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File I

Lectures

1 Review

Operations with vectors

For ~x = (x(1), x(2), . . . , x(n)) ∈ Rn, ~y = (y(1), y(2), . . . , y(n)) ∈ Rn and α ∈ R:

Addition: ~x+ ~y := (x(1) + y(1), x(2) + y(2), . . . , x(n) + y(n))
Scalar multiplication: α~x := (αx(1), αx(2), . . . , αx(n))
(Standard) inner product / dot product: < x, y > := x · y

:= x(1)y(1) + x(2)y(2) + · · ·+ x(n)y(n)

Norm (or length): ‖~x‖ :=
√
< ~x, ~x >

Basic properties of the inner product
a. Bilinearity: < α1~x1 + α2~x2, ~y >= α1 < ~x1, ~y > +α2 < ~x2, ~y >
b. Symmetry: < ~x, ~y >=< ~y, ~x >
c. Positivity: < ~x, ~x >> 0 with < ~x, ~x >= 0 iff ~x = ~0

Theorem 1.1.∗ [Cauchy-Bunyakovsky-Schwarz Inequality]
| < ~x, ~y > | 6 ‖~x‖ · ‖~y‖

Corollary 1.2. [Triangle Inequality]
‖~x+ ~y‖ 6 ‖~x‖+ ‖~y‖ ∀ ~x, ~y ∈ Rn

Definition 1.3. The distance between ~x and ~y is defined to be d(~x, ~y) = ‖~x− ~y‖ =

√√√√ n∑
i=1

(x(i) − y(i))2.

Corollary 1.4. For every ~x, ~y, ~z ∈ Rn, d(~x, ~z) 6 d(~x, ~y) + d(~y, ~z).

Definition 1.5. For ~a ∈ Rn and r > 0, define a ball byB(~a; r) = {~x ∈ Rn
d(~x,~a) < r} = {~x ∈ Rn

‖~x− ~a‖ < r}
An open ball has a strict inequality, whereas a closed ball may have ‖~x− ~a‖ = r.

Remark 1.6. For all ~x ∈ Rn, ‖~x‖∞ 6 ‖~x‖2 6 ‖~x‖1 6 n‖~x‖∞.

2 Sequences in Rn

Definition 2.1. A sequence in Rn is denoted by the following: (~xk)
∞
k=1

Definition 2.2. Suppose (~xk)
∞
k=1 ∈ Rn and ~a ∈ Rn. Then (~xk)

∞
k=1 converges to ~a when the following holds:

Given ε > 0, there exists a ko ∈ N such that ‖~xk − ~a‖ < ε for all k > ko.

Remark 2.3. Instead of ‖~xk~a‖ < ε, we may also write d(~xk,~a) < ε or ~xk ∈ B(~a; ε).

Definition 2.4. Given (~xk)
∞
k=1 ∈ Rn, the sequence is a Cauchy sequence when the following holds:

Given ε > 0, there exists a ko ∈ N such that ‖~xp − ~xq‖ < ε for all p, q > ko.

Definition 2.5. Given (~xk)
∞
k=1 ∈ Rn, the sequence is bounded when there exists r > 0 such that ‖~xk‖ 6 r

for all k > 1. That is, ~xk ∈ B(~0; r) for all k > 1.

Definition 2.6. Given (~xk)
∞
k=1 ∈ Rn, express explicitly ~xk =

(
x
(1)
k , x

(2)
k , . . . , x

(n)
k

)
the k-th element.

From these we get n sequences in R:
(
~x
(1)
k

)∞
k=1

,
(
~x
(2)
k

)∞
k=1

, . . . ,
(
~x
(n)
k

)∞
k=1

.

These are termed component sequences of the original sequence.

2



Proposition 2.7.∗Let (~xk)
∞
k=1 ∈ Rn and ~a ∈ Rn. Then (~xk−−−→k→∞ ~a in Rn) ⇐⇒


~x
(1)
k
−−−→
k→∞ ~a(1)

... in R
~x
(n)
k
−−−→
k→∞ ~a(n)


Proposition 2.8. Suppose (~xk)

∞
k=1 ∈ Rn. Then the sequence is Cauchy ⇐⇒ each of the component

sequences is Cauchy.

Similarly, the sequence is bounded ⇐⇒ each of the component
sequences is bounded.

