Contents

Ι	Lectures	2
1	Review	2
2	Sequences in \mathbb{R}^n	2
3	Open and closed subsets of \mathbb{R}^n	3
4	Continuous functions	4
5	Continuity and compactness	4
6	Integrable functions	5
7	Linearity of the integral	6
8	Integration of functions modulo null sets	6
9	Theorem of Fubini	7
10	Integration on more general domains	8
11	Partial derivatives	8
12	C^1 -functions	9
13	The chain rule	10
14	Partial derivatives of higher order	10
15	Functions in $C^1(A, \mathbb{R}^m)$	11
16	Inverse function theorem	12
17	Implicit function theorem	12
II	Selected proofs	13

 $\underline{\textit{Discretion:}}$ These theorem, remark, etc. numbers do not necessarily coincide with prof. Nica's.

File I Lectures

1 Review

Basic properties of the inner product

a. Bilinearity: $\langle \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2, \vec{y} \rangle = \alpha_1 \langle \vec{x}_1, \vec{y} \rangle + \alpha_2 \langle \vec{x}_2, \vec{y} \rangle$ b. Symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$

c. Positivity: $\langle \vec{x}, \vec{x} \rangle \ge 0$ with $\langle \vec{x}, \vec{x} \rangle = 0$ iff $\vec{x} = \vec{0}$

Theorem 1.1.* [Cauchy-Bunyakovsky-Schwarz Inequality] $| < \vec{x}, \vec{y} > | \leq ||\vec{x}|| \cdot ||\vec{y}||$

Corollary 1.2. [TRIANGLE INEQUALITY] $\|\vec{x} + \vec{y}\| \leq \|\vec{x}\| + \|\vec{y}\| \forall \vec{x}, \vec{y} \in \mathbb{R}^n$

Definition 1.3. The <u>distance</u> between \vec{x} and \vec{y} is defined to be $d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\| = \sqrt{\sum_{i=1}^{n} (x^{(i)} - y^{(i)})^2}$.

Corollary 1.4. For every $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$, $d(\vec{x}, \vec{z}) \leq d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$.

Definition 1.5. For $\vec{a} \in \mathbb{R}^n$ and r > 0, define a <u>ball</u> by $B(\vec{a}; r) = \{\vec{x} \in \mathbb{R}^n \mid d(\vec{x}, \vec{a}) < r\} = \{\vec{x} \in \mathbb{R}^n \mid ||\vec{x} - \vec{a}|| < r\}$ An open ball has a strict inequality, whereas a closed ball may have $||\vec{x} - \vec{a}|| = r$.

Remark 1.6. For all $\vec{x} \in \mathbb{R}^n$, $\|\vec{x}\|_{\infty} \leq \|\vec{x}\|_2 \leq \|\vec{x}\|_1 \leq n \|\vec{x}\|_{\infty}$.

2 Sequences in \mathbb{R}^n

Definition 2.1. A sequence in \mathbb{R}^n is denoted by the following: $(\vec{x}_k)_{k=1}^{\infty}$

Definition 2.2. Suppose $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$ and $\vec{a} \in \mathbb{R}^n$. Then $(\vec{x}_k)_{k=1}^{\infty}$ converges to \vec{a} when the following holds: Given $\epsilon > 0$, there exists a $k_o \in \mathbb{N}$ such that $\|\vec{x}_k - \vec{a}\| < \epsilon$ for all $k \ge k_o$.

Remark 2.3. Instead of $\|\vec{x}_k\vec{a}\| < \epsilon$, we may also write $d(\vec{x}_k, \vec{a}) < \epsilon$ or $\vec{x}_k \in B(\vec{a}; \epsilon)$.

Definition 2.4. Given $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$, the sequence is a Cauchy sequence when the following holds: Given $\epsilon > 0$, there exists a $k_o \in \mathbb{N}$ such that $\|\vec{x}_p - \vec{x}_q\| < \epsilon$ for all $p, q \ge k_o$.

Definition 2.5. Given $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$, the sequence is <u>bounded</u> when there exists r > 0 such that $\|\vec{x}_k\| \leq r$ for all $k \geq 1$. That is, $\vec{x}_k \in \overline{B}(\vec{0}; r)$ for all $k \geq 1$.

Definition 2.6. Given $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$, express explicitly $\vec{x}_k = (x_k^{(1)}, x_k^{(2)}, \dots, x_k^{(n)})$ the k-th element. From these we get n sequences in \mathbb{R} : $(\vec{x}_k^{(1)})_{k=1}^{\infty}, (\vec{x}_k^{(2)})_{k=1}^{\infty}, \dots, (\vec{x}_k^{(n)})_{k=1}^{\infty}$. These are termed <u>component sequences</u> of the original sequence. **Proposition 2.7.** Let $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$ and $\vec{a} \in \mathbb{R}^n$. Then $(\vec{x}_k \xrightarrow{k \to \infty} \vec{a} \text{ in } \mathbb{R}^n) \iff \begin{pmatrix} \vec{x}_k^{(1)} \xrightarrow{k \to \infty} \vec{a}^{(1)} \\ \vdots \\ \vec{x}_k^{(n)} \xrightarrow{k \to \infty} \vec{a}^{(n)} \end{pmatrix}$ in \mathbb{R}

Proposition 2.8. Suppose $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$. Then the sequence is Cauchy \iff each of the component sequences is Cauchy.

Similarly, the sequence is bounded \iff each of the component sequences is bounded

Theorem 2.9. [CAUCHY THEOREM]

Let $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$. Then it is convergent to some $\vec{a} \in \mathbb{R}^n$ if and only if it is Cauchy.

Theorem 2.10. [BOLZANO-WEIERSTRASS THEOREM] Suppose $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$ is bounded. Then there exist values $a < k(1) < k(2) < \cdots < k(p) < \cdots$ such that the subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$ is convergent.

Theorem 2.11. [OPERATIONS WITH CONVERGENT SEQUENCES] Let $(\vec{x}_k)_{k=1}^{\infty}$ and $(\vec{y}_k)_{k=1}^{\infty}$ be in \mathbb{R}^n with $\lim_{k\to\infty} [\vec{x}_k] = \vec{a}$ and $\lim_{k\to\infty} [\vec{y}_k] = \vec{b}$. Then for $\alpha, \beta \in \mathbb{R}$,

- 1. $\lim_{k \to \infty} \left[\alpha \vec{x}_k + \beta \vec{y} \right] = \alpha \vec{a} + \beta \vec{b}$
- 2. $\lim_{k \to \infty} [\langle \vec{x}_k, \vec{y}_k \rangle] = \langle \vec{a}, \vec{b} \rangle$ 3. $\lim_{k \to \infty} [\|\vec{x}_k\|] = \|\vec{a}\|$
- **4.** $\lim_{k \to \infty} [d(\vec{x}_k, \vec{y}_k)] = d(\vec{a}, \vec{b})$

Theorem 2.12. [BANACH FIXED POINT THEOREM]

Let $A \subseteq \mathbb{R}^n$ with $f: A \to A$ be a function given by $||f(\vec{x}) - f(\vec{y})|| \leq \gamma ||\vec{x} - \vec{y}||$ for all $\vec{x}, \vec{y} \in A$ and $\gamma \in (0, 1)$. Given any $\vec{x}_1 \in A$ and $\vec{x}_{k+1} = f(\vec{x}_k)$, the function f has a unique fixed point $\vec{p} \in A$ such that $\lim_{k \to \infty} [\vec{x}_k] = \vec{p}$ and $f(\vec{p}) = \vec{p}$.

Definition 2.13. A subset $A \subseteq \mathbb{R}^n$ is said to be <u>closed</u> when it has the following property: If $(\vec{x}_k)_{k=1}^{\infty}$ is a sequence in A such that $\vec{x}_k \xrightarrow[k \to \infty]{k \to \infty} \vec{b} \in \mathbb{R}^n$, then it follows that $\vec{b} \in A$.

Open and closed subsets of \mathbb{R}^n 3

Definition 3.1. Suppose $A \subseteq \mathbb{R}^n$ and $\vec{a} \in A$. Then \vec{a} is an interior point of A when there exists an r > 0such that $B(\vec{a};r) \subseteq A$. The set of all interior points of A is termed the <u>interior</u> of A and is denoted by int(A).

Definition 3.2. Suppose $A \subseteq \mathbb{R}^n$. If every $\vec{a} \in A$ is an interior point of A, then we say that A is open. Hence for every $A \in \mathbb{R}^n$, we have that $int(A) \subseteq A$, and A is open $\iff int(A) = A$.

Definition 3.3. Given $C \subseteq \mathbb{R}^n$, the set C is <u>closed</u> when $\mathbb{R}^n \setminus C$ is open.

Remark 3.4. Most sets are neither open nor closed.

Definition 3.5. Let $\emptyset \neq C \in \mathbb{R}^n$. Then C has the cannot escape property when the following happens: If $(\vec{x}_k)_{k=1}^{\infty} \in C$ and $\vec{x}_k \xrightarrow{k \to \infty} \vec{b} \in \mathbb{R}^n$, then $\vec{b} \in C$.

Proposition 3.6.* Let $\emptyset \neq C \in \mathbb{R}^n$. Then C is closed $\iff C$ has the cannot escape property.

Remark 3.7. \emptyset and \mathbb{R} are clopen; they are both open and closed.

Definition 3.8. For $A \in \mathbb{R}^n$, define the <u>closure</u> of A to be the following set: $cl(A) = \{ \vec{b} \in \mathbb{R}^n \mid \text{ there exists } (\vec{x}_k)_{k=1}^\infty \in A \text{ such that } \vec{x}_k \xrightarrow[k \to \infty]{} \vec{b} \}.$

Remark 3.9. $A \subseteq cl(A)$ with $A = cl(A) \iff A$ is closed.

Proposition 3.10. For every $A \subseteq \mathbb{R}^n$, we have **i.** $int(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus cl(A)$

ii. $cl(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus int(A)$

Definition 3.11. A set $B \in \mathbb{R}^n$ is said to be <u>bounded</u> when there exists r > 0 such that $||\vec{x}|| \leq r$ for all $\vec{x} \in B$, and B is a subset of $\overline{B}(\vec{0}; r)$.

Definition 3.12. A set $K \in \mathbb{R}^n$ is said to compact when it is closed and bounded.

Theorem 3.13. Let $K \subseteq \mathbb{R}^n$ be compact, and let $(\vec{x}_k)_{k=1}^{\infty} \in K$. Then there exists a subsequence of \vec{x}_k which converges to a limit in K.

Definition 3.14. For $A \in \mathbb{R}^n$, define the boundary of A to be $bd(A) = cl(A) \setminus int(A)$.

Remark 3.15. An alternative definition is $bd(A) = cl(A) \cap cl(\mathbb{R}^n \setminus A)$.

4 Continuous functions

Definition 4.1. Let $\emptyset \neq A \in \mathbb{R}^n$, and $f : A \to \mathbb{R}^n$ be a function. Let $\vec{a} \in A$. We say that f is <u>continuous</u> at \vec{a} when the following holds:

For all $\epsilon > 0$, there exists a $\delta > 0$ such that if $||\vec{x} - \vec{a}|| < \delta$, then $||f(\vec{x}) - f(\vec{a})|| < \epsilon$ for all $\vec{x} \in A$. Moreover, f is continuous if f is continuous at every $\vec{x} \in A$.

Definition 4.2. For $\emptyset \neq A \in \mathbb{R}^n$, a function $f : A \to \mathbb{R}^n$, and $\vec{a} \in A$, we say that f respects sequences in A which converge to \vec{a} when the following happens:

Whenever $(\vec{x}_k)_{k=1}^{\infty} \in A$ is such that $\vec{x}_k \xrightarrow[k \to \infty]{} \vec{a}$, it follows that $f(\vec{x}_k) \xrightarrow[k \to \infty]{} f(\vec{b})$

Proposition 4.3.* For $\emptyset \neq A \in \mathbb{R}^n$, a function $f : A \to \mathbb{R}^n$, and $\vec{a} \in A$, we have that $\begin{pmatrix} f \text{ respects sequences in} \\ A \text{ which converge to } \vec{a} \end{pmatrix} \iff \begin{pmatrix} f \text{ is continuous} \\ \text{ at } \vec{a} \end{pmatrix}$.

Definition 4.4. For $\emptyset \neq A \in \mathbb{R}^n$, a function $f : A \to \mathbb{R}^n$, for every $\vec{a} \in A$ write explicitly $f(\vec{a}) = (f^{(1)}(\vec{a}), \dots, f^{(n)}(\vec{a})) \in \mathbb{R}^n$

then get the functions $f^{(1)}, \ldots, f^{(n)} : A \to \mathbb{R}$, termed the components of f.

5 Continuity and compactness

Definition 5.1. Let $\emptyset \neq A \in \mathbb{R}^n$ with $f : A \to \mathbb{R}^n$. Then f is <u>uniformly continuous</u> on A when the following holds:

For all $\epsilon > 0$, there exists a $\delta > 0$ such that if $\|\vec{x} - \vec{a}\| < \delta$, then $\|f(\vec{x}) - f(\vec{a})\| < \epsilon$ for all $\vec{a}, \vec{x} \in A$.

