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1 Overview of Linear Algebra 1

1.1 Lines and planes

A line in 3 dimensions is best described parametrically. Given a point p and a vector u, all points on the
line are described by = = p + tu for t € R.

A plane in 3 dimensions is the same; given two points and two vectors p + u and ¢ + v, the points on the
plane are described by x = p + ru + st for s, € R. This can be generalized by ayx1 + asxs + azxz = b.

Definition 1.1.1. A vector space in R" is a set of the form {tyuy, ..., tpux|t; € R} = span{us,...,u; € R}.A
vector space includes the origin.

Definition 1.1.2. An affine space in R” is a set of the form p +V = {p + v|v € V}, for some point p € R"
and some vector space V € R™. Here, p + V is the affine space through p parallel to V.

Theorem 1.1.3. If U is a basis for a vector space V' € R™, then the number of elements in U is at most n.
If U and W are bases for the same vector space in R™, then they have the same number of elements. This
number is termed dimension.

Definition 1.1.4. A function A is said to be linear if the two following conditions are satisfied for some
scalar ¢ and all z,y € R™:

A(tx) = tA(z)

Az +y) = Alz) + Aly)

Definition 1.1.5. A linear map L : R” — R™ is a map of the form L(x) = Az for some A € M,,xp.

Definition 1.1.6. An affine map L : R” — R™ is a map of the form L(z) = Ax + b for some A € M, xp,
and b € R".

- Note that the span of columns is the column space of the range.

- The nullspace is perpendicular to the rowspace.

Theorem 1.1.7. Suppose that L : R” — R™ is linear. Let x € R" be such that x = x1e1 4+ x2e2 + - - - + T,€5,
where ¢y, is the kth standard basis vector. Then L(z) = Az for A = (L(e1) L(ea) ... L(eyn)).

Theorem 1.1.8. Suppose A reduces to R in reduced row echelon form. Then the non-zero rows of R form a
basis for the row space of A. Then to obtain a basis for the nullspace of A, solve Az = 0 using Gauss-Jordan
elimination to get & = t1v; + - - - + tgvrthen {uy, ..., ux} is a basis for null(A4).

Definition 1.1.9. Given a function f: X — Y
1. fis 1:1 or injective when for all y € Y there exists at most 1 € X such that y = f(z).
2. f is onto or surjective when for all y € Y there exists at least 1 € X such that y = f(z).
3. f is invertible or bijective when f is one-to-one and onto.

Theorem 1.1.10. A function is differentiable when it can be suitably approximated by an affine map.

Definition 1.1.11. Let U and V be vector spaces with dim(U) = n and dim(V) = n. Let U = {uq,...,un}
and V = {v1,...,v,} be ordered bases for for U and V respectively. Then for z € U with z = tyu; + - - - + tpuy,
ty

define [z]yy =t=| : | e R"”
128
For a linear map L:U — V, there is a unique matrix described by [L}§ such that for all z € U,
[L(z)]y = [L[2]y. This matrix is given by [L] = ([L(u1)]y ... [L(un)lv) € Mmxn

Remark 1.1.12. The matrix [L]§{ is termed the matrix of L with respect to the bases & and V.



1.2 Determinants

Theorem 1.2.1. Given matrices A, B € M, «,, and an equation AB = 0,
(Ales) ~ (11B:)
(AD) ~ (I|B)
where e; is the ¢th column of I and B; is the ith column of B.

Definition 1.2.2. For n > 2 and A € M, «,, given a fixed ¢, det(A4) = Z(—l)i+in7jdet(Ai’j)
j=1
- where A% is the (n — 1) x (n — 1) matrix obtained from A by removing the i** row and j'* column
- and A; ; is the element in the i*" row and j** column of A

Theorem 1.2.3. If Null(A4) # {0}, then A is not invertible and det(A) = 0.

Definition 1.2.4. The matrix defined by Cofac(A) is termed the cofactor matrix (or classical adjoint)of A.

Theorem 1.2.5. For A € M, x,, Ais invertible if and only if det(A) # 0, and in that case A1 = ﬁ(fl) - Cofac(A)
where (Cofac(A))r.¢ = (—1)¥+det(A%F)

Theorem 1.2.6. For all A € M,,5,,, A - Cofac(A) = det(A)I. Also, Cofac(A) = (A¥),

Theorem 1.2.7. [INVERSION PROPERTIES)]
For any A, B € My, det(AB) = det(A) det(B)
For any A € M,,«», and for t € N, det(A) = det(A")

2 Operations in vector spaces

Remark 2.0.1. A vector space over a field F is a set closed over addition and multiplication.

Remark 2.0.2. Let U,V be finite dimensional vector spaces with bases U;,Us, V1, Vs. For any u € U and
e L = U DR = (DR

Definition 2.0.3. For A, B € M,,x,, A and B are gimilar when there exists an invertible matrix P such
that B= PAP™!.

2.1 The dot product in R"”

n

Definition 2.1.1. For u,v € R", the dot product of v and v is u-v = Zulvl = ulv = vlu.
i=1

Theorem 2.1.2. [PROPERTIES OF THE DOT PRODUCT]

For t € R and u,v,w € R™:

1. u-u>20withu-u=0<=u=0 Positive definite
2. u-v=v-u Symmetric
3. (tu) v =t(u-v) =u-(tv) Bilinear
4. (utw) - w=u-wHv-w
T
Remark 2.1.3. For any A € M,,x, and x € R, we have Az = (c1 ... ¢,) | | | = w1+ + cpZp.
Also note that the row space of A is equal to the column space of A. Tn

Definition 2.1.4. For u € R”, the length of u is




Theorem 2.1.5. [PROPERTIES OF LENGTH]
For u,v € R" and t € R,

1. Ju| >0 with [u| =0 < u=0

2. |tu| = \t1| [ul , , . , )

3. w-v=5(jutol” —fu]” —[o") = 3(ju+ 0" = Ju -

4. |u-v| < |ulv| with |u - v| = |u||v] <= {u,v} is linearly dependent

5. Ju— o] < Ju+v] < Ju] + o
Definition 2.1.6. For u,v € R", the distance between u and v is d(u,v) = |u — v| = |v — ul.

Theorem 2.1.7. [PROPERTIES OF DISTANCE]
For u,v,w € R™,
1. d(u,v) > 0 with d(u,v) =0 <= u=v
2. d(u,v) =d(v,u)
3. d(u,v) < d(u,w) + d(w,v)

Definition 2.1.8. For 0 # u,v € R™, the angle between u and v is angle(u,v) = 6. This is expressed as

. X
6 = cos™* (uv) =sin~! (|uv|>
|ul[v] |ullv]

Theorem 2.1.9. [PROPERTIES OF ANGLES]
For 0 # u,v € R™ and 6 = angle(u, v):
1. Law of cosines: [v — u|? = |u|? + |v|? — 2|u||v| cos(8)
2. Pythagorean theorem: If u - (v — u) = 0, then |[v]? = |u|?® + |v — u|?

_ Iyl

3. Trigonometric ratios: If u - (v — u) = 0, then cos(6) Tof and sin(0)

— lv=vy]
[v]

Theorem 2.1.10. For ¢t € R and u,v € R™ and ¢, u,v # 0:

B angle(u7 v) lf t > 0
angle(tu, v) = { 7 — angle(u,v) ift <0

Definition 2.1.11. For a,b,c € R™ all distinct, define Zabe = angle(a — b, c — b).
Theorem 2.1.12. For a,b,c € R™ all distinct, Zabc + Zcab + ZLbca = .