Theorem 2.9. [Cauchy Theorem]
Let (~xk)

∞
k=1 ∈ Rn. Then it is convergent to some ~a ∈ Rn if and only if it is Cauchy.

Theorem 2.10. [Bolzano-Weierstrass Theorem]
Suppose (~xk)

∞
k=1 ∈ Rn is bounded. Then there exist values a < k(1) < k(2) < · · · < k(p) < · · · such that the

subsequence
(
~xk(p)

)∞
p=1

is convergent.

Theorem 2.11. [Operations with convergent sequences]

Let (~xk)
∞
k=1 and (~yk)

∞
k=1 be in Rn with lim

k→∞
[~xk] = ~a and lim

k→∞
[~yk] = ~b. Then for α, β ∈ R,

1. lim
k→∞

[α~xk + β~y] = α~a+ β~b

2. lim
k→∞

[〈~xk, ~yk〉] = 〈~a,~b〉
3. lim

k→∞
[‖~xk‖] = ‖~a‖

4. lim
k→∞

[d(~xk, ~yk)] = d(~a,~b)

Theorem 2.12. [Banach Fixed Point Theorem]
Let A ⊆ Rn with f : A→ A be a function given by ‖f(~x)− f(~y)‖ 6 γ‖~x− ~y‖ for all ~x, ~y ∈ A and γ ∈ (0, 1).
Given any ~x1 ∈ A and ~xk+1 = f(~xk), the function f has a unique fixed point ~p ∈ A such that lim

k→∞
[~xk] = ~p

and f(~p) = ~p.

Definition 2.13. A subset A ⊆ Rn is said to be closed when it has the following property: If (~xk)
∞
k=1 is a

sequence in A such that ~xk−−−→k→∞
~b ∈ Rn, then it follows that ~b ∈ A.

3 Open and closed subsets of Rn

Definition 3.1. Suppose A ⊆ Rn and ~a ∈ A. Then ~a is an interior point of A when there exists an r > 0
such that B(~a; r) ⊆ A. The set of all interior points of A is termed the interior of A and is denoted by int(A).

Definition 3.2. Suppose A ⊆ Rn. If every ~a ∈ A is an interior point of A, then we say that A is open.
Hence for every A ∈ Rn, we have that int(A) ⊆ A, and A is open ⇐⇒ int(A) = A.

Definition 3.3. Given C ⊆ Rn, the set C is closed when Rn \ C is open.

Remark 3.4. Most sets are neither open nor closed.

Definition 3.5. Let ∅ 6= C ∈ Rn. Then C has the cannot escape property when the following happens:

If (~xk)
∞
k=1 ∈ C and ~xk−−−→k→∞

~b ∈ Rn, then ~b ∈ C.

Proposition 3.6.∗ Let ∅ 6= C ∈ Rn. Then C is closed ⇐⇒ C has the cannot escape property.

Remark 3.7. ∅ and R are clopen; they are both open and closed.

Definition 3.8. For A ∈ Rn, define the closure of A to be the following set:
cl(A) = {~b ∈ Rn

 there exists (~xk)
∞
k=1 ∈ A such that ~xk−−−→k→∞

~b}.
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Remark 3.9. A ⊆ cl(A) with A = cl(A) ⇐⇒ A is closed.

Proposition 3.10. For every A ⊆ Rn, we have
i. int(Rn \A) = Rn \ cl(A)
ii. cl(Rn \A) = Rn \ int(A)

Definition 3.11. A set B ∈ Rn is said to be bounded when there exists r > 0 such that ‖~x‖ 6 r for all
~x ∈ B, and B is a subset of B(~0; r).

Definition 3.12. A set K ∈ Rn is said to compact when it is closed and bounded.

Theorem 3.13. Let K ⊆ Rn be compact, and let (~xk)
∞
k=1 ∈ K. Then there exists a subsequence of ~xk

which converges to a limit in K.

Definition 3.14. For A ∈ Rn, define the boundary of A to be bd(A) = cl(A) \ int(A).

Remark 3.15. An alternative definition is bd(A) = cl(A) ∩ cl(Rn \A).