Remark 5.2. Uniform continuity gives us that:

1. The function f is continuous on A, i.e. f is continuous at every point in A.

2. The choice of δ in the epsilon-delta condition of continuity is the same for all $\vec{a} \in A$.

Theorem 5.3.* Suppose $\emptyset \neq A \in \mathbb{R}^n$ is compact. If $f : A \to \mathbb{R}^n$ is continuous, then f is uniformly continuous on A.

Proposition 5.4.* Suppose $\emptyset \neq A \in \mathbb{R}^n$ is compact. Let $f : A \to \mathbb{R}^n$ be continuous on A. Then the image set $B = f(A) \subseteq \mathbb{R}^n$, or $B = \{\vec{y} \in \mathbb{R}^n \mid \text{there exists } \vec{x} \in A \text{ such that } f(\vec{x}) = \vec{y}\}$ is a compact subset of \mathbb{R}^n .

Theorem 5.5.* [EXTREME VALUE THEOREM]

Suppose $\emptyset \neq A \in \mathbb{R}^n$ is compact. Let $f : A \to \mathbb{R}$ be continuous. Then f has a minimum and maximum on A. That is, there exist $\vec{\gamma}_1, \vec{\gamma}_2 \in A$ such that $f(\vec{\gamma}_1) \leq f(\vec{x}) \leq f(\vec{\gamma}_2)$ for all $\vec{x} \in A$.

6 Integrable functions

Definition 6.1. A closed rectangle in \mathbb{R}^n is a set of the form

$$P = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n] = \{ \vec{x} \in \mathbb{R}^n \mid a_1 \leqslant x^{(1)} \leqslant b_1, a_2 \leqslant x^{(2)} \leqslant b_2, \dots, a_n \leqslant x^{(n)} \leqslant b_n \}$$

Definition 6.2. For such P as above, define the <u>volume</u> of P by $vol(P) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$ the <u>diameter</u> of P by $diam(P) = \|\vec{b} - \vec{a}\|$ $diam_{\infty}(P) = \|\vec{b} - \vec{a}\|_{\infty}$

Definition 6.3. Let P be a closed rectangle in \mathbb{R}^n . A <u>division</u> of P is a collection of closed rectangles $\Delta = \{P_1, P_2, \ldots, P_k\}$ such that $P_1 \cup P_2 \cup \cdots \cup P_k = P$ with $int(P_i) \cap int(P_j) = \emptyset$ for $i \neq j$.

Definition 6.4. For P as above, define $\|\Delta\| = \max_{1 \leq i \leq k} \{diam_{\infty}(P_i)\}$. Hence $\|\Delta\|$ is small implies that $diam_{\infty}(P_i)$ is small for all i.

Definition 6.5. For divisions $\Delta = \{P_1, P_2, \dots, P_k\}$ and $\Gamma = \{Q_1, Q_2, \dots, Q_\ell\}$ of P, we say that Γ refines Δ and write $\Gamma \prec \Delta$ if for every $1 \leq j \leq \ell$ there exists $1 \leq i \leq k$ such that $Q_j \subseteq P_i$.

Remark 6.6. If $\Gamma \prec \Delta$ as for above, then if $\Delta = \{P_1, P_2, \dots, P_k\}$ $\Gamma = \{Q_{1_1}, \dots, Q_{1_{m_1}}, Q_{2_1}, \dots, Q_{2_{m_2}}, \dots, Q_{k_1}, \dots, Q_{k_{m_k}}\}$ we will have $P_i = \bigcup_{j=1}^{m_i} Q_{i_j}$ for all $i \in [1, k]$.

Remark 6.7. If P is a closed rectangle in \mathbb{R}^n and $\Delta_1 = \{P'_1, P'_2, \dots, P'_k\}$ and $\Delta_2 = \{P''_1, P''_2, \dots, P''_\ell\}$ are divisions of P, then we can find a division Γ such that $\Gamma \prec \Delta_1$ and $\Gamma \prec \Delta_2$. Then Γ is given by $\Gamma = \{P'_i \cap P''_j \mid 1 \leq i \leq k, 1 \leq j \leq \ell \text{ and } P'_i \cap P''_j \neq \emptyset\}.$

Definition 6.8. Suppose $\emptyset \neq A \subseteq \mathbb{R}^n$ with $f : A \to \mathbb{R}$. Then f is <u>bounded</u> when there exists c > 0 such that $|f(x)| \leq c$ for all $\vec{x} \in A$. When f is bounded on A, we can talk about $\sup\{f(\vec{x}) \mid \vec{x} \in A\} = \sup\{f\}$

$$\sup\{f(\vec{x}) \mid \vec{x} \in A\} = \sup_{A} \{f\}$$
$$\inf\{f(\vec{x}) \mid \vec{x} \in A\} = \inf_{A} \{f\}$$

be a division

Definition 6.9. Suppose P is a closed rectangle on \mathbb{R}^n and $f: P \to \mathbb{R}$ is bounded. Let $\Delta = \{P_1, P_2, \ldots, P_k\}$

n of P. Then
$$U(f, \Delta) = \sum_{i=1}^{k} vol(P_i) \sup_{P_i} \{f\}$$

$$L(f, \Delta) = \sum_{i=1}^{k} vol(P_i) \inf_{P_i} \{f\}$$

These are termed the upper and lower <u>Darboux sums</u> of f over P.

Remark 6.10. $L(f, \Delta) \leq U(f, \Delta)$ for all Δ, f .

Lemma 6.11.* Suppose P is a closed rectangle on \mathbb{R}^n and $f: P \to \mathbb{R}$ is bounded. Let Γ, Δ be divisions of P such that $\Gamma \prec \Delta$. Then $U(f, \Gamma) \leq U(f, \Delta)$ and $L(f, \Gamma) \geq L(f, \Delta)$.

Proposition 6.12. If P is a closed rectangle in \mathbb{R}^n and $F: P \to \mathbb{R}$ is a bounded function, and Δ_1, Δ_2 are divisions of P, then $L(f, \Delta_1) \leq U(f, \Delta_2)$.

Definition 6.13. Let P be a closed rectangle in \mathbb{R}^n and $F: P \to \mathbb{R}$ be bounded. Consider then

 $S = \{ L(f, \Delta) \mid \Delta \text{ is a division of } P \}$

 $T = \{ U(f, \Delta) \mid \Delta \text{ is a division of } P \}$

Then $s \leq t$ for every $s \in S$ and $t \in T$. Denote $\sup(S) = \underline{\int}_P f$ and $\inf(T) = \overline{\int}_P f$. Note that $\underline{\int}_P \leq \overline{\int}_P f$.

Remark 6.14. If f is integrable, then f is bounded.

Proposition 6.15.* Let P be a closed rectangle in \mathbb{R}^n and $F: P \to \mathbb{R}$ be bounded. Then

$$(f \text{ is integrable}) \iff \begin{pmatrix} \text{for every } \epsilon > 0, \text{ there exists a division } \Delta \text{ of } P \\ \text{such that } U(f, \Delta) - L(f, \Delta) < \epsilon \end{pmatrix}$$

Proposition 6.16.* Let P be a closed rectangle in \mathbb{R}^n and $f: P \to \mathbb{R}$ be bounded. Then

$$f \text{ is integrable }) \iff \begin{pmatrix} \text{there exists a sequence } \Delta_1, \Delta_2, \dots, \Delta_k, \dots \text{ of divisions} \\ \text{of } P \text{ such that } \lim_{k \to \infty} [U(f, \Delta_k) - L(f, \Delta_k)] = 0 \end{pmatrix}$$

Also, if we let $\Delta_1, \Delta_2, \dots, \Delta_k$ be a sequence of divisions of P as above and f be integrable, then $\lim_{k \to \infty} [U(f, \Delta_k)] = \int_P f = \lim_{k \to \infty} [L(f, \Delta_k)]$

Theorem 6.17. [DU BOIS-REYMOND THEOREM]

Let P be a closed rectangle in \mathbb{R}^n and $f: P \to \mathbb{R}$ be bounded. Then

 $(f \text{ is integrable }) \iff \begin{pmatrix} \text{for every } \epsilon > 0, \text{ there exists a } \delta > 0 \text{ such that if} \\ \Delta \text{ is a partition of } P \text{ with } \|\Delta\| < \delta, \text{ then } U(f, \Delta) - L(f, \Delta) < \epsilon \end{pmatrix}$

7 Linearity of the integral

Lemma 7.1. Let P be a closed rectangle in \mathbb{R}^n and $f, g: P \to \mathbb{R}$ be bounded. Consider h = f + g with $h: P \to \mathbb{R}$ by $h(\vec{x}) = f(\vec{x}) + g(\vec{x})$. Then for every division $\Delta = \{P_1, P_2, \ldots, P_k\}$ of P we have $U(f + g, \Delta) \leq U(f, \Delta) + U(g, \Delta)$ $L(f + g, \Delta) \geq L(f, \Delta) + L(g, \Delta)$

Proposition 7.2.* Let P be a closed rectangle in \mathbb{R}^n and $f, g: P \to \mathbb{R}$ be bounded and integrable on P. Then f + g is integrable also with $\int_P (f + g) = \int_P f + \int_P g$.

Proposition 7.3. Let P be a closed rectangle in \mathbb{R}^n and $f: P \to \mathbb{R}$ is integrable and $\alpha \in \mathbb{R}$. Then $h = \alpha f$ is integrable also with $\int_P \alpha f = \alpha \int_P f$.

Theorem 7.4. Let *P* be a closed rectangle in \mathbb{R}^n . Let $\mathcal{F} = \{f : P \to \mathbb{R} \mid f \text{ is integrable}\}$. Then \mathcal{F} is closed under linear combinations, and for $f, g, \in \mathcal{F}$ and $\alpha, \beta \in \mathbb{R}$ we have $\int_P (\alpha f + \beta g) = \alpha \int_P f + \beta \int_P g$.

Remark 7.5. It is true that if $f, g \in \mathcal{F}$, then $fg \in \mathcal{F}$, but not necessarily true that $\int_P fg = \int_P f \int_P g$.

Remark 7.6. Let P be a closed rectangle in \mathbb{R}^n and let $\Delta = \{P_1, \ldots, P_k\}$ be a division of P. If $f: P \to \mathbb{R}$ is integrable on P, then f is integrable on each of P_1, \ldots, P_k and $\int_P f = \sum_{i=1}^k \int_{P_i} f$

8 Integration of functions modulo null sets

Definition 8.1. $C \subseteq \mathbb{R}^n$ is said to be a <u>null set</u> when the following happens:

For every $\epsilon > 0$, we can find a finite family of closed rectangles $Q_1, \ldots, Q_m \in \mathbb{R}^n$ such that **1.** $Q_1 \cup \cdots \cup Q_m \supset C$

2. $vol(Q_1) + \cdots + vol(Q_m) < \epsilon$

Theorem 8.2.* Let $P \subset \mathbb{R}^n$ be a closed ractangle and $f: P \to \mathbb{R}$ be bounded. Suppose we find subsets $B, G \subseteq P$ such that $B \cup G = P$ and such that

1. f is continuous at every $\vec{x} \in G$

2. B is a null set

Then f is integrable over P.

Corollary 8.3. Let $P \subseteq \mathbb{R}^n$ and $f: P \to \mathbb{R}$ be continuous. Then f is integrable over P.

Corollary 8.4.* Let $A \subset \mathbb{R}^n$ be compact such that bd(A) is a null set. Let $P \supseteq A$ be a closed rectangle and define $F: P \to \mathbb{R}$ by $f(\vec{x}) = \begin{cases} 1 & \vec{x} \in A \\ 0 & \text{else} \end{cases}$ Then f is integrable over P.

Remark 8.5. The above function f is termed the <u>characteristic function</u> of A, and denoted by χ_A . We can use χ_A to define the volume of A by $vol(A) = \int_P \chi_A$.

9 Theorem of Fubini

Remark 9.1. Let n = p + q with $p, q \in \mathbb{N}$. Then

• For $A \in \mathbb{R}^p$ and $B \in \mathbb{R}^q$, define the Cartesian product $A \times B = \{(\vec{a}, \vec{b}) \mid \vec{a} \in A, \vec{b} \in B\} \subseteq \mathbb{R}^n$. • Every closed rectangle $P = [a_1, b_1] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$ can be written as $P = M \times N$ with

 $M = [a_1, b_1] \times \cdots \times [a_p, b_p] \subseteq \mathbb{R}^p$ and $N = [a_{p+1}, b_{p+1}] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^q$.

Definition 9.2. Let $P = M \times N$ as above. Let $f : P \to \mathbb{R}$ be a function. For every $\vec{v} \in M$, define a partial function $f_{\vec{v}} : N \to \mathbb{R}$ by $f_{\vec{v}}(\vec{w}) = f(\vec{v}, \vec{w})$ for all $\vec{w} \in N$.