Definition 2.1.13. For 0 # u € R” and p € R™, the hyperspace (or hyperplane) in R™ through p and
perpendicular to u is the set of points € R™ such that (z —p) - u = 0.

2.2 Orthogonal projections

Definition 2.2.1. For u,v € R", we say that v and v are orthogonal (or perpendicular) when v = 0.
If u,v # 0, then u-v =0 <= angle(u,v) = 7.

u-x
[ul *

Definition 2.2.2. For 0 # v € R™ and € R”, the orthogonal projection of x onto w is proj,(z) =

If U = span{u}, then projy(z) = *~%u. Note that (z — proj, (z)) is orthogonal to wu.

T f?
With reference to the case above, [projyz] = ﬁuut.

Definition 2.2.3. For a vector space U € R", the orthogonal complement of U is the vector space
Ut ={z eR"z-u=0forall w € U} = Null(U?).

The projection of x onto U+ is x — proj z.

Theorem 2.2.4. [PROPERTIES OF THE ORTHOGONAL COMPLEMENT]
Let U be a vector space in R™. Then

1. For A € My,xn over R, Null(A) = Row(A)+
2. UnUL ={0}

3. dim(U)+ dim(U+t) = n

4. (UHt=U



Theorem 2.2.5. For A € M,,,, rank(A*A) = rank(A). Also, Null(A*A) = Null(A).

Theorem 2.2.6. Let U be a vector space in R” and x € R”. Then there exist unique vectors u,v € R™ with
uw € U and v € Ut such that u + v = .

Corollary 2.2.7. When {u1,...,u;} is a basis for U and A = (u; ...ug) € Mk, then
- Projy(x) = A(ATA)" 1Az
- Projyi(z) = (I — A(A'A) "1 AY)x.

Definition 2.2.8. Let U be a subspace of R and let x € R™. Let u, v be the unique vectors with u € U and
v € U+ with u 4+ v = 2. Then u is termed the orthogonal projection of x onto U and we write u = Projy ().

Note that since (U+)1 = U, we have v = Projy . (z).

Theorem 2.2.9. Let U be a subspace of R” with € R™. Then the point u = Projy () is the unique point
on U which is nearest to x.

Theorem 2.2.10. Given a set of data points {(x1,91), (22,92),..., (@n,yn)}, the polynomial f € P,
with f(x) = co+ 12 + cow? + -+ + cuz™ that best fits these points has coefficient vector ¢ given by
c = (A'A)~1Aly, where

1oay af - af co f(z1) Y1

1 oz a5 - oy €1 f(z2) Y2
A=, . . Clye=| . | and f(x) = : = Ac, with y =

1@, Ty Cm f(zn) Un

Remark 2. 2 11. The above polynomial is termed the least-squares best-fit polynomial for the given data,

such that Z f(z;))? is minimized.

=1

Remark 2.2.12. If we have at least m + 1 distinct xz-coordinates, then A has maximal rank, is invertible,
and so (A'A)~! exists. In general, a best-fit polynomial always exists, but a unique one exists only if the
number of distinct z-values is greater than m.

2.3 The cross product in R”

Theorem 2.3.1. Let uq,...,up_1 € R™. Then the cross product of these vectors is

€n

€1
- X(u1,...,up—1) = formal det (ul, N T >

Zn: )+ det(A)e;

where {e1,...,e,} are the_standard basis vectors
A4: (ul unfl) S Mnx(nfl)
A* = the (n — 1) x (n — 1) matrix obtained from A by removing the ith row

Theorem 2.3.2. [PROPERTIES OF THE CROSS PRODUCT]
For vectors u,v € R™:

1o X(ugy ooty ooy tnot) = tX(Ut, oo Uk, - o vy Up—1) (n — 1)-linear
20 X(Utyeoo g Uky ooy UpyenoyUpo1) = =X (U, ooy Upyeony Ukyonoy Up—1) skew-symmetric
3. X(u1,...,up—1) - v=det(us ... up—1 v)

4. X(u1,y...,tup—1) =0<= {u1,...,up—1} is linearly dependent

5. X(u1,...,tun—1) #0 = det(us ... up—1 X(u1,...,up—1)) >0

Theorem 2.3.3. For u,v,w,r € R3, (uxv) x w = (u-w)v— (v-w)u.
Also, (uxv) - (wxz)=(u-w)(v-z)—(u-z)(v- w)



3 Applications of the cross product

3.1 Geometry

Definition 3.1.1. Let uy,...,u;r € R™. The k-parallelotope on these vectors is the set of points x of the
form z = Zle tiu; with 0 < t; < 1 for all 4.

- The points uq, ..., us are termed vertices of the k-parallelotope

- If {us,...,ux} is linearly dependent, then the k-parallelotope is termed degenerate

Definition 3.1.2. For a k-parallelotope n uq, ..., u; € R", define the k-volume recursively as follows:

Vi(u1) = [us

Vie(ut, -, ugk) = |ug] sin(@)Vi—1 (u1, - . ., up—1) for k > 2
where 6 is the angle from uy, (or span{ug}) to spanf{uy, ..., ug_1}, provided that ux # 0 and spanf{uy,...,ug_1} # 0.
If up, = 0 or span{uq,...,ux—1} = 0, then we define V}, = 0.

Theorem 3.1.3. Let uq,...,u; € R™. Then Vi (uy,...,ug) = y/det(A*A), where A = (uy ... ug) € Mpxk.
In particular, Vi (ug,...,ux) =0 <= {uy,...,u} is linearly dependent.

Corollary 3.1.4. Vi(u1,..., %, ... %5, ... uk) = Vi(ur,...,uj,. .., %, ..., ug). Or, the k-volume is inde-
pendent of the order of vectors.

Corollary 3.1.5. Vi (uq,...,u;) = |det(A)|
Corollary 3.1.6. | X (uy,...,up—1)] = Va—1(ug, ..., tup_1)

Definition 3.1.7. For a,b € R™, the perpendicular bisector of [a, b] is the hyperplane through QT'H’ perpen-
dicular to b — a. It is the set {z € R" | (x — “T'H’) - (b—a) =0}

3.2 Spherical geometry

Definition 3.2.1. The (standard) unit sphere in R? is the set S? = {x € R®||z| =1}. More generally,
St ={z e R"||z| =1}.

Definition 3.2.2. Given u € S, the line in S? with poles +u is the set L, = {z € $? | r-u=0}=S’NP,,
where P, = {z € R® |z - u =0}

Axiom 3.2.3. [AXIOMS OF SPHERICAL GEOMETRY|
For u,v € S? and u # +v:
1. L,=L, <<= u=+v

2. There exists a unique line on S? through v and v, given by L,, = IZ§5I

3. There exists a unique line on S? through v and perpendicular to L,
4. L,N L, = {fw} for some w € $?

Definition 3.2.4. The (spherical) distance between u,v € S? is given by distgz (u,v) = anglegs (u, v).
Theorem 3.2.5. For u,v,w,z € R3,

(uxv)xw=(u-wv—(v-whu
(uxv) - (wxz)=(u-w)(v-z)—(u-x)(v-w)

Remark 3.2.6. Properties for spherical distance are identical to properties for distance on the plane.