4 Continuous functions

Definition 4.1. Let ∅ 6= A ∈ Rn, and f : A→ Rn be a function. Let ~a ∈ A. We say that f is continuous at
~a when the following holds:

For all ε > 0, there exists a δ > 0 such that if ‖~x− ~a‖ < δ, then ‖f(~x)− f(~a)‖ < ε for all ~x ∈ A.
Moreover, f is continuous if f is continuous at every ~x ∈ A.

Definition 4.2. For ∅ 6= A ∈ Rn, a function f : A→ Rn, and ~a ∈ A, we say that f respects sequences in A
which converge to ~a when the following happens:

Whenever (~xk)
∞
k=1 ∈ A is such that ~xk−−−→k→∞ ~a, it follows that f(~xk)−−−→

k→∞ f(~b)

Proposition 4.3.∗ For ∅ 6= A ∈ Rn, a function f : A→ Rn, and ~a ∈ A, we have that(
f respects sequences in
A which converge to ~a

)
⇐⇒

(
f is continuous

at ~a

)
.

Definition 4.4. For ∅ 6= A ∈ Rn, a function f : A→ Rn, for every ~a ∈ A write explicitly
f(~a) =

(
f (1)(~a), . . . , f (n)(~a)

)
∈ Rn

then get the functions f (1), . . . , f (n) : A→ R, termed the components of f .

5 Continuity and compactness

Definition 5.1. Let ∅ 6= A ∈ Rn with f : A→ Rn. Then f is uniformly continuous on A when the following
holds:

For all ε > 0, there exists a δ > 0 such that if ‖~x− ~a‖ < δ, then ‖f(~x)− f(~a)‖ < ε for all ~a, ~x ∈ A.

Remark 5.2. Uniform continuity gives us that:
1. The function f is continuous on A, i.e. f is continuous at every point in A.
2. The choice of δ in the epsilon-delta condition of continuity is the same for all ~a ∈ A.

Theorem 5.3.∗ Suppose ∅ 6= A ∈ Rn is compact. If f : A→ Rn is continuous, then f is uniformly continuous
on A.

Proposition 5.4.∗ Suppose ∅ 6= A ∈ Rn is compact. Let f : A→ Rn be continuous on A. Then the image
set B = f(A) ⊆ Rn, or B = {~y ∈ Rn

 there exists ~x ∈ A such that f(~x) = ~y} is a compact subset of Rn.

Theorem 5.5.∗ [Extreme Value Theorem]
Suppose ∅ 6= A ∈ Rn is compact. Let f : A→ R be continuous. Then f has a minimum and maximum on
A. That is, there exist ~γ1, ~γ2 ∈ A such that f(~γ1) 6 f(~x) 6 f(~γ2) for all ~x ∈ A.
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6 Integrable functions

Definition 6.1. A closed rectangle in Rn is a set of the form
P = [a1, b1]× [a2, b2]× · · · × [an, bn]

= {~x ∈ Rn
a1 6 x(1) 6 b1, a2 6 x(2) 6 b2, . . . , an 6 x(n) 6 bn}

Definition 6.2. For such P as above, define the volume of P by vol(P ) = (b1 − a1)(b2 − a2) · · · (bn − an)

the diameter of P by diam(P ) = ‖~b− ~a‖
diam∞(P ) = ‖~b− ~a‖∞

Definition 6.3. Let P be a closed rectangle in Rn. A division of P is a collection of closed rectangles
∆ = {P1, P2, . . . , Pk} such that P1 ∪ P2 ∪ · · · ∪ Pk = P with int(Pi) ∩ int(Pj) = ∅ for i 6= j.

Definition 6.4. For P as above, define ‖∆‖ = max
16i6k

{diam∞(Pi)}. Hence ‖∆‖ is small implies that

diam∞(Pi) is small for all i.

Definition 6.5. For divisions ∆ = {P1, P2, . . . , Pk} and Γ = {Q1, Q2, . . . , Q`} of P , we say that Γ refines ∆
and write Γ ≺ ∆ if for every 1 6 j 6 ` there exists 1 6 i 6 k such that Qj ⊆ Pi.

Remark 6.6. If Γ ≺ ∆ as for above, then if ∆ = {P1, P2, . . . , Pk}
Γ = {Q11 , . . . , Q1m1

, Q21 , . . . , Q2m2
, . . . . . . , Qk1 , . . . , Qkmk

}

we will have Pi =

mi⋃
j=1

Qij for all i ∈ [1, k].