Theorem 9.3.* [THEOREM OF STOLZ-FUBINI]

Let $P = M \times N$ as above, and let $f : P \to \mathbb{R}$ as above. Suppose that

i. f is integrable on P

ii. For every $\vec{v} \in M$, the function $f_{\vec{v}} : N \to \mathbb{R}$ is integrable over N.

Define $F: M \to \mathbb{R}$ by $F(\vec{v}) = \int_N f_{\vec{v}}$ for all $\vec{v} \in M$. Then F is integrable on M, and

$$\int_M F = \int_P f$$

Remark 9.4. With different notation, the above theorem states that:

$$\begin{split} \int_{P} f(\vec{x}) \ d\vec{x} &= \int_{M} \left(\int_{N} f(\vec{v}, \vec{w}) \ d\vec{w} \right) d\vec{v} \\ &= \int_{P} f(\vec{v}, \vec{w}) \ d\vec{v} \ d\vec{w} \end{split}$$

This is termed the calculation of iterated integrals.

Lemma 9.5. Let $P = M \times N$ as above. Then for any division Δ of P, one can find divisions Φ for M and Ψ for N such that $\Phi \times \Psi$ always refines Δ .

Lemma 9.6. Let $P = M \times N$, and $f : P \to \mathbb{R}$ with $F(\vec{v}) = \int_N f_{\vec{v}}$ for all $\vec{v} \in M$ as above. Let $A \subseteq M$ be a closed rectangle. Let $\Psi = \{N_1, \ldots, N_s\}$ be a division of N. Then

$$\sup_{A} \{F\} \leqslant \sum_{j=1}^{\circ} vol(N_j) \sup_{A \times N_j} \{f\}$$
$$\inf_{A} \{F\} \geqslant \sum_{j=1}^{s} vol(N_j) \inf_{A \times N_j} \{f\}$$

Lemma 9.7. Let $\Phi = \{M_1, \ldots, M_r\}$ be a division of M. Let $\Psi = \{N_1, \ldots, N_s\}$ be a division of N. Let $\Delta = \Phi \times \Psi$ be the division of P, such that $\Delta = \{M_i \times N_j \mid 1 \leq i \leq r, 1 \leq j \leq s\}$. Then $U(F, \Phi) \leq U(f, \Delta)$ and $L(F, \Phi) \geq L(f, \Delta)$

10 Integration on more general domains

Lemma 10.1. Let $P \subseteq P' \subset \mathbb{R}^n$ be a closed rectangle, and $f: P \to P'$ be a bounded function such that $f(\vec{x}) = 0$ for all $\vec{x} \in P \setminus P'$. Then f is integrable on P if and only if f is integrable on P'.

Proposition 10.2. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be bounded. Let $f : A \to \mathbb{R}$ be a bounded function. Pick any closed rectangle $P \subseteq \mathbb{R}^n$ such that $P \supset A$, and extend f to $\tilde{f} : P \to \mathbb{R}$ by $\tilde{f} = \begin{cases} f(\vec{x}) & \vec{x} \in A \\ 0 & \vec{x} \in P \setminus A \end{cases}$

Then by definition f is integrable on A if and only if \tilde{f} is integrable on P, and if f is integrable on A, then by definition $\int_A f = \int_P \tilde{f}$.

Proposition 10.3. Let $\emptyset \neq A \subset \mathbb{R}^n$ be a bounded set. Suppose $bd(A) = cl(A) \setminus int(A)$ is a null set. Let $f : A \to \mathbb{R}$ be a bounded, continuous function. Then f is integrable on A.

Definition 10.4. Let $\emptyset \neq A \subset \mathbb{R}^n$ be a bounded set. Consider $f: A \to \mathbb{R}$ with $f(\vec{x}) = 1$ for all $\vec{x} \in A$. If f is integrable on A, then A has volume, and define $vol(A) = \int_A f = \int_A 1$

Corollary 10.5. Let $\emptyset \neq A \subset \mathbb{R}^n$ be a bounded set. If bd(A) is a null set in \mathbb{R}^n , then A has volume.

Definition 10.6. Let $\emptyset \neq A \subseteq \mathbb{R}^n$. Let $f : A \to \mathbb{R}$. Suppose that $f(\vec{x}) \ge 0$ for all $\vec{x} \in A$. Define the graph of f to be $\Gamma = \{(\vec{x}, t) \mid \vec{x} \in A, t = f(\vec{x})\}$. A subgraph of f is $S = \{(\vec{x}, t) \mid \vec{x} \in A, 0 \le t \le f(\vec{x})\}$. Note that $\Gamma \subset S \subset \mathbb{R}^{n+1}$.

Remark 10.7. The volume of a subset of \mathbb{R}^n is its integral.

Proposition 10.8.* Let $\emptyset \neq A \subset \mathbb{R}^n$ be bounded, and let $f : A \to \mathbb{R}$ be integrable, with $f(\vec{x}) \ge 0$ for all $\vec{x} \in A$. Let $S \subset \mathbb{R}^{n+1}$ be the subgraph of f. Then S has volume, and $vol(S) = \int_A f$.

11 Partial derivatives

Definition 11.1. Let $A \subseteq \mathbb{R}^n$ be a set with $\vec{a} \in int(A)$ with $f: A \to \mathbb{R}$ a function. Let $\vec{v} \in \mathbb{R}^n$. If

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \left[\frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} \right] \in \mathbb{R} \text{ exists,}$$

then we say that f has <u>directional derivative</u> at \vec{a} in direction \vec{v} and denote the limit by $(\partial_{\vec{v}} f)(\vec{a})$.

Remark 11.2. With respect to the same notation as above:

· If $\vec{v} = \vec{0}$, then $(\partial_{\vec{v}} f)(\vec{a})$ exists and is equal to zero

• If $\vec{v} \neq \vec{0}$, then there exists r > 0 such that $B(\vec{a}; r) \subseteq A$. Then we may define $\varphi : \left(-\frac{r}{\|\vec{v}\|}, \frac{r}{\|\vec{v}\|}\right) \to \mathbb{R}$ by $\varphi(t) = f(\vec{a} + t\vec{v})$. Then the directional derivative may be expressed as

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \left[\frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} \right] = \lim_{\substack{t \to 0 \\ t \neq 0}} \left[\frac{\varphi(t) - \varphi(0)}{t - 0} \right] = \varphi'(0)$$

Proposition 11.3. Let $A \subseteq \mathbb{R}^n$ with $\vec{a} \in int(A)$ with $f : A \to \mathbb{R}$ a function, $\vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq 0$. Suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists, Then for every $\alpha \in \mathbb{R}$, we have that $(\partial_{\alpha\vec{v}})(\vec{a})$ exists, and $(\partial_{\alpha\vec{v}} f)(\vec{a}) = \alpha(\partial_{\vec{v}} f)(\vec{a})$.

Definition 11.4. Let $A \subseteq \mathbb{R}^n$ with $\vec{a} \in int(A)$ and $f : A \to \mathbb{R}$. For every $1 \leq i \leq n$, consider the vector $\vec{e_i}$. If $(\partial_{\vec{e_i}} f)(\vec{a})$ exists, then we call it the *i*-th partial derivative of f at \vec{a} and denote it by $(\partial_i f)(\vec{a})$.

12 C^1 -functions

Definition 12.1. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set, and $f : A \to \mathbb{R}$ be a function. Let $\vec{v} \in \mathbb{R}^n$. Suppose that $(\partial_{\vec{v}} f)(\vec{a})$ exists for every $\vec{a} \in A$. Then we get a new function $\partial_{\vec{v}} f : A \to \mathbb{R}$ by $A \ni \vec{a} \mapsto (\partial_{\vec{v}} f)(\vec{a})$. The function $\partial_{\vec{v}} f$ is termed the <u>directional derivative</u> of f in the direction of \vec{v} .

Definition 12.2. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. A function $f : A \to \mathbb{R}$ is said to be a <u>C¹-function</u> when it has the following properties:

- $\cdot f$ is continuous on A
- · f has partial derivatives at every $\vec{a} \in A$.

• The new functions $\partial_i f : A \to \mathbb{R}$ for $1 \leq i \leq n$ are all continuous on A.

The collection of all C^1 -functions from A to \mathbb{R} is denoted $C^1(A, \mathbb{R})$.

Theorem 12.3.* Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. Let $f \in C^1(A, \mathbb{R})$. Then for every $\vec{v} = (v^{(1)}, v^{(2)}, \dots, v^{(n)})$, the directional derivative $\partial_{\vec{v}} f$ exists, and we have $\partial_{\vec{v}} f = v^{(1)}(\partial_1 f) + \dots + v^{(n)}(\partial_n f)$.

Theorem 12.4.* Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. Let $\vec{a} \in A$ and r > 0 be such that $B(\vec{a};r) \subseteq A$. Fix $i \in \{1, \ldots, n\}$ and let $\vec{x}, \vec{y} \in B(\vec{a};r)$ be such that they only differ in component *i*. Let $f \in C^1(A, \mathbb{R})$. Then there exists $\vec{b} \in B(\vec{a};r)$ such that $f(\vec{x}) - f(\vec{y}) = (y^{(i)} - x^{(i)})(\partial_i f)(\vec{b})$.

Lemma 12.5. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. Let $f \in C^1(A, \mathbb{R})$. Fix $\vec{a} \in A$. Then

$$\lim_{\substack{\vec{x} \to \vec{a} \\ \vec{x} \neq \vec{a}}} \left[\frac{f(\vec{x}) - f(\vec{a}) - \sum_{i=1}^{n} (x^{(i)} - a^{(i)}) \cdot (\partial_i f)(\vec{a})}{\|\vec{x} - \vec{a}\|} \right] = 0$$

Definition 12.6. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. Let $f \in C^1(A, \mathbb{R})$. For every $\vec{a} \in A$, the gradient vector of f at \vec{a} is $(\nabla f)(\vec{a}) = ((\partial_1 f)(\vec{a}), \dots, (\partial_n f)(\vec{a}))$.

Remark 12.7. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^1(A, \mathbb{R})$. Consider the graph $\Gamma = \{(\vec{a}, t) \mid \vec{a} \in A, t = f(\vec{a})\}$, with $\Gamma \subset \mathbb{R}^{n+1}$. Consider $\vec{p} \in \Gamma$, so $\vec{p} = (\vec{a}, f(\vec{a}))$. Then Γ has a tangent hyperplane at \vec{a} , which can be calculated by using $(\nabla f)(\vec{a})$.

Proposition 12.8. The vector tangent to Γ in the direction $\vec{v} \in \mathbb{R}^n$ at $\vec{p} = (\vec{a}, f(\vec{a}))$ is given by $(\vec{v}, (\partial_{\vec{v}} f)(\vec{a}))$.

Proposition 12.9. The vector in the normal direction to Γ at $\vec{p} = (\vec{a}, f(\vec{a}))$ is given by $(-(\nabla f)(\vec{a}), 1)$.

Remark 12.10. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open. The set of functions $C^1(A, \mathbb{R})$ is closed under algebraic operations. That is, for all $f, g \in C^1(A, \mathbb{R})$ and $\alpha \in \mathbb{R}$,

- **1.** $f + g \in C^1(A, \mathbb{R}) \implies \partial_{\vec{v}}(f + g) = (\partial_{\vec{v}}f) + (\partial_{\vec{v}}g)$ **2.** $\alpha f \in C^1(A, \mathbb{R}) \implies \partial_{\vec{v}}(\alpha f) = \alpha(\partial_{\vec{v}}f)$
- **3.** $fg \in C^1(A, \mathbb{R}) \implies \partial_{\vec{v}}(af) = a(\partial_{\vec{v}}f)$ **3.** $fg \in C^1(A, \mathbb{R}) \implies \partial_{\vec{v}}(fg) = (\partial_{\vec{v}}f)g + (\partial_{\vec{v}}g)f$
- **5.** $Jg \in C$ $(A, \mathbb{R}) \implies O_{\vec{v}}(Jg) = (O_{\vec{v}}J)g + (O_{\vec{v}}g)J$

Definition 12.11. Let $\vec{a}, \vec{b} \in \mathbb{R}^n$. Denote $\vec{v} = \vec{b} - \vec{a}$. The line segment $\operatorname{Co}(\vec{a}, \vec{b})$ from \vec{a} to \vec{b} is given by $\{\vec{a} + t\vec{v} \mid t \in [0, 1]\} = \{(1 - t)\vec{a} + t\vec{b} \mid t \in [0, 1]\}$. The vector $(1 - t)\vec{a} + t\vec{b}$ for $t \in [0, 1]$ is termed a convex combination of \vec{a} and \vec{b} .

Definition 12.12. A set $A \subseteq \mathbb{R}^n$ is said to be <u>convex</u> when for every $\vec{a}, \vec{b} \in A$ we have $\operatorname{Co}(\vec{a}, \vec{b}) \subseteq A$.