Definition 3.2.7. Given u € S?, r € (0,7), the circle on S? centered at u of radius 7 is the set
C(u,r) = {z € §*| dist(z,u) =r}
=z €S|z u=cos(r)}
= PN'S? where P is the plane in R? with equation z - u = cos(r)
So P is the plane perpendicular to u which goes through the point cos(r)u - u.

Definition 3.2.8. Given v # 4u € S?, define the unit direction vector from u to v to be
_ (uxv)xu _ v—Proj,(v) _ v—(v-uw)u
Uy = [(uxv)xu| — |v—Proj,(v)] = |uxv| )



Remark 3.2.9. The set {u,u,} is an orthonormal basis for span{u,v}.

Remark 3.2.10. The line segment [u,v] € S? is given parametrically by

x(t) = cos(t)u + sin(t)u, with 0 < t < dist(u,v) = cos™*(u - v)
Theorem 3.2.11. Two parallel planes a distance 0 < ¢ < 2r apart slicing a sphere of
radius 7 enclose an area of 27r¢ on the surface of the sphere.

Theorem 3.2.12. Two planes each bisecting a sphere of radius r with an
angle @ to each other enclose an area of 2672 on the surface of the sphere.

With reference to the unit sphere on the left:

a=a b="b c=c

a=a B=p y=9

uf =[] ol = Jw] = ||
poUXw L wXu o, uXv
Cuxw|  Jwxul o |uxol

[/, v, w'] is the polar triangle of [u, v, w]

Thm 3.1.9. [SPHERICAL LAW OF SINES|

sin(a) _ sin(8) _ sin(7)
sin(a)  sin(b)  sin(c)

Thm 3.1.10. [SPHERICAL LAW OF COSINES]

cos(a) + cos(p) cos(v)
sin(3) sin(y)

cos(a) =

cos(a) — cos(b) cos(c)
sin(b) sin(c)

cos(a) =

3.3 Spherical angles

Definition 3.3.1. A non-degenerate triangle on S? is determined by 3 non-colinear points u, v, w € S2.
Note that u,v,w are colinear <= u,v,w lie on a plane in R? through u

<= {u,v,w} is linearly dependent

<~ det(u v w)=0

Definition 3.3.2. An ordered triangle may be defined as an ordered triple [u,v,w] = (u,v,w) with

u,v,w € S? and det(u v w)#0. An ordered triangle is positively oriented when det(u v w) >0 and
negatively oriented when det(u v w) < 0.

Definition 3.3.3. For u,v,w € S? with v # +u and w # Fu, define the oriented
angle angle(u, v, w) to be the angle 6 € [0, 2] such that
cos(0) = uy - Uy .

. det(u v w)
Sll’l(e) _ (Uv % Uw) U= det(u Uy uw) — W

Theorem 3.3.4. Let [u,v,w] be a positively oriented triangle on S? with
angles «, 8,~. Then the area of [u,v,w]is A= (a+B+7) — 7.



4 The inner product

4.1 Fundamental definitions

Definition 4.1.1. Let U be a vector space over R. An inner product on U is a function { , ) : U? — R such
that for all u,v € U and ¢ € R

1. (u,u) >0 with (u,u) =0 < u=0

2. (u,v) = (v,u)

3. {(cu,v) = c{u,v) = (u,cv)

4. (u+v,w) = (u,v) + (v, w)
A vector space closed under an inner product is termed an inner product space.

Definition 4.1.2. Let U be a vector space over C. An inner product on U is a function { , ) : U? — C such
that for all u,v € U and c € C
1. (

u) €
,u) = 0 with (u,u) =0 < u=0
) = (v, u)

= c(u,v)

u, cv) = ¢ (u,v)

u~+ v, wy = {u,v) + (v, w)

(u, v + wy = {u,v) + (u, w)

A vector space over C closed under an inner product is termed an inner product space over C.

2.

@
/\/\/\/\/\
Q
S
4
~

4.

Definition 4.1.3. The vector v* is termed the conjugate transpose, or the adjoint, or the Hermitian trans-

pose of v, such that v* = v’

4.2 Standard inner products

Remark 4.2.1. The standard inner product on the following spaces is given by:

on R™: Zulvl—uv—vu
on C™: Zuw?fuvau
on M xn(R) ZAZJB” = trace(A'B) = trace(B'A)

on My,xn(C) : (A, B) :ZAij?U: trace(A'B) = trace(B*A)

on Cla,b] : / fg

Definition 4.2.2. Let U be an inner product space over F. Then for u € U, define the norm or length of u
to be |u| = ||u]| = v/(u, u). Also, a unit vector is a vector of length 1.

Theorem 4.2.3.%« [PROPERTIES OF THE NORM]
Let U be an inner product space over R or C. Then for u,v € U and ¢ € R or C, we have
1. Ju| >0 with |u| =0 < u=0
2. |cu| = |c||u|
3. [(u,v)]| < |ul|v] with [{u,v)| = |u||v] <= wu,v are linearly dependent
4. Ju o] < Jul + [v]
Remark 4.2.4. For a vector space U, a map | | : U — R which satisfies 1., 2., 3. above is termed a norm
on U.
Theorem 4.2.5. [POLARIZATION IDENTITY]
In an inner product space U over R, we have (u,v) = 3 (Ju+ v[? — |u — v[?).
In an inner product space V over C, we have (u,v) = 1 (Ju+ v|? + ilu + iv]* — |u — v]* — |u — iv[?).



Remark 4.2.6. For any non-empty set X a map d: X x X — R which satisfies 1., 2., 3. above is termed
a metric on X.

Definition 4.2.7. Let U be an inner product space over R. For 0 # u,v € U, define than angle between u
and v to be angle(u,v) = cos™* (<“"”))

[u]lv]

Definition 4.2.8. Let U be an inner product space over R or C. For u,v € U, we say that u and v are
orthogonal if (u,v) = 0.

Theorem 4.2.9. [PYTHAGORAS]

Let U be an inner product space over R or C. Let 0 # u,v € U. Suppose (u,v) = 0.
Then |[v — ul? = |v|? + |u|?.

4.3 Orthogonal sets / compliments / projections

Definition 4.3.1. Let U be an inner product space over R or C. A set of vectors {ui,...,u,} in U is
termed an orthogonal set when (u;,u;) = 0 for all ¢ # j, or each pair of vectors is orthogonal. The set is
termed orthonormal if (u;,u;) = 0 for all i # j and (u;, u;) =1 for all 4.

Remark 4.3.2. Note that {u1,...,u} € R" isorthogonal <= A'Aisdiagonal for A = (u1 ... ug) € Myxk.
Similarly, {uy,...,u;} € R" is orthonormal <= A'A =1 for A= (u; ... ug) € Myxy.

The same may be extended to vectors over C™, but with conjugate transpose in place of transpose.

Theorem 4.3.3. Let U be an inner product space over R or C. Let U = {uy,...,u,} be an orthogonal set

of non-zero vectors. Then U is linearly independent, and also for z € span{U}, ([z]u/) p = %:"?.
Theorem 4.3.4. [GRAM-SCHMIDT PROCEDURE]
Let W be an inner product space. Let U = {u1,...,u,} be a linearly independent set of vectors in W. So
U = span(Uf) is an n-dimensional subspace of W. Define vectors vy, ..., v, recursively by
V1 = U
k—1 (g, i)
'Uk:'l,bkfz kaQ’L v;
= luil
Then for each k =1,...,n, the set {v1,...,v;} is an orthogonal set of non-zero vectors with
span{vy,...,vp—1} = span{uy, ..., up_1}-

Corollary 4.3.5. Every finite-dimensional inner product space has an orthonormal basis.

