L∗(L(ui)) = L∗(σivi) = σiσiui = σ2
i ui

So for 1 6 i 6 r, λi = σ2
i is an eigenvalue of L∗L and ui is the corresponding eigenvector.

Note also that rank(L∗L) = rank(L), with null(L∗L) = null(L).
Therefore for r + 1 6 i 6 n we take λi = 0 since σi = 0.

Existence: Given L : U → V linear, consider L∗L : U → U .
Since (L∗L)∗ = L∗L, L∗L has non-negative real eigenvalues.
Let λ1 > · · · > λr > 0 and λr+1 = · · · = λn = 0 be the eigenvalues, so r = rank(L∗L) = rank(L).
The map L∗L can then be orthogonally diagonalized with an orthonormal basis of eigenvectors.
Let U = {u1, . . . , un} for L∗L be such a basis, so

[L∗L]U =


λ1

. . . 0
λr

0 0


We want to have L(ui) = σivi for 1 6 i 6 r.

Choose vi = L(ui)
σi

for 1 6 i 6 r.
Note that {v1, . . . , vr} is orthonormal, because

〈L(ui), L(uj)〉 = 〈ui, L∗L(uj)〉 = 〈ui, λjuj〉 = λj 〈ui, uj〉 = λjδij = σ2
j δij

Therefore 〈vi, vj〉 =
〈
L(ui)
σi

,
L(uj)
σj

〉
= δij .

Extend {v1, . . . , vr} to an orthonormal basis V = {v1, . . . , vr, vr+1, . . . , vm} for V.

It follows that [L]UV =


σ1

. . . 0
σr

0 0



22



Theorem 6.2.5. Let U be a finite-dimensional vector space over F with L : U → U linear. Then for every
eigenvalue λ of L, there exists a basis of cycles corresponding to λ for Kλ.

Proof: Fix an eigenvalue λ of L.
Choosem so that U = range(L− λI)0 ) range(L− λI)1 ) · · · ) range(L− λI)m = range(L− λI)m+1 = · · ·
Previously we saw that range(L− λI)m =

⊕
µ6=λ

Kµ for an eigenvalue µ of L.

We also have that {0} = null(L− λI)0 ( null(L− λI)1 ( · · · ( null(L− λI)m = null(L− λI)m+1 = · · ·
Note that null(L− λI) = Eλ and null(L− λI)m = Kλ.
Now follows the algorithm for finding a basis of cycles for Kλ.
Step 1. Choose a basis {u11, . . . , u

`1
1 } for range(L− λI)m−1 ∩Kλ = range(L− λI)m−1 ∩ Eλ.

Then we obtain cycles {u11}, {u21}, . . . , {u
`1
1 }.

Step 2. For 1 6 j 6 `1, choose uj2 ∈ range(L− λI)m−2 ∩Kλ so that (L− λI)uj2 = uj1.
Also, extend {u11, . . . , u

`1
1 } to a basis {u11, . . . , u

`2
1 } for range(L− λI)m−2 ∩ Eλ .

We obtain the cycles {u11, u12}, . . . , {u
`1
1 , u

`1
2 }, {u

`1+1
1 }, . . . , {u`21 }

Step k: Suppose we have constructed cycles Bj = {uj1, . . . , u
j
nj−1} for 1 6 j 6 `k−1 such that

{u11, . . . , u
`k−1

1 } is a basis for range(L− λI)m−(k−1) ∩ Eλ and such that

`k−1⋃
j=1

Bj is a basis for range(L− λI)m−(k−1) ∩Kλ.

For 1 6 j 6 `k−1, choose ujnj
∈ range(L− λI)m−k ∩Kλ so that (L− λI)ujnj

= ujnj−1.

Then let Cj = {uj1, . . . , ujnj
} = Bj ∪ {ujnj

} .

Also, extend {u11, . . . , u
`k−1

1 } to a basis {u11, . . . , u
`k
1 } for range(L− λI)m−k ∩ Eλ.

Now it is claimed that

`k⋃
j=1

Cj is a basis for range(L− λI)m−k ∩Kλ.

To see that
⋃
Cj is linearly independent, let

V = span
⋃
Cj ⊂ range(L− λI)m−k ∩Kλ

W = span
⋃
Bj = range(L− λI)m−(k−1) ∩Kλ

M = the restriction M = (L− λI) : V →W

Note that null(M) = range(L− λI)m−k ∩ Eλ and nullity(M) = `k by definition, so M is onto.
Therefore

dim(V ) = rank(M) + nullity(M) = dim(W ) + `k =
⋃Bj+ `k =

⋃Cj
Therefore

⋃
Cj is a basis for V .

Therefore
⋃
Cj is linearly independent.

To see that
⋃
Cj spans range(L− λI)m−k ∩Kλ, let

V2 = range(L− λI)m−k ∩Kλ

W = range(L− λI)m−(k−1) ∩Kλ

M2 = the restrictionM2 = (L− λI) : V2 →W

Now we have that M2 is onto and null(M2) = range(L− λI)m−k ∩ Eλ with nullity(M2) = `k.
So then

dim(V2) = dim(W ) + `k =
⋃Bj+ `k =

⋃Cj = dim(V )

Therefore V2 = V = span
⋃
Cj .
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