Proposition 12.13. [MEAN VALUE THEOREM]

Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^1(A, \mathbb{R})$. Suppose $\vec{a}, \vec{b} \in \mathbb{R}^n$ with $\vec{a} \neq \vec{b}$. Let $\vec{v} = \vec{b} - \vec{a}$. Then there exists $\vec{c} \in \operatorname{Co}(\vec{a}, \vec{b})$ with $\vec{c} \neq \vec{a}, \vec{c} \neq \vec{b}$ such that $f(\vec{b}) - f(\vec{a}) = \langle \vec{b} - \vec{a}, (\nabla f)(\vec{c}) \rangle = (\partial_{\vec{v}} f)(\vec{c})$.

13 The chain rule

Definition 13.1. Let $I \subseteq \mathbb{R}$ be an open interval. A function $\gamma: I \to \mathbb{R}^n$ has *n* components $\gamma^{(1)}, \ldots, \gamma^{(n)}: I \to \mathbb{R}$ and $\gamma(t) = (\gamma^{(1)}(t) \ldots \gamma^{(n)}(t)) \in \mathbb{R}^n$ for all $t \in I$. If every $\gamma^{(i)}$ is continuous on *I*, then we say that γ is a path in \mathbb{R}^n . If every $\gamma^{(i)}$ is differentiable on *I*, then we say that γ is a differentiable path in \mathbb{R}^n .

Definition 13.2. Let $\gamma: I \to \mathbb{R}^n$ be a differentiable path in \mathbb{R}^n . For every vector $t \in I$, the vector $\gamma'(t) = ((\gamma^{(1)})'(t), \dots, (\gamma^{(n)})'(t)) \in \mathbb{R}^n$ is termed the velocity vector of γ at t.

Lemma 13.3. Suppose $f \in C^1(A, \mathbb{R})$. Let $K \subseteq A$ be compact and convex. Then there exists c > 0 such that $|f(\vec{x}) - f(\vec{y})| \leq c ||\vec{x} - \vec{y}||$ for all $\vec{x}, \vec{y} \in K$. Here, c is termed the Lipschitz constant.

Theorem 13.4.* [CHAIN RULE 1]

Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open with $f \in C^1(A, \mathbb{R})$. Suppose $\gamma : I \to \mathbb{R}^n$ is a differentiable path such that $\gamma(t) \in A$ for all $t \in I$. Consider the composed function $\varphi = f \circ \gamma$, with $\varphi : I \to \mathbb{R}$ given by $\varphi(t) = f(\gamma(t))$ for all $t \in I$. Then φ is differentiable and we have $\varphi'(t) = \sum_{i=1}^n (\partial_i f)(\gamma(t))(\gamma^{(i)})'(t)$ for all $t \in I$.

The chain rule may also be given by $(f \circ \gamma)'(t) = \langle (\nabla f)(\gamma(t)), \gamma'(t) \rangle$.

14 Partial derivatives of higher order

Definition 14.1. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^1(A, \mathbb{R})$. Consider the partial derivatives

$$\partial_1 f : A \to \mathbb{R}, \partial_2 f : A \to \mathbb{R}, \dots, \partial_n f : A \to \mathbb{R}$$

If $\partial_i f \in C^1(A, \mathbb{R})$ for every $1 \leq i \leq n$, then we say that $f \in C^2(A, \mathbb{R})$.

Definition 14.2. More generally, for every $p \in \mathbb{N}$, define $C^p(A, \mathbb{R}) = \{f : A \to \mathbb{R} \mid f \text{ has continuous partial derivatives up to order } p\}$

Definition 14.3. Functions $f \in C^{\infty}(A, \mathbb{R})$ are termed <u>smooth</u> for

$$C^{\infty}(A,\mathbb{R}) = \bigcap_{p=1}^{\infty} C^{p}(A,\mathbb{R}) = \{f : A \to \mathbb{R} \mid f \text{ has continuous partial derivatives for all orders } \}$$

Lemma 14.4. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open with $\vec{a} \in A$ and $f \in C^2(A, \mathbb{R})$.

• Fix two indices $i \neq j \in \{1, \ldots, n\}$.

 \sim

• Fix r > 0 such that $B(\vec{a}; r) \subseteq A$.

 $\cdot \operatorname{Let} \varphi\left(\frac{-r}{\sqrt{2}}, \frac{r}{\sqrt{2}}\right) \to \mathbb{R} \text{ be defined by } \varphi(t) = f(\vec{a} + t\vec{e_i} + t\vec{e_j}) - f(\vec{a} + t\vec{e_j}) - f(\vec{a} + t\vec{e_j}) + f(\vec{a}) \text{ for } t \in \left(\frac{-r}{\sqrt{2}}, \frac{r}{\sqrt{2}}\right).$

· Take a sequence $(t_n)_{n=1}^{\infty}$ in $\left(0, \frac{r}{\sqrt{2}}\right)$ such that $t_n \xrightarrow[n \to \infty]{} 0$. Then

1.
$$\lim_{n \to \infty} \left[\frac{\varphi(t_n)}{t_n^2} \right] = (\partial_i (\partial_j f))(\vec{a})$$

2.
$$\lim_{n \to \infty} \left[\frac{\varphi(t_n)}{t_n^2} \right] = (\partial_j (\partial_i f))(\vec{a})$$

Theorem 14.5. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open with $f \in C^2(A, \mathbb{R})$. Then for every $1 \leq i, j \leq n, \partial_i(\partial_j f) = \partial_j(\partial_i f)$ **Definition 14.6.** Let $f \in C^2(A, \mathbb{R})$ and $\vec{a} \in A$. The below matrix is termed the <u>Hessian matrix</u> of f at \vec{a} :

$$(Hf)(\vec{a}) = \begin{bmatrix} (\partial_1^2 f)(\vec{a}) & (\partial_1 \partial_2 f)(\vec{a}) & \cdots & (\partial_1 \partial_n f)(\vec{a}) \\ (\partial_2 \partial_1 f)(\vec{a}) & (\partial_2^2 f)(\vec{a}) & \cdots & (\partial_2 \partial_n f)(\vec{a}) \\ \vdots & \vdots & \ddots & \vdots \\ (\partial_n \partial_1 f)(\vec{a}) & (\partial_n \partial_2 f)(\vec{a}) & \cdots & (\partial_n^2 f)(\vec{a}) \end{bmatrix}$$

Remark 14.7. Note that $(Hf)(\vec{a}) \in M_{n \times n}(\mathbb{R})$, and the (i, j) entry of $(Hf)(\vec{a})$ is $(\partial_i \partial_j f)(\vec{a})$. Also, by the above theorem, the matrix is symmetric.

Remark 14.8. Let $H = H^t \in M_{n \times n}(\mathbb{R})$. Then all eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. If $\lambda_1, \ldots, \lambda_n \ge 0$, then H is positive definite. When it is positive definite, then the corresponding linear transformation $T_H : \mathbb{R}^n \to \mathbb{R}^n$ satisfies $\langle T_H(\vec{v}), \vec{v} \rangle > 0$ for all $\vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq \vec{0}$.

Remark 14.9. Let $\varphi : (a, b) \to \mathbb{R}$ be twice differentiable. Let $t \in (a, b)$ such that $\varphi'(t) = 0$ and $\varphi''(t) > 0$. Then t is a local minimum.

Definition 14.10. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^1(A, \mathbb{R})$ with $\vec{a} \in A$. If $(\nabla f)(\vec{a}) = \vec{0}$, then \vec{a} is a stationary point for f.

Remark 14.11. Let $f \in C^1(A, \mathbb{R})$. If $\vec{a} \in A$ is a local extremum for f, then \vec{a} is a stationary point.

Lemma 14.12. Let $f \in C^2(A, \mathbb{R})$, $\vec{a} \in A$ such that $(Hf)(\vec{a})$ is positive definite. Then there exists r > 0 such that $B(\vec{a}; r) \subseteq A$ and such that $(Hf)(\vec{x})$ is positive definite for every $\vec{x} \in B(\vec{a}; r)$.

Lemma 14.13. Let $f \in C^2(A, \mathbb{R})$, $\vec{a} \in A$ a stationary point and r > 0 such that $B(\vec{a}; r) \subseteq A$. Suppose that $\vec{b} \in B(\vec{a}; r)$, and denote $\vec{v} = \vec{b} - \vec{a}$. Then there exists $t_o \in (0, 1)$ and $\vec{c} \in \operatorname{Co}(\vec{a}, \vec{b})$ such that $f(\vec{b}) - f(\vec{a}) = t_o \langle T_{(Hf)(\vec{c})}(\vec{v}), \vec{v} \rangle$.

Theorem 14.14.* Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^2(A, \mathbb{R})$ with $\vec{a} \in A$ a stationary point for f. If the Hessian matrix $(Hf)(\vec{a})$ is positive definite, then \vec{a} is a local minimum for f.

Remark 14.15. There are analogies for the above theorem and lemmas for \vec{a} a local maximum. Replace f with -f and have $(Hf)(\vec{a})$ be negative definite.

15 Functions in $C^1(A, \mathbb{R}^m)$

Definition 15.1. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open, and $f : A \to \mathbb{R}^m$ a function for $m \ge 1$. Write $f = (f^{(1)}, \ldots, f^{(m)})$ with $f^{(i)} : A \to \mathbb{R}$ for $1 \le i \le m$. If each $f^{(i)}$ is in $C^1(A, \mathbb{R})$, then we say that $f \in C^1(A, \mathbb{R}^m)$.

Definition 15.2. Let $f \in C^1(A, \mathbb{R}^m)$ and $\vec{a} \in A$. The below matrix is the <u>Jacobian matrix</u> of f at \vec{a} :

$$(Jf)(\vec{a}) = \begin{bmatrix} (\partial_1 f^{(1)})(\vec{a}) & (\partial_2 f^{(1)})(\vec{a}) & \cdots & (\partial_n f^{(1)})(\vec{a}) \\ (\partial_1 f^{(2)})(\vec{a}) & (\partial_2 f^{(2)})(\vec{a}) & \cdots & (\partial_n f^{(2)})(\vec{a}) \\ \vdots & \vdots & \ddots & \vdots \\ (\partial_1 f^{(m)})(\vec{a}) & (\partial_2 f^{(m)})(\vec{a}) & \cdots & (\partial_n f^{(m)})(\vec{a}) \end{bmatrix} = \begin{bmatrix} (\nabla f^{(1)})(\vec{a}) \\ (\nabla f^{(2)})(\vec{a}) \\ \vdots \\ (\nabla f^{(m)})(\vec{a}) \end{bmatrix}$$

Proposition 15.3.* [CHAIN RULE 2]

Let $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^m$ be open nonempty sets. Let $f \in C^1(A, \mathbb{R}^m)$ such that $f(\vec{x}) \in B$ for all $\vec{x} \in A$. Suppose also $g \in C^1(B, \mathbb{R}^p)$. Consider $h = g \circ f : A \to \mathbb{R}^p$ defined by $h(\vec{x}) = g(f(\vec{x}))$ for $\vec{x} \in A$. Then $(Jh)(\vec{x}) = (Jg)(f(\vec{x})) \cdot (Jf)(\vec{x})$ for all $\vec{x} \in A$.

Remark 15.4. The above may be restated as $(\partial_j h^{(k)})(\vec{x}) = \sum_{i=1}^m (\partial_i g^{(k)})(f(\vec{x})) \cdot (\partial_j f^{(i)})(\vec{x})$

Remark 15.5. With respect to the above defined functions, we have $h^{(k)}(\vec{x}) = g^{(k)}(f^{(1)}(\vec{x}), \dots, f^{(m)}(\vec{x}))$

Proposition 15.6. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^1(A, \mathbb{R}^m)$. For $\vec{a} \in A$ and $\vec{x} \approx \vec{a}$, we have

$$f(\vec{x}) = f(\vec{a}) + T_{(Jf)(\vec{a})}(\vec{x} - \vec{a}) + D(\vec{x})$$

where the error term D is given by $D(\vec{x}) = f(\vec{x}) - f(\vec{a}) - T_{(Jf)(\vec{a})}(\vec{x} - \vec{a})$ and $T_{(Jf)(\vec{a})}$ is the matrix transformation associated with the Jacobian of f at \vec{a} .

16 Inverse function theorem

Theorem 16.1. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^1(A, \mathbb{R}^n)$. Let $\vec{a} \in A$ be such that $(Jf)(\vec{a})$ is invertible. Let $f(\vec{a}) = \vec{b} \in \mathbb{R}^n$. Then there exist open sets $U, V \subseteq \mathbb{R}^n$ such that

1. $\vec{a} \in U, \vec{b} \in V \subseteq f(A)$

- **2.** f maps bijectively U onto V, that is, f(U) = V and f is one-to-one on U
- **3.** The function $g: V \to U$ which inverts f is a C^1 -function with $(Jg)(\vec{b}) = ((Jf)(\vec{a}))^{-1}$

Lemma 16.2. Let $M = [\alpha_{ij}] \in M_{n \times n}(\mathbb{R})$ be invertible. Then there exists $\lambda > 0$ such that if $N = [\beta_{ij}] \in M_{n \times n}(\mathbb{R})$ with $|\alpha_{ij} - \beta_{ij}| < \lambda$ for all i, j, then N is invertible as well.