Corollary 4.3.6. Let W be a finite-dimensional inner product space. Let V be a subspace of W. Then
every orthonormal basis of U extends to an orthonormal basis of W.

Definition 4.3.7. Let U and V be inner product spaces over R or C. An isomorphism (of inner product
spaces) from U to V is a map L:U — V such that L is linear, bijective, and preserves inner products
((L(z), L(y)) = (x,y) for all z,y € U).

It follows as a consequence that the inverse is also linear and also preserves inner products.

The map need only be onto, because the preservation of inner products implies that it is 1: 1.

Definition 4.3.8. Two inner product spaces U, V are said to be isomorphic when there exists an isomorphism
L:U—=YV.

Corollary 4.3.9. Every n-dimensional inner product space over F for F = R or C, is isomorphic to F™.

Definition 4.3.10. Let W be an inner product space over R or C. Let U be a subspace of W. Then the
orthogonal compliment of U is the vector space U+ = {z € W | (2,u) =0 for all u € U}.

Definition 4.3.11. Let U be a vector space over F. For a set of vectors U, a linear combination of the
elements of U is always a finite sum of the form Z?Zl c;u; for ¢; € F and u; € U.




Theorem 4.3.12. [PROPERTIES OF THE ORTHOGONAL COMPLIMENT]
Let W be an inner product space over R or C, and let U be a subspace of W. Then
1. UnU* = {0}

2. UcC(UH)*t
If W is finite-dimensional, then we also have
3. IfU = {uy,...,ux} is an orthogonal (orthonormal) basis for U, and W = {uq, ..., ug,v1,...,0s} is an

orthogonal (orthonormal) basis for W, then V = V\U = {v1,..., v} is an orthogonal (orthonormal)
basis for U~.

4. U = {uy,...,ux} is an orthogonal (orthonormal) basis for U, and V = {vy,..., v} is an orthogonal
(orthonormal) basis for U+, then W =/ UV is an orthogonal (orthonormal) basis for W.

5. dim(U) + dim(U+) = dim(W)

6. Given any = € W, there exist unique vectors u,v € W with u € U and v € U+ such that u +v = w.

T W=UaUt

Theorem 4.3.13.%[ORTHOGONAL PROJECTIONS]

Let W be a (possibly infinite-dimensional) inner product space over R or C and let U be a finite dimensional
subspace of W. Then given x € W, there exist unique vectors u,v, € W with u € U and v € U+ such that
u + v = x. In addition, the vector u is the unique vector in U which is nearest to z.

(@, ug)

n
Moreover, if Y = {uy,...,u,} is any orthogonal basis for U, then u = Z

Definition 4.3.14. Let W be an inner product space over R or C and let U be a finite-dimensional subspace.
Given x € W, the unique vector u in the above theorem is termed the orthogonal projection of x onto U,
and is expressed u = Projy (z).

4.4 Quotient spaces

Definition 4.4.1. Let W be any vector space over F. Let U be a subspace of W. For any w € W, define
the coset of U containing w to be

{w}+U={w+u|ueU}t=w+U

Definition 4.4.2. Let W be any vector space over F. Let U be a subspace of W. Then the quotient space,
or the collection of all cosets of U, is the vector space

W/U={p+U|peW}

with  (p+U)+(¢+U)=@p+q +U
cp+U)=cp+U
0=04+U=U

Definition 4.4.3. The codimension of U in W is the dimension of W/U.
Definition 4.4.4. A hyperspace of W is a subspace of codimension 1.

Theorem 4.4.5. Let W be a vector space over F. Let U be a subspace of W. If U is a basis for U and
U extends to a basis W for W, and if we let V =W\ U, then {v+ U |v € V} is a basis for W/U, and the
dimension of the quotient space is the number of vectors in V, or the cardinality of V, and dim(W/U) = |V|.
Further, if W is finite dimensional, then dim(U)+ dim(W/U) = dim(W).

Theorem 4.4.6. With respect to the above, W 2 U @& W/U, or W 2 U x W/U.

Definition 4.4.7. If U,V are subspaces of W with U NV = {0} such that for all w € W, there exist
u € U,v € V with u + v = w, then W is the internal direct sum of U and V', and we write W =U ® V.

Definition 4.4.8. Given two vector spaces U, V, the external direct sum (or direct product) of U and V is
the vector space
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UxV={(u,)|ueUveV}

with  (u1,v1) + (u2,v2) = (u1 + vz, v1 + v2)
c(u+v) = (cu+ cv)

Remark 4.4.9. If U,V are subspaces of W, then U & V = U x V. Also, U x {0} = {(u,0) [u e U} CU x V.

Definition 4.4.10. Given a set A and vector spaces U, with o € A, define the direct sum of the spaces to
be the vector space

Z Us={f:A— U Ua | f(a) € Uy for all a € A with f(«) # 0 for only finitely many o € A}
acA acA
and we define the direct product of the vector spaces U, to be

[[Ue={f:A> | Ual|fla) €U, forall a € A}

acA acA

When A is a finite, these are equal. When A is infinite, Z Us C H U,
acA acA

Theorem 4.4.11. Suppose L : W — V is linear. Then W/ker(L) = Range(L) is an isomorphism given by
L : W/ker(L) — Range(L) with L(p + ker(L)) = L(p) € L.
4.5 Dual spaces

Definition 4.5.1. Let U be a vector space over F. The dual vector space of U is the vector space

U* =Lin(U,F) ={f : U — F| f is linear}

Theorem 4.5.2.x Let U be a finite-dimensional vector space over F. Let U = {uq,...,u,} be a basis for
U. For k=1,...,n, define fr € U*, so fr : U — F, to be the unique linear map with fi(u;) = dx;. Then
F={f1,---, fn} is a basis for U*.

Definition 4.5.3. The set F = {f1,..., fn}in the above theorem is termed the dual basis of U for U.
Then f = f(ux)fr.
k=1

Definition 4.5.4. Let U,V be vector spaces over F. Let L:U — V be linear. Define the dual (or the
transpose) map L' : V* — U* given by L'(g) = go L for all g € V*.

Theorem 4.5.5. Let U,V be finite dimensional vector spaces over F. Let L : U — V be linear. U,V be
t
bases for U, V. Let F,G be the dual bases for U* and V*. Then [Lt}gf = ([L]Z)

Definition 4.5.6. Let U be a vector space over F. The evaluation map E:U — U** is given by
Ew)(f) = f(u) for all u € U and f € U*.

Theorem 4.5.7. Let U be a finite dimensional vector space over F. Then the evaluation map E : U — U**
is a (natural) isomorphism.

Remark 4.5.8. Given a basis i = {u1,...,u,} for a vector space U, we obtain a (non-natural) isomorphism
Ly : U — U* given by L,, F(u;) = f;. This is an isomorphism, since F = {f1,..., fn} is a basis for U*.

Theorem 4.5.9. Let U be a finite dimensional inner product space over R or C. Given f € U*, there exists
a unique vector u € U such that f(z) = (x,u) for all x € U.

Corollary 4.5.10. Let U be a finite dimensional inner product space over R. Then the map L : U — U*
given by L(u)(x) = (z,u) is an isomorphism.
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Definition 4.5.11. Let W be a vector space over F. Let U be a subspace of W. Then the annihilator of U
in W* is the space V° = {f € W*| f(u) =0 for all u € U}.