Proposition 16.3.* Let $A \subseteq \mathbb{R}^n$ be open and $\vec{a} \in A$, with $f \in C^1(A, \mathbb{R}^n)$ such that $(Jf)(\vec{a})$ is invertible. Then there exists r > 0 such that $B(\vec{a}; r) \subseteq A$ and f is one-to-one on $B(\vec{a}; r)$.

17 Implicit function theorem

Definition 17.1. Let $A \subseteq \mathbb{R}^n$ be open with $\vec{a} \in A$ and $f \in C^1(A, \mathbb{R}^m)$ with $m \leq n$. Choose *m* principal directions in \mathbb{R}^n , that is, choose $1 \leq j_1 \leq j_2 \leq \cdots \leq j_m \leq n$. The partial Jacobian matrix of *f* at \vec{a} with respect to directions j_1, \ldots, j_m is given by

$$\begin{bmatrix} (\partial_{j_1} f^{(1)}(\vec{a}) & \cdots & (\partial_{j_m} f^{(1)})(\vec{a}) \\ \vdots & \ddots & \vdots \\ (\partial_{j_1} f^{(m)})(\vec{a}) & \cdots & (\partial_{j_m} f^{(m)})(\vec{a}) \end{bmatrix} \in M_{m \times m}(\mathbb{R})$$

If this matrix is invertible, then \vec{a} is regular wrt j_1, \ldots, j_m . Otherwise, \vec{a} is singular.

Definition 17.2. Let $d, n \in \mathbb{N}$ with $n \ge d$, and $\emptyset \ne V \subseteq \mathbb{R}^d$. Let $\varphi : V \to \mathbb{R}^n$ be one-to-one and φ be a C^1 -function such that $(J\varphi)(\vec{z}) \in M_{n \times d}(\mathbb{R})$ has rank d for every $\vec{z} \in V$. Then the set $S = \varphi(V) \subseteq \mathbb{R}^n$ is termed a parametrized C^1 manifold of dimension d.

Theorem 17.3. [IMPLICIT FUNCTION THEOREM]

Let $A \subseteq \mathbb{R}^n$ be nonempty with $\vec{a} \in A$ and $f \in C^1(A, \mathbb{R}^m)$ for m < n and n - m = d. Denote $f(\vec{a}) = \vec{b} \in \mathbb{R}^m$ and consider the level set $L = \{\vec{x} \in A \mid f(\vec{x}) = \vec{b}\}$. Suppose that \vec{a} is a regular point for f with respect to directions $1, 2, \ldots, m$. Then there exists r > 0 such that $L \cap B(\vec{a}; r)$ is a parametrized C^1 manifold of dimension d with parametrization obtained by solving for the first m components.

More precisely, while $\vec{a} = (\vec{p}, \vec{q})$ for $\vec{p} \in \mathbb{R}^m$, $\vec{q} \in \mathbb{R}^d$, then there exists an open set $V \subseteq \mathbb{R}^d$ such that $\vec{q} \in V$ and there exists $h \in C^1(V, \mathbb{R}^m)$ such that

$$\cdot h(\vec{q}) = \vec{p}$$

 $\cdot \ \{(h(\vec{z}),\vec{z}) \ \big| \ \vec{z} \in V\} = L \cap B(\vec{a};r)$

File II Selected proofs

 $|\langle \vec{x}, \vec{y} \rangle| \leq \|\vec{x}\| \cdot \|\vec{y}\|$ **Proof:** Define $f : \mathbb{R} \to \mathbb{R}$ by $f(t) = \langle \vec{x} - t\vec{y}, \vec{x} - t\vec{y} \rangle$ for all $t \in \mathbb{R}$.
$$\begin{split} &= \langle \vec{x}, \vec{x} \rangle - \langle \vec{x}, t \vec{y} \rangle - \langle t \vec{y}, \vec{x} \rangle + \langle t \vec{y}, t \vec{y} \rangle \\ &= \| \vec{x} \|^2 - 2t \langle \vec{x}, \vec{y} \rangle + t^2 \| \vec{y} \|^2 \end{split}$$
Hence f is a quadratic function of the form $f = at^2 + bt + c$, with $a = \|\vec{y}\|^2$, $b = -2\langle \vec{x}, \vec{y} \rangle$, $c = \|\vec{x}\|^2$. But observe that $f(t) = \|\vec{x} - t\vec{y}\|^2 \ge 0$ Hence the discriminant $\Delta = b^2 - 4ac \leq 0$ $= (-2\langle \vec{x}, \vec{y} \rangle)^2 - 4 \|\vec{x}\|^2 \|\vec{y}\|^2$ $= 4(\langle \vec{x}, \vec{y} \rangle^2 - \|\vec{x}\|^2 \|\vec{y}\|^2)$ Now since $\Delta \leq 0$, $\langle \vec{x}, \vec{y} \rangle^2 \leq \|\vec{x}\|^2 \|\vec{y}\|^2$ $|\langle \vec{x}, \vec{y} \rangle| \leqslant \|\vec{x}\| \|\vec{y}\|$

Proposition 2.7. Let $(\vec{x}_k)_{k=1}^{\infty} \in \mathbb{R}^n$ and $\vec{a} \in \mathbb{R}^n$. Then $(\vec{x}_k \xrightarrow{k \to \infty} \vec{a} \text{ in } \mathbb{R}^n) \iff \begin{pmatrix} \vec{x}_k^{(1)} \xrightarrow{k \to \infty} \vec{a}^{(1)} \\ \vdots \\ \vec{x}_k^{(n)} \xrightarrow{k \to \infty} \vec{a}^{(n)} \end{pmatrix}$

Proof: Suppose that $\vec{x}_k \xrightarrow[k \to \infty]{k \to \infty} \vec{a}$ in \mathbb{R}^n . Fix *i*. Observe that for every $k \ge 1$, $|x^{(i)} - a^{(i)}| = |(\vec{x}_k - \vec{a})^{(i)}| \le ||\vec{x}_k - \vec{a}|| \xrightarrow{k \to \infty} 0$ Hence $x_k^{(i)} \xrightarrow[k \to \infty]{} a^{(i)}$.

Theorem 1.1. [CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY]

Now suppose that $x_k^{(i)} \xrightarrow[k \to \infty]{k \to \infty} a^{(i)}$ for every $1 \leq i \leq n$. Hence $|x^{(i)} - a^{(i)}| \xrightarrow[k \to \infty]{k \to \infty} 0$ for every $1 \leq i \leq n$. So $|x^{(1)} - a^{(1)}| + |x^{(2)} - a^{(2)}| + \dots + |x^{(n)} - a^{(n)}| \xrightarrow[k \to \infty]{k \to \infty} 0$. Hence $\vec{x}_k \xrightarrow[k \to \infty]{k \to \infty} \vec{a}$.

Proposition 3.6. Let $\emptyset \neq C \in \mathbb{R}^n$. Then C is closed $\iff C$ has the cannot escape property.

Proof: Since C is closed, $\mathbb{R}^n \setminus C$ is open. Take $(\vec{x}_k)_{k=1}^{\infty} \in C$, with $\vec{x}_k \xrightarrow[k \to \infty]{} \vec{b} \in \mathbb{R}^n$. Assume by contradiction that $\vec{b} \notin C$ and $\vec{b} \in \mathbb{R}^n \setminus C$. Since $\mathbb{R}^n \setminus C$ is open, we can find r > 0 such that $B(\vec{b}; r) \subseteq \mathbb{R}^n \setminus C$. But then since $\vec{x}_k \xrightarrow[k \to \infty]{k \to \infty} \vec{b}$, we can find $k_o \in \mathbb{N}$ such that $\vec{x}_k \in B(\vec{b}; r)$ for all $k \ge k_o$. In particular, $\vec{x}_{k_o} \in B(\vec{b}; r) \subseteq \mathbb{R}^n \setminus C$. Contradiction.

Now suppose that C has the cannot escape property.

Assume by contradiction that there does not exist any such r such that for $\vec{b} \in \mathbb{R}^n \setminus C$ we have $B(\vec{b};r) \subseteq \mathbb{R}^n \setminus C.$

So in particular, $B(\vec{b}; r) \not\subseteq \mathbb{R}^n \setminus C \Longrightarrow$ there exists $\vec{x}_1 \in B(\vec{b}; 1)$ such that $\vec{x}_1 \in C$.

In general for every $k \ge 1$, we have $B(\vec{b}; \frac{1}{k}) \subseteq \mathbb{R}^n \setminus C$, hence there exists $\vec{x}_k \in B(\vec{b}; \frac{1}{k})$ such that $\vec{x}_k \in C$. In this way we get a sequence $(\vec{x}_k)_{k=1}^{\infty}$ in C.

Observe that for every $k \ge 1$, we have $\vec{x}_k \in B(\vec{b}; \frac{1}{k}) \Longrightarrow \|\vec{x}_k - \vec{b}\| < \frac{1}{k}$.

So we have $\|\vec{x}_k - \vec{b}\|_{k \to \infty} = 0$, and we obtain that $\vec{x}_k \xrightarrow[k \to \infty]{} \vec{b}$.

But $\vec{x}_k \notin C$ and $\vec{b} \in C$, so we have a contradiction.

Proposition 4.3. For $\emptyset \neq A \in \mathbb{R}^n$, a function $f : A \to \mathbb{R}^n$, and $\vec{a} \in A$, we have that $\begin{array}{c} f \text{ respects sequences in} \\ A \text{ which converge to } \vec{a} \end{array} \right) \iff \left(\begin{array}{c} f \text{ is continuous} \\ \text{ at } \vec{a} \end{array} \right)$

Proof: Suppose f respects sequences in A which converge to A.

Fix $\epsilon > 0$.

Suppose there exists no such $\delta > 0$ such that $\|\vec{x} - \vec{a}\| < \delta$ and $\|f(\vec{x}) - f(\vec{a})\| < \epsilon$.

In the process of trying different δ , we have a sequence $(\vec{x}_k)_{k=1}^{\infty} \in A$ with $\|\vec{x}_k - \vec{a}\| < \frac{1}{k}$ for all $k \ge 1$ and $||f(\vec{x}) = f(\vec{a})|| \ge \epsilon \text{ for all } k \ge 1.$

Since $\|\vec{x}_k - \vec{a}\| < \frac{1}{k}$, we have $\|\vec{x}_k - \vec{a}\|_{k \to \infty} = 0$. Also we do not have that $||f(\vec{x}) = f(\vec{a})||_{k\to\infty} 0$. So f does not respect $(\vec{x}_k)_{k=1}^{\infty}$, which is a contradiction.

Suppose that f is continuous at \vec{a} , using the $\epsilon - \delta$ definition. Let $(\vec{a}_k)_{k=1}^{\infty}$ be some sequence of points converging to \vec{a} . Let $\epsilon > 0$. Then we can find $\delta > 0$ such that whenever $\|\vec{a} - \vec{x}\| < \delta$ for $\vec{x} \in A$, we have $\|f(\vec{x}) - f(\vec{a})\| < \epsilon$. Since $(\vec{a}_k)_{k=1}^{\infty}$ converges to \vec{a} , we can find $k_o \ge 0$ such that $\|\vec{a} - \vec{a}_k\| < \delta$ whenever $k \ge k_o$. Let $k \ge k_o$, and we have that $\|\vec{a} - \vec{a}_k\| < \delta$, so $\|f(\vec{a}) - f(\vec{a}_k)\| < \epsilon$.

Hence $f(\vec{a}_k)$ converges to $f(\vec{a})$.

Theorem 5.3. Suppose $\emptyset \neq A \in \mathbb{R}^n$ is compact. If $f: A \to \mathbb{R}^n$ is continuous, then f is uniformly continuous on A.

Proof: Suppose that no δ exists such that for any $\epsilon > 0$, $\|\vec{x} - \vec{a}\| < \delta \implies \|f(\vec{x}) - f(\vec{a})\| < \epsilon$ for $\vec{a}, \vec{x} \in A$. Let $\delta = \frac{1}{k}$ for $k \in \mathbb{N}$.

Then there exist $\vec{x}_k, \vec{a}_k \in A$ such that $\|\vec{x}_k - \vec{a}_k\| < \frac{1}{k} \Longrightarrow \|f(\vec{x}_k) - f(\vec{a}_k)\| \ge \epsilon$. This generates two sequences, $(\vec{x}_k)_{k=1}^{\infty}$ and $(\vec{a}_k)_{k=1}^{\infty}$ in A.

Since A is compact, we can find $1 \leq k(1) \leq k(2) \leq \cdots \leq k(p) \leq \cdots$ such that $(\vec{x}_{k(p)})_{n=1}^{\infty}$ converges to some $\vec{x}_o \in A$.