Theorem 4.5.12. Let U,V be finite-dimensional inner product spaces over R or C. Let L:U — V be a
linear map. Then there exists a unique linear map L* : V' — U such that (L(z),y) = (z, L*(y)) for all z € U
andyeV.

Definition 4.5.13. The above map L* is termed the adjoint of L. In case U and/or V are infinite dimen-
sional, such a map need not exist, but if it does, then it is termed the adjoint of L.

Corollary 4.5.14. Let U,V be finite dimensional inner product spaces. Let U,V be orthonormal bases for
U,V. Let L: U = V be linear. Then [L*], = ([L]Z)

4.6 Normal linear maps, etc
Theorem 4.6.1. Let U,V be finite dimensional vector spaces over F. Let L:U — V be linear with

rank(L) = r. Then there exist bases U,V for U and V such that [L]%} is of the form (IOT 8)

Lemma 4.6.2.x For every A € M,,«,,(F) whose characteristic polynomial splits, there exists a unitary matrix
P (and so P~! = P*) such that T = P*AP is upper triangular. Further, the diagonal values of T are the
eigenvalues of A, repeated by their algebraic multiplicity.

Theorem 4.6.3.% [SCHUR]

Let U be a finite dimensional inner product space over R or C. Let L:U — U be linear. Suppose the
characteristic polynomial f;, splits over F (always occurs for C, for R only when eigenvalues (roots) are real).
Then there exists an orthonormal basis U such that T = [L]y, is upper triangular. Moreover, the diagonal
values of T are the eigenvalues of L, repeated according to their algebraic multiplicity.

Remark 4.6.4. The following statements are equivalent:
- The linear map L is diagonalizable.
- There exists a basis of eigenvectors of L for L.
- dim(E)y,) =m; for all ¢
where E), is the eigenspace of the eigenvalue A; of L, and m; is the algebraic multiplicity of eigenvalue A,.

Definition 4.6.5. Let U be a finite-dimensional inner product space over F =R or C. Let L: U — V be
linear. The map L is unitarily triangularziable if there exists an orthonormal basis U for U such that [L]y,
is upper triangular. Similarly, L is unitarily diagonalizable if there exists an orthonormal basis U for U such
that [L]y is diagonal.

Corollary 4.6.6. [FROM SCHUR, FOR F = C]
Let U be a finite dimensional inner product space over C. Let L : U — U be linear.
1. L*L = LL* <= L is unitarily diagonalizable
2. L* = L <= L is unitarily diagonalizable and the eigenvalues of L are real.
L* = —L <= L is unitarily diagonalizable and the eigenvalues of L are imaginary.
4. L*L = I <= L is unitarily diagonalizable and the eigenvalues of L have unit norm.

Corollary 4.6.7. [FROM SCHUR, FOR F = R]
Let U be a finite dimensional inner product space over R. Let L : U — U be linear.
1. L*L = LL* <= L is orthogonally diagonalizable
2. L* =L and L*L =1 <= L is orthogonally diagonalizable and every eigenvalue of L is £1

Definition 4.6.8. Let U be an inner product space over R or C. Let L : U — U be linear.
when L*L = LL*, then L is normal
when L* = L, then L is self-adjoint or Hermitian
when L* = L, then L is skew-Hermitian
when L*L = I, then L is unitary

12



Remark 4.6.9. For any field F, we have the following matrix groups:

GL(n,F) = {A € My, (F) | det(A) # 0} general linear group

SL(n,F) ={A € My, (F)| det(A) =1} special linear group - preserves orientation
O(n,F) = {A € My, (F)|A'A =TI} orthogonal group - preserves distance
SO(n,F) ={A € Myxn(F)| A'A =1I,det(A) =1} special orthogonal group

Un,F) ={A € Myn(C)|A*A=1} unitary group

SU(n,F) ={A € Myyxn(C)| A*A=1,det(A) =1} special unitary group

Corollary 4.6.10. Let U be a finite-dimensional inner product space over R. Let L :U — U be linear.
Then L*L = LL* if and only if there is an orthonormal basis U for U such that [L]; is in the block diagonal
form

A1
Ak where each )\; is a real eigenvalue, and
Ly = a b each p; = a; £ib; is a pair of complex eigenvalues
u= —b1 al
fork>0,>0,k+20=n
ag by
by ag

Corollary 4.6.11. For the same conditions as above, if L*L = I, then there exists an orthonormal basis U
for U such that [L]y, has the above form, except each real eigenvalue is +1, and each block matrix of complex
eigenvalues has become the block rotation matrix.

Corollary 4.6.12. If L is orthogonally diagonalizable and A = %1 for all eigenvalues, the map L represents
a reflection in the space spanned by the columns in L with A = 1.

Corollary 4.6.13. L is a reflection matrix if and only if L* = L and L*L = 1.

Corollary 4.6.14. L is an orthogonal projection if and only if L* = L and L? = L.

Definition 4.6.15. For U = {u4,...,u,} an orthonormal basis for U a subspace of an inner product space W
1
1
the scaling map by Ay, in the direction of uy, is represented by the matrix [scalex, v, Ju = Ak
— 1
1
0
. . . . . . O
the orthogonal projection map onto span{uy} is given by the matrix [Pro_]uk]u = 1

Theorem 4.6.16. [CAYLEY-HAMILTON THEOREM|
Let U be a finite-dimensional vector space over F =R or C and L : U — U linear. If f, is the characteristic
polynomial of L, then fr(L) = 0.

5 Bilinear and quadratic forms

5.1 Bilinear forms

Definition 5.1.1. Let U be a vector space over F. A bilinear form on U is a map S : U x U — F such that
forall x,y,z € U and ce F

1. S(z,y+2)=S@x+y)+Sy+=z)

2. S(z+y,2)=S@+2)+Sy+2)
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3. S(ex,y) =c-S(z,y) = S(z,cy)
A bilinear form S is symmetric if S(z,y) = S(y, z)
A bilinear form is skew-symmetric or alternating if S(z,y) = —S(y, x)
A bilinear form is non-degenerate if S(u,z) =0forallz € U <= u=0forallueU

Remark 5.1.2. If I/ is a basis for U, then a bilinear form S on U is determined completely by the values

S(u,v) for u,v € Y. Indeed, if we have x = Y "' | t;u; and y = Z?zl rju; for us, u; € U, then

S(:L‘, y) = S (Z?:l tiui, Z?:l Tiui) = Zi,j tiTjS(’UﬂL', Uj)
Note that this argument also holds for the infinite-dimensional case, since linear combinations are still finite.

Remark 5.1.3. Bilin(U xU)= [[ F
(u,0)eUxU

Definition 5.1.4. Let U be a finite dimensional vector space over F. Let S : U x U — F be a bilinear form.
Let U be a basis for U. Then the matrix of S with respect to the basis U is defined to be the matrix [S]%
such that S(u,v) = [u]},[S]¥[v]y. Furthermore, the (i, 7) entry of [S] is S (u;, u; ).

Remark 5.1.5. Let U be a finite-dimensional vector space over F. Let S : U x U be a bilinear form. Let
U,V be bases for U. Then [S]Y = [I]X,t[S]u[I]Z.

Definition 5.1.6. For A, B € M,,«,,(F), we say that A and B are congruent if there exists an invertible
matrix @ such that B = Q*AQ. Note that congruent matrices have the same rank.

Definition 5.1.7. The rank of a bilinear form S on a finite dimensional vector space U is the rank of [S]*
for any basis U of U.

Remark 5.1.8. A bilinear form S on a finite-dimensional vector space U is symmetric <= the matrix
[S]¥ is symmetric for any basis U of U.

Theorem 5.1.9. Let U be a finite-dimensional vector space over F. Let S be a symmetric bilinear form.
1. If char(F) # 2, (that is, 1 + 1 # 0), then there exists a basis I for U such that [S]¥ is diagonal.
2. If F = C, then there exists a basis U such that [S]¥ = (L 0) for r = rank(S).

00
I
3. If F = R, then there exists a basis & for U such that [S]¥ = f for some k.
0
A1
4. If F = R, then there exists an orthonormal basis U for U such that [S]¥ = for non-zero
Ak
0

eigenvalues A1, ..., A\ of [S]Y.
5. If F =R and D = [S]¥ is diagonal for U a basis for U, then the number of positive entries of D does
not depend on U.

Theorem 5.1.10. [SYLVESTER]

Let U be a finite-dimensional vector space over U. Let S : U x U — R be a symmetric bilinear form. Let U
and V be two bases for U such that [S]¥ and [S]V are both diagonal. Then the number of positive entries in
[S]¥ is the number of positive entries in [S]Y.

Remark 5.1.11. We write Bilin(U) = Bilin(U x U, F) for the space of bilinear forms S : U x U — F. Given
a basis U of n-dimensional U, the map 1, : Bilin(U) — M,,«»(F) is a vector space isomorphic map.

Remark 5.1.12. An inner product in a real inner product space is a positive definite symmetric bilinear
form. Also, a bilinear form S : U x U — R is non-degenerate when S(u,z) =0 forallz € U <= u =0 for
allueU.
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5.2 Quadratic forms

Definition 5.2.1. A polynomial f € Fz1,x2,...,%,] is of the form

f(xlvaa"wxn) = Z ailwwinxlll '/Eibn

01, yin
with only finitely many of the a;,, .4, = 0.

Definition 5.2.2. A polynomial homogeneous of degree d may be expressed as

K(z) =Y > ai Ay
=0\
Definition 5.2.3. Let U be a vector space over F. A quadratic form on U is a map K : U — F of the form
K(u) = S(u,u) for some symmetric bilinear form S. If char(IF) # 2, then
K(u+v)=Su+v,u+v)=8u,u)+25u,v) + Sv,v) = K(u) + 25(u,v) + K(v)

Theorem 5.2.4. A quadratic form may be diagonalized if char(F) # 2.

Theorem 5.2.5. Let U be an n-dimensional vector space over R. Let K : U — R be a quadratic form on
U, and let S : U x U — R be the corresponding symmetric bilinear form. Then the following are equivalent:
1. K (or S) is positive definite
2. the eigenvalues of [K]¥ = [S]¥ are all positive for some (hence any) basis U for U
3. for A= [KJ¥ = [S]¥ we have det(A***) >0 with 1 <k <n

Remark 5.2.6. For A € M,,x,,(F) the notation A*** denotes the k x £ upper left submatrix of A such that
1<k<nand 1<l m.

5.3 Characterization and extreme values

Recall that K : U — Ror S : U x U — R is positive definite or symmetric bilinear when K (u) = S(u,u) > 0
for u # 0.

Theorem 5.3.1.x[CHARACTERIZATION OF POSITIVE DEFINITE FORMS)]
Let U be an n-dimensional inner product space over R. Let K : U — R be a quadratic form on U, and let
S : U x U — R be the corresponding symmetric bilinear form. Then the following statements are equivalent:
1. K (or S) is positive definite
2. the eigenvalues of [K]¥ = [S]“ are all positive for some (hence any) basis U for U
3. for A= [K] = [S]" we have det(A¥**) >0
where A¥*F represents the k x k upper-left submatrix of A.

Theorem 5.3.2. Let A € M,,»,(F). Suppose A* = A. Recall that the eigenvalues of A are real. Let
A1, < A2 < --- < A\, be the eigenvalues of A listed according to algebraic multiplicity in increasing order.
Then \m|a}§{$*AI} =\, and |HPH1{:C*A:C} = A1

Corollary 5.3.3. Let U be an n-dimensional inner product space over R. Let S : U x U — R be a symmetric
bilinear form and let K : U — R be the corresponding quadratic form on U. Let A\, < Ay < -+ < A\, be the
eigenvalues listed according to algebraic multiplicity in increasing order, of [K]¥ = [S]¥ for some (hence any)
orthonormal basis U for U. Then ‘Hlla)i{K(u)} =\, and ln‘nnl{K(u)} =\

Definition 5.3.4. Let U,V be inner product spaces over F. If a map L : U — V has an adjoint, then define
the singular values of L to be the square roots of the eigenvalues of L*L.

Let U,V be finite dimensional inner product spaces over F. Let L:U — V be linear. Let
0< 01 <09 <--- <o, be the singular values of L listed in increasing order, repeated according to alge-
braic multiplicity. Then ‘mlax{\L(u)|} = o, and Ir?in{|L(u)|} =o0.

u|=1 ul=1
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Definition 5.3.5. The spectrum of a linear map L : U — U over an inner product space U is the set of
eigenvalues of L.

Theorem 5.3.6.x Let U,V be inner product spaces over F. Let L:U — V be linear. Then there exist
orthonormal bases U,V for U,V such that [L}{ is in the form

01

LY =% = - 0

oy

\ 0 | 0/
Corollary 5.3.7. For A € M,,«x,(F), there exist P € M, x,(F) and Q € M, «,(F) with P*P =1, and
Q*Q = I, such that

g1

PrAQ =% = 0

T

This is termed the singular value decomposition of A = [L]¥ with the singular values as described above.

6 Jordan normal form

6.1 Block form

Definition 6.1.1. The m x m Jordan block for the eigenvalue A € F over F is the m x m matrix

A1
JV =
1
A
Definition 6.1.2. A matrix B € M,,«,(F) is in Jordan form when it is in the block diagonal form
J;’il
B = J;\ZQ
J;\'ZM

6.2 Canonical form

Theorem 6.2.1. Let U be a finite-dimensional vector space over F. Let L : U — U be linear. Suppose that
the characteristic polynomial f1,(¢) of L splits over F. Then there exists a basis U for U such that [L]yy = B
is in Jordan form. The matrix B is uniquely determined by L up to the order of the Jordan blocks.

Definition 6.2.2. A generalized eigenvector of a map L : U — U for an eigenvalue A of L is a non-zero
vector u € U such that (L — A\ )Pu = 0 for some p > 0.

Definition 6.2.3. A cycle of generalized eigenvectors of length m for the eigenvalue A is an ordered set of
vectors C' = {uy,..., U} such that

Um—1 = (L - /\I)um
Um—o = (L — M) *u,,



Definition 6.2.4. The generalized eigenspace for A is Ky = {u € U | (L — AI)Pu = 0 for some p > 0}

Theorem 6.2.5.x Let U be a finite-dimensional vector space over F with L : U — U linear. Then for every
eigenvalue \ of L, there exists a basis of cycles corresponding to A for K.

Definition 6.2.6. Let L:U — U for U a finite-dimensional vector space over F be linear. The
minimal polynomial of L is the unique monic polynomial fr(z) of minimum possible degree such that

fr(L) = 0.