But then also we have that $(\vec{a}_k)_{k=1}^{\infty}$ converges to the same limit:

$$\begin{aligned} \|\vec{a}_{k(p)} - \vec{x}_o\| &\leq \|\vec{a}_{k(p)} - \vec{x}_{k(p)}\| + \|\vec{x}_{k(p)} - \vec{x}_o\| \\ &< \frac{1}{k(p)} + \|\vec{x}_{k(p)} - \vec{x}_o\| \\ &= 0 \qquad \text{as } p \to \infty \end{aligned}$$

Since f is continuous at $\vec{x}_o \in A$, it respects convergence of $\vec{x}_{k(p)} \xrightarrow{p \to \infty} \vec{x}_o$ and $\vec{a}_{k(p)} \xrightarrow{p \to \infty} \vec{x}_o$. Therefore $||f(\vec{x}_{k(p)}) - f(\vec{a}_{k(p)})||_{\xrightarrow{p \to \infty}} 0.$

Contradiction, so such a δ exists.

Proposition 5.4. Suppose $\emptyset \neq A \in \mathbb{R}^n$ is compact. Let $f: A \to \mathbb{R}^n$ be continuous on A. Then the image set $B = f(A) \subseteq \mathbb{R}^n$, or $B = \{\vec{y} \in \mathbb{R}^n \mid \text{there exists } \vec{x} \in A \text{ such that } f(\vec{x}) = \vec{y}\}$ is a compact subset of \mathbb{R}^n .

Proof: Fix $\vec{b} \in cl(B)$.

From definition of cl(B), there exists $(\vec{y}_k)_{k=1}^{\infty} \in B$ with $\vec{y}_k \xrightarrow[k \to \infty]{} \vec{b}$.

For every $k \ge 1$, we have $\vec{y}_k \in B = f(A)$, hence there exists $\vec{x}_k \in A$ such that $f(\vec{x}_k) = \vec{y}_k$.

Since A is compact and $(\vec{x}_k)_{k=1}^{\infty} \in A$, there exists a subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$ of the original sequence with $\vec{x}_{k(p)} \xrightarrow{p \to \infty} \vec{x}_o \in A$ for some \vec{x}_o .

Since f is continuous, $f(\vec{x}_{k(p)}) \xrightarrow{p \to \infty} f(\vec{x}_o)$.

Therefore $\vec{y}_{k(p)} \xrightarrow{p \to \infty} f(\vec{x}_o)$ while $\vec{y}_k \xrightarrow{k \to \infty} \vec{b}$, which implies that $\vec{y}_{k(p)} \xrightarrow{p \to \infty} \vec{b}$.

Since limits are unique, $f(\vec{x}_o) = \vec{b}$. Hence *B* is closed. Suppose *B* is not bounded. Then there exists a sequence $(\vec{y}_k)_{k=1}^{\infty} \in B$ such that $\|\vec{y}_k\| > k$ for all $k \ge 1$. For every $k \ge 1$, pick $\vec{x}_k \in A$ such that $f(\vec{x}_k) = \vec{y}_k$. Then select a convergent subsequence $(\vec{y}_{k(p)})_{p=1}^{\infty}$ for $(\vec{y}_k)_{k=1}^{\infty}$. Then we reach a contradiction by the same process as above.

Theorem 5.5. [EXTREME VALUE THEOREM]

Suppose $\emptyset \neq A \in \mathbb{R}^n$ is compact. Let $f : A \to \mathbb{R}^n$ be continuous. Then f has a minimum and maximum on A. That is, there exist $\vec{\gamma}_1, \vec{\gamma}_2 \in A$ such that $f(\vec{\gamma}_1) \leq f(\vec{x}) \leq f(\vec{\gamma}_2)$ for all $\vec{x} \in A$.

Proof: Denote $f(A) = K \subseteq \mathbb{R}$. From a previous proposition, K is compact. Denote $\inf(A) = \alpha, \sup(A) = \beta$. Then $\alpha, \beta \in A$. Then there exist $\vec{\gamma}_1, \vec{\gamma}_2 \in A$ such that $f(\vec{\gamma}_1) = \alpha, f(\vec{\gamma}_2) = \beta$. Then for every $\vec{x} \in A$, we have $f(\vec{x}) \in K \Longrightarrow \alpha \leq f(\vec{x}) \leq \beta$, or $f(\vec{\gamma}_1) \leq f(\vec{x}) \leq f(\vec{\gamma}_2)$.

Lemma 6.11. Suppose P is a closed rectangle on \mathbb{R}^n and $f: P \to \mathbb{R}$ is bounded. Let Γ, Δ be divisions of P such that $\Gamma \prec \Delta$. Then $U(f, \Gamma) \leq U(f, \Delta)$ and $L(f, \Gamma) \geq L(f, \Delta)$.

Proof: This proof will show inequality for U; the procedure for L is analogous. Write $\Delta = \{P_1, P_2, \dots, P_k\}$ and $\Gamma = \{Q_{1_1}, \dots, Q_{1_{m_1}}, Q_{2_1}, \dots, Q_{2_{m_2}}, \dots, Q_{k_1}, \dots, Q_{k_{m_k}}\}$ Then we have $P_i = \bigcup_{j=1}^{m_i} Q_{i_j}$ for all $i \in [1, k]$. Then $U(f, \Gamma) = \sum_{j=1}^k vol(Q_{ij}) \sup_{Q_{ij}} \{f\}$ Observe that for every $1 \le i \le k$ and $1 \le i \le m_i$, we have $\sup\{f(\vec{x}) \mid \vec{x} \in Q_{ij}\} \le \sup\{f(\vec{x}) \mid \vec{x} \in Q_{ij}\}$

Observe that for every $1 \leq i \leq k$ and $1 \leq j \leq m_k$, we have $\sup\{f(\vec{x}) \mid \vec{x} \in Q_{ij}\} \leq \sup\{f(\vec{x}) \mid \vec{x} \in P_i\} = \sup_{P_i}\{f\}$ Then we have

$$U(f,\Gamma) \leq \sum_{i=1}^{k} \left(\sum_{j=1}^{m_i} \operatorname{vol}(Q_{ij}) \sup_{P_i} \{f\} \right)$$
$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{m_i} \operatorname{vol}(Q_{ij}) \right) \sup_{P_i} \{f\}$$
$$= \sum_{i=1}^{k} \operatorname{vol}(P_i) \sup_{P_i} \{f\}$$
$$= U(f,\Delta)$$

Proposition 6.15. Let P be a closed rectangle in \mathbb{R}^n and $F: P \to \mathbb{R}$ be bounded. Then

 $\left(\begin{array}{c} f \text{ is integrable} \end{array}\right) \iff \left(\begin{array}{c} \text{for every } \epsilon > 0, \text{ there exists a division } \Delta \text{ of } P \\ \text{such that } U(f, \Delta) - L(f, \Delta) < \epsilon \end{array}\right)$

Proof: We know that $\sup\{L(f,\Delta) \mid \Delta$ is a partition of $P\} = \int_{P} f = \overline{\int}_{P} f = \inf\{U(f,\Delta) \mid \Delta$ is a partition of $P\}$. Let $\epsilon > 0$. Then we can find a division Δ_1 of P such that $L(f\Delta_1) > \underline{\int}_P f - \frac{\epsilon}{2}$ by the definition of sup. Similarly, we can find a division Δ_2 of P such that $U(f\Delta_2) < \overline{\int}_P f + \frac{\epsilon}{2}$. From this we have that for $\Delta \prec \Delta_1, \Delta_2, U(f, \Delta) \leq U(f, \Delta_2) < L(f, \Delta_1) + \epsilon \leq L(f, \Delta) + \epsilon$.

Now, for every $k \in \mathbb{N}$, apply the hypothesis with $\epsilon = \frac{1}{k}$. This gives divisions Δ_k of P such that $U(f, \Delta_k) < L(f, \Delta_k) + \frac{1}{k}$. But then $\overline{\int}_P f \leq U(f, \Delta_k) < L(f, \Delta_k) + \frac{1}{k} \leq \underline{\int}_P f + \frac{1}{k}$. So $\overline{\int}_P f \leq \underline{\int}_P f + \frac{1}{k}$ for all $k \in \mathbb{N}$. Let $k \to \infty$, so that $\underline{\int}_P f \leq \overline{\int}_P f$ becomes $\underline{\int}_P f = \overline{\int}_P f$. Hence f is integrable.

Proposition 6.16. Let P be a closed rectangle in \mathbb{R}^n and $f: P \to \mathbb{R}$ be bounded. Let $\Delta_1, \Delta_2, \ldots, \Delta_k$ be a sequence of divisions of P such that $\lim_{k\to\infty} [U(f, \Delta_k) - L(f, \Delta_k)] = 0$, and f be integrable, then

$$\lim_{k \to \infty} \left[U(f, \Delta_k) \right] = \int_P f = \lim_{k \to \infty} \left[L(f, \Delta_k) \right]$$

Proof: Let $\epsilon > 0$.

We know that there exists k_o such that $U(f, \Delta_k) - L(f, \Delta_k) < \epsilon$ for all $k \ge k_o$. So then for $k \ge k_o$, $\overline{\int}_P f \le U(f, \Delta_k) < L(f, \Delta_k) + \epsilon \le \underline{\int}_P f + \epsilon = \int_P f + \epsilon$ This implies that $|U(f, \Delta_k) - \int_P f| < \epsilon$ for all $k \ge k_o$. To prove that lower sums converge to the same integral, write

$$L(f,\Delta_k) = U(f,\Delta_k) - (U(f,\Delta_k) - L(f,\Delta_k)) \xrightarrow[k \to \infty]{} \int_P f - 0 = \int_P f$$

Proposition 7.2. Let P be a closed rectangle in \mathbb{R}^n and $f, g: P \to \mathbb{R}$ be bounded and integrable on P. Then f + g is integrable also with $\int_P (f + g) = \int_P f + \int_P g$.

Proof: Find sequences of divisions of P, $(\Delta'_k)_{k=1}^{\infty}$ such that $U(f, \Delta'_k) - L(f, \Delta'_k) \xrightarrow[k \to \infty]{} 0$ and $(\Delta''_k)_{k=1}^{\infty}$ such that $U(g, \Delta''_k) - L(g, \Delta''_k) \xrightarrow[k \to \infty]{} 0$.

For every $k \ge 1$, let Δ_k be a common refinement for Δ'_k and Δ''_k . Then $0 \le U(f, \Delta_k) - L(f, \Delta_k) \le U(f, \Delta'_k) - L(f, \Delta'_k) \xrightarrow[k \to \infty]{} 0$ Hence $U(f, \Delta_k) - L(f, \Delta_k) \xrightarrow[k \to \infty]{} 0$ and similarly $U(g, \Delta_k) - L(g, \Delta_k) \xrightarrow[k \to \infty]{} 0$. Also for every $k \ge 1$, we have

$$U(f+g,\Delta_k) - L(f+g,\Delta_k) \leq (U(f,\Delta_k) + U(g,\Delta_k)) - (L(f,\Delta_k) + L(g,\Delta_k))$$
$$= (U(f,\Delta_k) - L(f,\Delta_k)) + (U(g,\Delta_k) - L(g,\Delta_k))$$
$$\to 0 \text{ as } k \to \infty$$

Then apply a previous proposition to get that f + g is integrable. Moreover, the above gives us that $\int_P f + g \leq U(f + g, \Delta_k) \leq U(f, \Delta_k) + U(g, \Delta_k)$ for all $k \geq 1$. Let $k \to \infty$, and we have that $\int_P f + g \leq \lim_{k \to \infty} [U(f, \Delta_k) + U(g, \Delta_k)] = \int_P f + \int_P g$ In a similar fashion with the lower sums we get that $\int_P f + g \geq \int_P f + \int_P g$. Therefore $\int_P f + g = \int_P f + \int_P g$. **Theorem 8.2.** Let $P \subseteq \mathbb{R}^n$ and $f: P \to \mathbb{R}$ be bounded. Suppose we find subsets $B, G \subseteq P$ such that $B \cup G = P$ and such that

1. f is continuous at every $\vec{x} \in G$

2. B is a null set

Then f is integrable over P.

Proof: Let $\epsilon > 0$.

We want to find a division Δ of P such that $U(f, \Delta) - L(f, \Delta) < \epsilon$. Fix some bounds α, β for values of f. That is, have $\alpha \leq f(\vec{x}) \leq \beta$ for all $\vec{x} \in P$. Consider $\epsilon_o = \frac{\epsilon}{(\beta - \alpha) + vol(P) + 1}$ Now, B is a null set, that is, we can find closed rectangles Q_1, \ldots, Q_m in \mathbb{R}^n with $Q_1, \ldots, Q_m \subseteq P$ and $Q_1 \cup \cdots \cup Q_m \supset P$ with $\sum_{i=1}^m Q_i < \epsilon_o$. By enlarging Q_1, \ldots, Q_m as necessary, assume that $int(Q_1) \cup \cdots \cup int(Q_m) \supset B$

Let us denote $int(Q_1) \cup \cdots \cup int(Q_m) = D$. Then D is an open set.

Let us denote $P \setminus D = K$. Since $K = P \cap (\mathbb{R}^n \setminus D)$ it is a closed set.

K is also bounded, so K is compact.

Observe that $K \subseteq G$, since $D \supset B$ by **1**.

Since $K \subseteq G$, f is continuous at every $\vec{x} \in K$.

Hence f is uniformly continuous on K.