Note that the minimal polynomial is always a factor of the characteristic polynomial, and the roots of the
minimal polynomial are the same as the roots of the characteristic polynomial.
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7 Selected proofs

Theorem 4.2.3. [PROPERTIES OF THE NORM]
Let U be an inner product space over R or C. Then for u,v € U and ¢ € R or C, we have
1. |u| 20 with |[u/| =0 < u=0
2. Jeul = |cllu
3. [(u,v)| < |ullv| with |(u,v)| = |ul||v] <= wu,v are linearly dependent
4. fu+o| <ful+ vl

Proof: For 2.:
|cu|2 = (cu, cu) = ¢ (u, cu) = cc(u,u) = \c|2 |u\2 = |cu| =|||u|

For 3.: Suppose {u,v} is linearly dependent, say u = cv for ¢ € C.

2
[(u, 0)] = |e (v, v)| = [e][o]” = |ev||v] = |ul|v]

Suppose {u,v} is linearly independent.

(v — Proj,v,u) = <v _lvw uu> = (v,u) — < <”’“>u,u> = (v, u) — <”’Z> (u,u) =0

(u, u) (u, u)

Since {u,v} is linearly independent, v — éZZ; u # 0, so

e e I G e T e L (R o Y BT RL R v

(v, u) (u, vy < {u,u) (v,v)

(v,u) (v, u) < |uf® [v]?
[(u, 0)* < [uf® [v]?
[{(u

;o) < ful o]

For 4.:
lu+ o> = (u+v,u+0v)
= (u,u) + (u,v) + (v,u) + (v,v)
= [uf® + (u,0) + {u,0) + o]
= [uf® + 2Re((u, v)) + |v]*
Jul” + 2 [Re((u, v))| + [v]”
Jul® + 2 |(w, v)| + [of
Jul® + 2 Jul o] + [o]?
(Jul + Jv])?
|+ o] < ful + [v]

NN N
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Theorem 4.2.2. Let U be a finite-dimensional vector space over F. Let U = {u1,...,u,} be a basis for
U. For k=1,...,n, define fr, € U*, so fr : U — T, to be the unique linear map with f;(u;) = d;. Then
F=A{f1,..., fn} is a basis for U*.

Proof: It is claimed that F is linearly independent.
Suppose that Y ¢;fi =0
Then Y7, ¢;f;(z) = 0 for all € U, in particular for all k =1,2,...,n,50 0=>""", ¢; fi(ur) = cx
It is claimed that F spans U*.
Let g € U*. That is, g : U — F is linear.
It is claimed that g = >""" | g(w;) fi
Indeed, for each £k =1,2,...,n we have

n

(Z g(“i)fi) (ur) = D g(ui) fur) = glug)

i=1

Therefore g = 7| g(u;) f; as claimed.

Theorem 4.3.13. [ORTHOGONAL PROJECTIONS]

Let W be a (possibly infinite-dimensional) inner product space over R or C and let U be a finite dimensional
subspace of . Then given x € W, there exist unique vectors u,v, € W with u € U and v € U such that
u + v = x. In addition, the vector u is the unique vector in U which is nearest to z.

(x, ug)

n
Moreover, if U = {uq,...,u,} is any orthogonal basis for U, then u = Z
k=1

Proof: Uniqueness: Suppose u,v,z € W with u € U, v € U+ and u + v = .
Let U = {u1,...,u,} be an orthogonal basis for U.
Then (z,ur) = (u+ v, ug) = (U, ug) + (v, ug) = (U, ug)
n n
Therefore u = Z {u, u§>uk = Z (a:,u;§>Uk
k=1 |uk| k=1 ‘uk|
And so we have v = x — u.
So uw and v are uniquely determined in terms of x and U.

Existence: Let x be given.

Let u=>3,_, %;L";) up and let v =z — w.

Clearly u € span{U} and u + v = x.
To show that v € U™, note that for each k we have

(v, ug) = {(x — u, ug)

=l
~ e i=1 <r;zT;> k)
= (2, up) — <E:’;>< o )
=0

Finally, by Pythagoras’ theorem, u is the unique point in U nearest to z.
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Lemma 4.6.2. For every A € M,,«,,(F) whose characteristic polynomial splits, there exists a unitary matrix
P (and so P~! = P*) such that 7' = P*AP is upper triangular. Further, the diagonal values of T" are the
eigenvalues of A, repeated by their algebraic multiplicity.

Proof: This will be done by induction on n.

For n = 1, this is clearly true, and we take P = [ = [1]

Suppose that for every (n —1) x (n — 1) matrix B whose characteristic polynomial splits, there is an
(n—1) x (n — 1) unitary matrix @ such that @*BQ is upper triangular.

Let A € M,,x,(F) such that its characteristic polynomial splits.

Let A1 be an eigenvalue of A with u; the corresponding eigenvector such that |u;| = 1.

Extend {u1} to an orthonormal basis {uy,...,u,} for F".
Let P=(u1 ... uy).
Since {uy,...,u,} is orthonormal, we have P*P = I, so P is unitary.

Then we have

uj Ui
PAP= | @ | A(ur ... up)= | : (Alul A(uy ... un))
Un, U
Auiug ufA(ug ... up)
Audug u3
- : Sl Alug L. uy)
Apuug uy,

G 3

Since ( )é) is similar to A, they share a common characteristic polynomial, so

(A1 —t)det(B —tI) = fa(t) = (=1)"(t — Ap)Fr - (t — Ag)ke

Therefore fp(t) = (=1)"F1(t — X)) =1 (t — Ag)F2 - - (£ — N\p)Fe, s0 it splits.
By the induction hypothesis, we can choose Q € M(,,_1)x(n—1) With Q' = Q*, so that Q*BQ is upper

triangular.
1 0 . 1 0y _ (M X@Q
o @) (o o)= (5 o'so)
Theorem 4.6.3. [SCHUR]

Then we have
Let U be a finite dimensional inner product space over R or C. Let L:U — U be linear. Suppose the
characteristic polynomial fr, splits over IF (always occurs for C, for R only when eigenvalues (roots) are real).
Then there exists an orthonormal basis U such that T' = [L]y, is upper triangular. Moreover, the diagonal
values of T' are the eigenvalues of L, repeated according to their algebraic multiplicity.

Proof: Let U, be an orthonormal basis for U.
Let A= [L]uo.
Note that fa(t) = fL(t).
Choose P € M, x,(F) (for n = dim(U)) with P*P = I, so that P*AP is upper triangular.
Let U be the basis for U such that [I] = P.
Then [Lly = [Tz [l [T,
=P 'AP
= P*AP
And we have that U is orthonormal since P*P = I.
Indeed, if ug,ue € U, then (uk, ue) = ([urlu,, [telu,)
= (kth column of P, ¢th column of P)
=0k
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Theorem 5.3.6. [CHARACTERIZATION OF POSITIVE DEFINITE FORMS]
Let U be an n-dimensional inner product space over R. Let K : U — R be a quadratic form on U, and let
S : U x U — R be the corresponding symmetric bilinear form. Then the following statements are equivalent:
1. K (or S) is positive definite
2. the eigenvalues of [K]¥ = [S]Y are all positive for some (hence any) basis U for U
3. for A = [K] = [S]" we have det(A¥**) >0

Proof: 1. = 2. Suppose S is positive definite.
Let U be a basis for U and A = [S]Y, so that S(u,v) = [u]},[S]4[v]y = ! Ay.
Since S(u,u) > 0 for all 0 # u € U, z' Az > 0 for all z # 0.
Let A be an eigenvalue of A.
Let z be an eigenvector of A so that Ax = Ax.
Then we have

2t Az = o'hz = Aate = A |z|?