Then there exists $\delta > 0$ such that for $\vec{x}, \vec{y} \in K$ with $\|\vec{x} - \vec{y}\| < \delta$, it follows that $|f(\vec{x}) - f(\vec{y})| < \epsilon$. So we can make a division Δ of P such that every rectangle of Δ is either counted in $Q_1 \cup \cdots \cup Q_m$ or contained in K.

Then write
$$\Delta = \{\underbrace{P'_1, \dots, P'_q}_{\text{in } Q_1 \cup \dots \cup Q_m}, \underbrace{P''_1, \dots, P''_r}_{\text{in } K}\}$$

By further refinement, we may arrange the divisions such that $\operatorname{diam}(P''_j) < \delta$ for all j. Note that for every j, we have $\vec{x}, \vec{y} \in P''_j$ which implies that $\|\vec{x} - \vec{y}\| < \delta$. This implies that $|f(\vec{x}) - f(\vec{y})| < \epsilon_o$. This implies that $\sup_{P''_j} \{f\} = \inf_{P''_j} \{f\} \leq \epsilon_o$ for each j

Then we have

$$\begin{split} U(f,\Delta) - L(f,\Delta) &= \left(\sum_{i=1}^{q} vol(P'_{i}) \sup_{P'_{i}} \{f\} + \sum_{j=1}^{r} vol(P''_{j}) \sup_{P''_{j}} \{f\} \right) - \left(\sum_{i=1}^{q} vol(P'_{i}) \inf_{P'_{i}} \{f\} + \sum_{j=1}^{r} vol(P''_{j}) \inf_{P''_{j}} \{f\} \right) \\ &= \sum_{i=1}^{q} vol(P'_{i}) \left(\sup_{P'_{i}} \{f\} - \inf_{P'_{i}} \{f\} \right) + \sum_{j=1}^{r} vol(P''_{j}) \left(\sup_{P''_{j}} \{f\} - \inf_{P''_{j}} \{f\} \right) \\ &\leqslant \sum_{i=1}^{q} vol(P'_{i}) (\beta - \alpha) + \sum_{j=1}^{r} vol(P''_{j}) \epsilon_{o} \\ &= (\beta - \alpha) \sum_{i=1}^{q} vol(P'_{i}) + \epsilon_{o} \sum_{j=1}^{r} vol(P''_{j}) \\ &\leqslant (\beta - \alpha) \epsilon_{o} + \epsilon_{o} vol(P) \\ &\leqslant \frac{\epsilon(\beta - \alpha + vol(P))}{(\beta - \alpha) + vol(P) + 1} \\ &< \epsilon \end{split}$$

Corollary 8.4. Let $A \subseteq \mathbb{R}^n$ be compact such that bd(A) is a null set. Let P be a closed rectangle with $A \subseteq P$, and define $f: P \to \mathbb{R}$ by $f(\vec{x}) = \begin{cases} 1 & \vec{x} \in A \\ 0 & \text{else} \end{cases}$ Then f is integrable over P.

Proof: Take B = bd(A), which is a null set by the hypothesis, and $G = P \setminus bd(A)$. Note that $bd(A) = cl(A) \setminus int(A)$. Therefore $G = int(A) \cup (P \setminus A)$ For every $\vec{a} \in int(A)$ we can find r > 0 such that $f(\vec{x}) = 1$ for all $\vec{x} \in B(\vec{a}; r)$ This implies that f is continuous at \vec{a} . For every $\vec{v} \in P \setminus A$, we can find r > 0 such that $f(\vec{x}) = 0$ for all $\vec{x} \in B(\vec{v}; r) \cap P$ This implies that f is continuous on G. Hence f is integrable on G, and by the above theorem, over P.

Theorem 9.3. [THEOREM OF STOLZ-FUBINI]

Let $P = M \times N$ as above, and let $f : P \to \mathbb{R}$ as above. Suppose that i. f is integrable on P

ii. For every $\vec{v} \in M$, the function $f_{\vec{v}} : N \to \mathbb{R}$ is integrable over N. Define $F : M \to \mathbb{R}$ by putting $F(\vec{v}) = \int_N f_{\vec{v}}$ for all $\vec{v} \in M$. Then F is integrable on M, and

$$\int_M F = \int_P f$$

Proof: Given f is integrable, there exists a sequence $(\Delta_k)_{k=1}^{\infty}$ of divisions of P with $U(f, \Delta_k) - L(f, \Delta_k)_{k\to\infty} \to 0$. Refine every Δ_k to a division $\Delta'_k = \Phi_k \times \Psi_k$ where Φ_k is a division of M and Ψ_k is a division of N. For every $k \ge 1$, we have $U(F, \Phi_k) \le U(f, \Delta'_k) \le U(f, \Delta_k)$ and $L(F, \Phi_k) \ge L(f, \Delta'_k) \ge L(f, \Delta_k)$. Hence we have $U(F, \Phi_k) - L(F, \Phi_k) \le U(f, \Delta_k) - L(f, \Delta_k) \xrightarrow[k\to\infty]{} 0$. Therefore F is integrable.

From a previous proposition, we have $\int_M F = \lim_{k \to \infty} [U(F, \Phi_k)]$ And we also have $U(f, \Delta_k) \ge U(F, \Phi_k) \ge L(F, \Phi_k) \ge L(f, \Delta_k)$ so as $k \to \infty$, $\int_P f \ge \int_M F \ge \int_P f$. Therefore $\int_M F = \int_P f$.

Proposition 10.8. Let $\emptyset \neq P \subset \mathbb{R}^n$ be bounded, and let $f: P \to \mathbb{R}$ be integrable, with $f(\vec{x}) \ge 0$ for all $\vec{x} \in P$. Let $S \subset \mathbb{R}^{n+1}$ be the subgraph of f. Then S has volume, and $vol(S) = \int_P f$.

$$\begin{split} U(\chi, \widetilde{\Delta}_k) &= \sum_{i=1}^r vol(P_i \times [0, \alpha_i]) \cdot 1 + \sum_{i=1}^r vol(P_i \times [\alpha_i, \beta_i + 1/k]) \cdot 1 + \sum_{i=1}^r vol(P_i \times [\beta_i + 1/k, c]) \cdot 0 \\ &= \sum_{i=1}^r vol(P_i) \alpha_i \cdot 1 + \sum_{i=1}^r vol(P_i) (\beta_i + 1/k - \alpha_i) \cdot 1 \\ &= \sum_{i=1}^r vol(P_i) (\beta_i + 1/k) \\ &= \sum_{i=1}^r vol(P_i) \beta_i + \sum_{i=1}^r vol(P_i) 1/k \\ &= U(f, \Delta_k) + vol(P)/k \end{split}$$

Similarly, we find $L(\chi, \widetilde{\Delta}_k) = L(f, \Delta_k)$. Then we have

$$U(\chi, \widetilde{\Delta}_k) - L(\chi, \widetilde{\Delta}_k) = U(f, \Delta_k) - L(f, \Delta_k) + vol(P) \frac{1}{k} \xrightarrow[k \to \infty]{} 0$$

Hence χ is integrable. Moreover,

$$\int_{P \times [0,c]} \chi = \lim_{k \to \infty} \left[L(\chi, \widetilde{\Delta}_k) \right] = \lim_{k \to \infty} \left[U(\chi, \widetilde{\Delta}_k) \right] = \lim_{k \to \infty} \left[L(f, \Delta_k) \right] = \lim_{k \to \infty} \left[U(f, \Delta_k) \right] = \int_P f(\xi) d\xi$$

Theorem 12.3. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. Let $f \in C^1(A, \mathbb{R})$. Then for every $\vec{v} = (v^{(1)}, v^{(2)}, \dots, v^{(n)}) \in \mathbb{R}^n$, the directional derivative $\partial_{\vec{v}} f$ exists, and we have $\partial_{\vec{v}} f = v^{(1)}(\partial_1 f) + \dots + v^{(n)}(\partial_n f)$.

Proof: Fix $\vec{a} \in A$ and let $\sum_{i=1}^{n} v^{(i)}(\partial_i f)(\vec{a}) = L$.

It will be shown that $(\partial_{\vec{v}} f)(\vec{a})$ for all $\vec{a} \in A$ exists and is equal to L. Given $\epsilon > 0$, use the lemma with $\frac{\epsilon}{1+\|\vec{v}\|}$ to get $\delta_o > 0$ such that $B(\vec{a}; \delta_o) \subseteq A$. $f(\vec{x}) = f(\vec{a}) - \sum_{i=1}^{n} (x^{(i)} - a^{(i)})$.

So then for every
$$\vec{x} \neq \vec{a} \in B(\vec{a}; \delta_o)$$
, we have $\left| \frac{f(\vec{x}) - f(\vec{a}) - \sum_{i=1}^{n} (x^{(i)} - a^{(i)}) \cdot (\partial_i f)(\vec{a})}{\|\vec{x} - \vec{a}\|} \right| < \frac{\epsilon}{1 + \|\vec{v}\|}$
Let $\delta = \frac{\delta_o}{1 + \|\vec{v}\|}$.

It is claimed that for every $t \neq 0$ such that $|t| < \delta$, we have $\left| \frac{f(\vec{a}+t\vec{v})-f(\vec{a})}{t} - L \right| < \epsilon$, as follows. Let $t \neq 0$ be such that $|t| < \delta$. Let $\vec{x} = \vec{a} + t\vec{v}$. Then $\|\vec{x} - \vec{a}\| = \|t\vec{v}\| < \delta \|\vec{v}\| < \delta_o$ Also $x^{(i)} - a^{(i)} = (a^{(i)} + tv^{(i)}) - a^{(i)} = tv^{(i)}$ for $1 \le i \le n$. Hence $\sum_{i=1}^{n} (x^{(i)} - a^{(i)})(\partial_i f)(\vec{a}) = \sum_{i=1}^{n} tv^{(i)}(\partial_i f)(\vec{a}) = tL.$ Finally we have

$$\left| \frac{f(\vec{x}) - f(\vec{a}) - \sum_{i=1}^{n} (x^{(i)} - a^{(i)}) \cdot (\partial_i f)(\vec{a})}{\|\vec{x} - \vec{a}\|} \right| = \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a}) - tL}{|t| \|\vec{v}\|} \right| < \frac{\epsilon}{1 + \|\vec{v}\|} \\ \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a}) - tL}{|t|} \right| < \frac{\epsilon}{1 + \|\vec{v}\|} \\ \left| \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} - L \right| < \epsilon$$

Theorem 12.4. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be an open set. Let $\vec{a} \in A$ and r > 0 be such that $B(\vec{a}; r) \subseteq A$. Fix $i \in \{1, \ldots, n\}$ and let $\vec{x}, \vec{y} \in B(\vec{a}; r)$ be such that they only differ in component *i*. Let $f \in C^1(A, \mathbb{R})$. Then there exists $\vec{b} \in B(\vec{a};r)$ such that $f(\vec{x}) - f(\vec{y}) = (y^{(i)} - x^{(i)})(\partial_i f)(\vec{b})$.

Proof: The case $x^{(i)} = y^{(i)}$ is trivial, so assume $x^{(i)} < y^{(i)}$. Note that $(x^{(1)}, \dots, x^{(i-1)}, s, x^{(i+1)}, \dots, x^{(n)}) \in B(\vec{a}; r)$ for all $s \in [x^{(i)}, y^{(i)}]$. Define $\varphi : [x^{(i)}, y^{(i)}] \to \mathbb{R}$ by $\varphi(s) = (x^{(1)}, \dots, x^{(i-1)}, s, x^{(i+1)}, \dots, x^{(n)})$ for all $s \in [x^{(i)}, y^{(i)}]$. Then φ is continuous on $[x^{(i)}, y^{(i)}]$.

Then φ is differentiable on $(x^{(i)}, y^{(i)})$, and for every $s \in (x^{(i)}, y^{(i)})$, we have $\varphi'(s) = (\partial_i f)(\vec{b})$ for $\vec{b} = \varphi(s)$. Apply the mean value theorem to φ , so there exists $s \in (x^{(i)}, y^{(i)})$ such that

$$\begin{aligned} \frac{\varphi(y^{(i)}) - \varphi(x^{(i)})}{y^{(i)} - x^{(i)}} &= \varphi'(s) \\ \frac{f(\vec{y}) - f(\vec{y})}{y^{(i)} - x^{(i)}} &= (\partial_i f)(\vec{b}) \\ f(\vec{y}) - f(\vec{y}) &= (y^{(i)} - x^{(i)})(\partial_i f)(\vec{b}) \end{aligned}$$

Theorem 13.4. [CHAIN RULE 1]

Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open with $f \in C^1(A, \mathbb{R})$. Suppose $\gamma : I \to \mathbb{R}^n$ is a differentiable path such that $\gamma(t) \in A$ for all $t \in I$. Consider the composed function $\varphi = f \circ \gamma$, with $\varphi : I \to \mathbb{R}$ given by $\varphi(t) = f(\gamma(t))$ for all $t \in I$. Then φ is differentiable and we have $\varphi'(t) = \sum_{i=1}^{n} (\partial_i f)(\gamma(t))(\gamma^{(i)})'(t)$ for all $t \in I$.