Therefore A = ’”I;“A;B >0
2. = 1. Suppose that the eigenvalues of [S]¥ = A are all positive for some basis U of U.
Since S is symmetric, A is symmetric, and so A is orthogonally diagonalizable.
A
Suppose P*AP =D = for P unitary and \; > 0 for a <7 < n and P € M, «,(R).
An
So A= PDP*, and

2'Ax = 2'PDP*x = y'Dy = \iy? + -+ A\py2 >0 for y#0

1. — 3. Suppose S is positive definite.
Let U be a basis for U and let A = [S]¥.
Since S is positive definite, ' Az > 0 for all z = [u]yy # 0 and = € R".

t
For k=1,...,n, (g) A(ﬁ) for all z € R,

So the matrix A**¥ is positive definite.
So the eigenvalues of this k& x k submatrix are all positive, so det(A**¥) > 0, since the determinant of a
diagonalizable matrix is the product of the eigenvalues.

3. = 1. Suppose det(A***) >0 for k=1,...,n.

Let U be a basis for U and let A = [S]¥.

Consider the algorithm used to diagonalize a symmetric matrix (or bilinear form) by using row and
column operations.
All *

*

Now eliminate Ay; = A;; for i =2,...n by using C; — C; — 23 Ci and R; — R; — 2;’11 R1, so now the
A171 0
0 B

Since det(A***) > 0, we have A;; > 0 in the form

matrix is of the form

det (AU XG+1))

So we have det(A***) = Ayq - det(B*—Dx*=1) g0 det(B*7) = 1
1

By repeating the procedure, we obtain an invertible matrix ¢ such that
dy
Q'AQ =D = with d; > 0 for all ¢
dn,

>0

Then we have
a' Az = 2'(Q71)'DQ e = y' Dy = diyf + - - dpy} > 0
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Theorem 5.3.6. Let U,V be inner product spaces over F =R or C. Let L : U — V be linear. Then there
exist orthonormal bases U,V for U,V such that [L}{{ is in the form

(L =% = 0)
\ 0 | 0/

where o1, ...,0, are the singular values of L.

Proof: Uniqueness: Suppose U,V are orthonormal bases of U,V such that [L]V is in the form above.
Note that r = rank(L).

For U = {u1,...,un} and V = {vq,..., v} we have L(ui)z{ ow; forl<isr

0 forr+1<i1<n
Note that we also have [L*]E = ([L]%)* € My xm(F).
sy J ooy for1<i<r
Therefore we have L*(v;) = 0 forr+1<i<m
Therefore {vy,...,v,} is a basis for range(L) and {v,41,...,v,} is a basis for range(L)~.

Since L(u;) = o;v; and L*(v;) = oyu; for 1 <i < r
L*(L(w;)) = L*(0;v;) = 0y0u; = 02u;

So for 1 <i < r, \; = 02 is an eigenvalue of L*L and u; is the corresponding eigenvector.
Note also that rank(L*L) = rank(L), with null(L*L) = null(L).
Therefore for r +1 < 7 < n we take \; = 0 since o; = 0.

Ezistence: Given L : U — V linear, consider L*L : U — U.
Since (L*L)* = L*L, L*L has non-negative real eigenvalues.
Let Ay > --- > A >0and A1 =--- =\, =0 be the eigenvalues, so r = rank(L*L) = rank(L).
The map L*L can then be orthogonally diagonalized with an orthonormal basis of eigenvectors.
Let U = {uq,...,u,} for L*L be such a basis, so

A1
[L*L]y = 0
\ 0 | 0/

We want to have L(u;) = o;v; for 1 <4 < r.

Choose v; = M for 1 <i<
Note that {vl, ce,Upt S orthonormal, because

(L(uqi), L(ug)) = (ui, L*L(ug)) = (ug, Ajug) = Ay (ug, uj) = Ajdy; = 0263

Therefore (v;,v;) = <M, M> = dij.

g; gj
Extend {v1,...,v,} to an orthonormal basis V = {v1,...,0r, Vpi1,...,0m} for V.
o1

It follows that [L]} = 0

Oy

\ 0 | o/
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Theorem 6.2.5. Let U be a finite-dimensional vector space over F with L : U — U linear. Then for every
eigenvalue \ of L, there exists a basis of cycles corresponding to A for K.

Proof: Fix an eigenvalue A of L.
Choose m so that U = range(L — AI)° D range(L — M) D --- D range(L — A\I)™ = range(L — AXI)™ ! = ...
Previously we saw that range(L — AI)™ = @ K, for an eigenvalue y of L.
HFEN

We also have that {0} = null(L — AI)° C null(L — M)} € -+ C null(L — AI)™ = null(L — AX[)™ Tt = ...
Note that null(L — AI) = E)\ and null(L — A\I)™ = K.
Now follows the algorithm for finding a basis of cycles for K.
Step 1. Choose a basis {ul,...,u*} for range(L — AI)™ ' N K = range(L — A\I)™~ ! N Ej.

Then we obtain cycles {ul}, {u?},..., {ul*}.
Step 2. For 1 < j < /4, choose u), € range(L — AXI)™ 2N K} so that (L — A)u} = ul.

Also, extend {ul,...,u‘'} to a basis {ul, ..., u‘?} for range(L — AXI)™ 2N E} .

We obtain the cycles {ul,ul},. .., {uf, uf}, {u 1}, ... 7}{%2} ‘
Step k: Suppose we have constructed cycles B/ = {u],... ,uﬁlrl} for 1 <j<¥p_1 such that
L1
{ui,... ,uf’“’l} is a basis for range(L — A\I)™~ (=Y N £ and such that U B7 is a basis for range(L — A\I)™~ =Y N K.
j=1

For 1 < j < {,_1, choose u{lj € range(L — A\I)™ kN K, so that (L — )\I)uﬁ;j = uflrl.
Then let C; = {ul, ..., ul } = B/ U {u,
J J

Also, extend {ul, ..., ul*"*} to a basis {ul,...,u'*} for range(L — A\I)™* N Ej.
Ly
Now it is claimed that U (Y is a basis for range(L — A\I)™ % N K.
j=1

To see that |JC7 is linearly independent, let

V. =span|JC? C range(L — \XI)™* N K,

W =span|JB? = range(L — AXI)™~ =D N K

M = the restriction M = (L —XI):V - W
Note that null(M) = range(L — AI)™ % N E\ and nullity(M) = ¢, by definition, so M is onto.
Therefore

dim(V) = rank(M) + nullity(M) = dim(W) + £, = |UB? | + te = |UC |

Therefore | J C7 is a basis for V.
Therefore | JC7 is linearly independent.
To see that |JC7 spans range(L — A\ )™~ % N K}, let

Vo =range(L — A\)™F N K,

W =range(L — AX)™~ k=D 0 K

My = the restrictionMy = (L — M) : Vo = W
Now we have that Mo is onto and null(Ms) = range(L — AI)™ % N Ey, with nullity(Ms) = 4.
So then

dim(Va) = dim(W) + €, = |UB? | + 4 = |UCY | = dim(V)

Therefore Vo =V = span|J CV.
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