Proof: Fix
$$t_o \in I$$
.
Denote $\vec{a} := \gamma(t_o) = (\gamma^{(1)}t_o, \dots, \gamma^{(n)}(t_o))$
 $\vec{v} := \gamma'(t_o) = ((\gamma^{(1)})'t_o, \dots, (\gamma^{(n)})'(t_o))$
It will be proven that $\lim_{\substack{h \to 0 \\ h \neq 0}} \left[\frac{\varphi(t_o + h) - \varphi(t_o)}{h} \right] = \varphi'(t_o) = (\partial_{\vec{v}}f)(\vec{a}).$
Choose $r > 0$ such that $B(\vec{a}; r) \subseteq A$
Fix $c > 0$ such that if $\vec{x}, \vec{y} \in \overline{B}(\vec{a}; \frac{r}{2})$, then $|f(\vec{x}) - f(\vec{y})| \leq c ||\vec{x} - \vec{y}||.$
Fix $\ell > 0$ such that $(t_o - \ell, t_o + \ell) \subseteq I$ and such that $|t - t_o| < \ell \Longrightarrow ||\gamma(t) - \gamma(t_o)|| < \frac{r}{2}.$
Use $h \neq 0$ such that $|h| < \ell$ and $|h| < \frac{r}{2(1 - ||\vec{v}||)} \Longrightarrow ||(\vec{a} + h\vec{v}) - \vec{a}|| < \frac{r}{2}.$
Denote $\ell_o = \max\{\ell, \frac{r}{2(1 - ||\vec{v}||)}\}.$
For $0 < |h| \leq \ell_o$ write

$$\frac{\varphi(t_o + h) - \varphi(t_o)}{h} = \frac{f(\gamma(t_o + h)) - f(\gamma(t_o))}{h}$$
$$= \frac{f(\gamma(t_o + h)) - f(\gamma(t_o) + h\vec{v})}{h} + \frac{f(\gamma(t_o) + h\vec{v}) - f(\gamma(t_o))}{h}$$
$$= \frac{f(\gamma(t_o + h)) - f(\vec{a} + h\vec{v})}{h} + \frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h}$$

Now the limit of the first term as $h \to 0$ will go to zero by the following:

$$\left| \frac{f(\gamma(t_o+h)) - f(\vec{a}+h\vec{v})}{h} \right| \leq c \left\| \frac{\gamma(t_o+h) - \vec{a}-h\vec{v}}{h} \right\|$$
$$= c \left\| \frac{\gamma(t_o+h) - \gamma(t_o)}{h} - \gamma'(t_o) \right\|$$
$$\leq c \sum_{i=1}^n \left| \frac{\gamma^{(i)}(t_o+h) - \gamma^{(i)}(t_o)}{h} - (\gamma^{(i)})'(t_o) \right|$$

Taking limits of the above, since the last line is a sum of n zeros, we have

$$\lim_{h \to 0} \left[\left| \frac{f(\gamma(t_o + h)) - f(\vec{a} + h\vec{v})}{h} \right| \right] = 0$$

Clearly, we also have
$$\lim_{h \to 0} \left[\frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h} \right] = (\partial_{\vec{v}} f)(\vec{a}), \text{ so the theorem is proved.}$$

Theorem 14.15. Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be open and $f \in C^2(A, \mathbb{R})$ with $\vec{a} \in A$ a stationary point for f. If the Hessian matrix $(Hf)(\vec{a})$ is positive definite, then \vec{a} is a local minimum for f.

Proof: Pick r > 0 as in first lemma above.

Then for every $\vec{b} \neq \vec{a}$ in $B(\vec{a}; r/2)$ we have $\vec{c} \in \operatorname{Co}(\vec{a}, \vec{b}) \subseteq B(\vec{a}; r/2)$. Therefore $f(\vec{b}) - f(\vec{a}) = t_o \langle T_{(Hf)(\vec{c})}(\vec{v}), \vec{v} \rangle > 0$ since $(Hf)(\vec{c})$ is positive definite. Hence $f(\vec{b}) > f(\vec{a})$.

Proposition 15.3. [CHAIN RULE 2]

Let $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^m$ be open nonempty sets. Let $f \in C^1(A, \mathbb{R}^m)$ such that $f(\vec{x}) \in B$ for all $\vec{x} \in A$. Suppose also $g \in C^1(B, \mathbb{R}^p)$. Consider $h = g \circ f : A \to \mathbb{R}^p$ defined by $h(\vec{x}) = g(f(\vec{x}))$ for $\vec{x} \in A$. Then $(Jh)(\vec{x}) = (Jg)(f(\vec{x})) \cdot (Jf)(\vec{x})$ for all $\vec{x} \in A$.

Proof: This will be reduced to the chain rule as proved above.

Fix $\vec{x} \in A$, $1 \leq k \leq p$, $1 \leq j \leq n$. It will be shown that $\lim_{\substack{t \to 0 \\ t \neq 0}} \left[\frac{h^{(k)}(\vec{x} + t\vec{e}_j) - h^{(k)}(\vec{x})}{t} \right] = (\partial_j h^{(k)})(\vec{x}) = \sum_{i=1}^m (\partial_i g^{(k)})(f(\vec{x})) \cdot (\partial_j f^{(i)})(\vec{x})$. For $\vec{x} \in A$, there exists r > 0 such that $B(\vec{x}; r) \subseteq A$, in particular $\vec{x} + t\vec{e}_j \in A$ for all $t \in (-r, r)$. Define $\gamma : (-r, r) \to B \subseteq \mathbb{R}^m$ by $\gamma(t) = f(\vec{x} + t\vec{e}_j)$ for $t \in (-r, r)$. Apply the chain rule above to γ and to $g^{(k)} \in C^1(B, \mathbb{R}^m)$. Define $\varphi : (-r, r) \to \mathbb{R}^p$ by $\varphi(t) = g^{(k)}(\gamma(t))$ for $t \in (-r, r)$. Observe that for every $t \in (-r, r)$, we have $\varphi(t) = g^{(k)}(\gamma(t)) = g^{(k)}(f(\vec{x} + t\vec{e}_j)) = h^{(k)}(\vec{x} + t\vec{e}_j)$. Then we have $\lim_{\substack{t \to 0 \\ t \neq 0}} \left[\frac{h^{(k)}(\vec{x} + t\vec{e}_j) - h^{(k)}(\vec{x})}{t} \right] = \lim_{\substack{t \to 0 \\ t \neq 0}} \left[\frac{\varphi(t) - \varphi(0)}{t} \right]$

Proving the necessary limit then amounts to proving that φ is differentiable at 0 and that $\varphi'(0)$ is the desired limit.

Now it will be shown that γ is a differentiable path with a formula for $\gamma'(t)$. Then we have

$$\begin{split} (\gamma^{(i)})'(t) &= \lim_{s \to 0 \atop s \neq 0} \left[\frac{\gamma^{(i)}(t+s) - \gamma^{(i)}(t)}{s} \right] = \lim_{s \to 0 \atop s \neq 0} \left[\frac{f^{(i)}(\vec{x} + (t+s)\vec{e}_j) - f^{(i)}(\vec{x} + t\vec{e}_j)}{s} \right] \\ &= \lim_{s \to 0 \atop s \neq 0} \left[\frac{f^{(i)}(\vec{x} + t\vec{e}_j + s\vec{e}_j) - f^{(i)}(\vec{x} + t\vec{e}_j)}{s} \right] \\ &= (\partial_j f^{(i)})(\vec{x} + t\vec{e}_j) \end{split}$$

Now apply chain rule 1 to $\varphi = g^{(k)} \circ \gamma$ to get

$$\varphi'(0) = \sum_{i=1}^{m} (\partial_i g^{(k)})(\gamma(0))(\gamma^{(i)})'(0)$$
$$= \sum_{i=1}^{m} (\partial_i g^{(k)})(f(\vec{x}))(\partial_j f^{(i)})(\vec{x})$$

And this is the desired limit.

Lemma 16.2. Let $M = [\alpha_{ij}] \in M_{n \times n}(\mathbb{R})$ be invertible. Then there exists $\lambda > 0$ such that if $N = [\beta_{ij}] \in M_{n \times n}(\mathbb{R})$ with $|\alpha_{ij} - \beta_{ij}| < \lambda$ for all i, j, then N is invertible as well.

Proof: Denote $|\det(M)| = \epsilon > 0$, since M is invertible.

Recall that the determinant of an $n \times n$ matrix T is a polynomial P_n of the matrix with $P_n(T) = \det(T)$. So we have continuity of P_n at $(\alpha_{11}, \alpha_{12}, \dots, \alpha_{nn})$ for $\epsilon/2$. Hence there exists $\delta > 0$ such that $\|(\beta_{11}, \beta_{12}, \dots, \beta_{nn}) - (\alpha_{11}, \alpha_{12}, \dots, \alpha_{nn})\| < \delta$. This implies that $|P_n((\beta_{11}, \beta_{12}, \dots, \beta_{nn})) - P_n((\alpha_{11}, \alpha_{12}, \dots, \alpha_{nn}))| < \epsilon/2$. Let $\lambda = \delta/n$.

If $N = [\beta_{ij}]$ has $|\beta_{ij} - \alpha_{ij}| < \lambda$ for all i, j, then we get

$$\|(\beta_{11}, \beta_{12}, \dots, \beta_{nn}) - (\alpha_{11}, \alpha_{12}, \dots, \alpha_{nn})\| = \sqrt{\sum_{i,j} (\beta_{ij} - \alpha_{ij})^2}$$
$$< \sqrt{n^2 \lambda^2}$$
$$= n\lambda$$
$$= \delta$$

Then also

$$\begin{split} \epsilon &= |\det(M)| \\ &\leqslant |\det(N)| + |\det(M) - \det(N)| \\ &< |\det(N)| + \epsilon/2 \\ \det(N)| &> \epsilon/2 \end{split}$$

Therefore N is invertible.

Proposition 16.3. Let $A \subseteq \mathbb{R}^n$ be open and $\vec{a} \in A$, with $f \in C^1(A, \mathbb{R}^n)$ such that $(Jf)(\vec{a})$ is invertible. Then there exists r > 0 such that $B(\vec{a}; r) \subseteq A$ and f is one-to-one on $B(\vec{a}; r)$.

Proof: Denote $(Jf)(\vec{a}) = M = [\alpha_{ij}]$, which is invertible, with $\alpha_{ij} = (\partial_j f^{(i)})(\vec{a})$. Lemma gives a $\lambda > 0$ such that if $N = [\beta_{ij}]$ with $|\beta_{ij} - \alpha_{ij}| < \lambda$ for all $1 \leq i, j \leq n$, then N is invertible. Due to continuity of $\partial_j f^{(i)}$ at \vec{a} , we can find r > 0 such that $B(\vec{a}; r) \subseteq A$ and such that

 $|(\partial_j f^{(i)})(\vec{x}) - (\partial_j f^{(i)})(\vec{a})| < \lambda \text{ for all } \vec{x} \in B(\vec{a}; r).$

Assume that f is not one-to-one on $B(\vec{a}; r)$.

Hence there exists $\vec{p}, \vec{q} \in B(\vec{a}; r)$ such that $f(\vec{p}) = f(\vec{q})$.

For every $1 \leq i \leq n$, apply the mean value theorem to $f^{(i)} \in C^1(A, \mathbb{R})$ between \vec{p} and \vec{q} .

The mean value theorem gives a point $\vec{c}_i \in \text{Co}(\vec{a}, \vec{b})$ such that $0 = f^{(i)}(\vec{p}) - f^{(i)}(\vec{q}) = \langle (\nabla f^{(i)})(\vec{c}_i), \vec{p} - \vec{q} \rangle$ $\lceil (\nabla f^{(1)})(\vec{c}_1) \rceil$

Consider the matrix
$$N = \begin{bmatrix} (\nabla f^{(2)})(\vec{c}_2) \\ (\nabla f^{(2)})(\vec{c}_2) \\ \vdots \\ (\nabla f^{(n)})(\vec{c}_n) \end{bmatrix}$$
 where $N = [\beta_{ij}]$ with $\beta_{ij} = (\partial_j f^{(i)})(\vec{c}_i)$ for all $1 \le i, j \le n$.

By choice of r and because $\vec{c}_i \in B(\vec{a}; r)$, we get $|\beta_{ij} - \alpha_{ij}| = |(\partial_j f^{(i)})(\vec{c}_i) - (\partial_j f^{(i)})(\vec{a})| < \lambda$ for all $1 \leq i, j \leq n$.

Hence N is invertible.

Since $\langle (\nabla f^{(i)})(\vec{c}_i), \vec{p} - \vec{q} \rangle = 0$ for all $1 \leq i \leq n$, we have that $\vec{p} - \vec{q} \in \text{Null}(N)$. This is a contradiction, since N is invertible, we have $\text{Null}(N) = \{0\}$. Therefore f is one-to-one on $B(\vec{a}; r)$.