Remark 6.7. If P is a closed rectangle in Rn and ∆1 = {P ′1, P ′2, . . . , P ′k} and ∆2 = {P ′′1 , P ′′2 , . . . , P ′′` } are
divisions of P , then we can find a division Γ such that Γ ≺ ∆1 and Γ ≺ ∆2. Then Γ is given by

Γ = {P ′i ∩ P ′′j
1 6 i 6 k, 1 6 j 6 ` and P ′i ∩ P ′′j 6= ∅}.

Definition 6.8. Suppose ∅ 6= A ⊆ Rn with f : A→ R. Then f is bounded when there exists c > 0 such
that |f(x)| 6 c for all ~x ∈ A. When f is bounded on A, we can talk about

sup{f(~x)
~x ∈ A} = sup

A
{f}

inf{f(~x)
~x ∈ A} = inf

A
{f}

Definition 6.9. Suppose P is a closed rectangle on Rn and f : P → R is bounded. Let ∆ = {P1, P2, . . . , Pk}

be a division of P . Then U(f,∆) =

k∑
i=1

vol(Pi) sup
Pi

{f}

L(f,∆) =

k∑
i=1

vol(Pi) inf
Pi

{f}

These are termed the upper and lower Darboux sums of f over P .

Remark 6.10. L(f,∆) 6 U(f,∆) for all ∆, f .

Lemma 6.11.∗ Suppose P is a closed rectangle on Rn and f : P → R is bounded. Let Γ,∆ be divisions of
P such that Γ ≺ ∆. Then U(f,Γ) 6 U(f,∆) and L(f,Γ) > L(f,∆).

Proposition 6.12. If P is a closed rectangle in Rn and F : P → R is a bounded function, and ∆1,∆2 are
divisions of P , then L(f,∆1) 6 U(f,∆2).

Definition 6.13. Let P be a closed rectangle in Rn and F : P → R be bounded. Consider then
S = {L(f,∆)

∆ is a division of P}
T = {U(f,∆)

∆ is a division of P}
Then s 6 t for every s ∈ S and t ∈ T . Denote sup(S) =

∫
P
f and inf(T ) =

∫
P
f . Note that

∫
P
6
∫
P
f .

Remark 6.14. If f is integrable, then f is bounded.
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Proposition 6.15.∗ Let P be a closed rectangle in Rn and F : P → R be bounded. Then(
f is integrable

)
⇐⇒

(
for every ε > 0, there exists a division ∆ of P

such that U(f,∆)− L(f,∆) < ε

)
Proposition 6.16.∗ Let P be a closed rectangle in Rn and f : P → R be bounded. Then(

f is integrable
)
⇐⇒

(
there exists a sequence ∆1,∆2, . . . ,∆k, . . . of divisions

of P such that lim
k→∞

[U(f,∆k)− L(f,∆k)] = 0

)
Also, if we let ∆1,∆2, . . . ,∆k be a sequence of divisions of P as above and f be integrable, then

lim
k→∞

[U(f,∆k)] =

∫
P

f = lim
k→∞

[L(f,∆k)]

Theorem 6.17. [Du Bois-Reymond Theorem]
Let P be a closed rectangle in Rn and f : P → R be bounded. Then(

f is integrable
)
⇐⇒

(
for every ε > 0, there exists a δ > 0 such that if

∆ is a partition of P with ‖∆‖ < δ, then U(f,∆)− L(f,∆) < ε

)

7 Linearity of the integral

Lemma 7.1. Let P be a closed rectangle in Rn and f, g : P → R be bounded. Consider h = f + g with
h : P → R by h(~x) = f(~x) + g(~x). Then for every division ∆ = {P1, P2, . . . , Pk} of P we have

U(f + g,∆) 6 U(f,∆) + U(g,∆)
L(f + g,∆) > L(f,∆) + L(g,∆)

Proposition 7.2.∗ Let P be a closed rectangle in Rn and f, g : P → R be bounded and integrable on P .
Then f + g is integrable also with

∫
P

(f + g) =
∫
P
f +

∫
P
g.

Proposition 7.3. Let P be a closed rectangle in Rn and f : P → R is integrable and α ∈ R. Then h = αf
is integrable also with

∫
P
αf = α

∫
P
f .

Theorem 7.4. Let P be a closed rectangle in Rn. Let F = {f : P → R
f is integrable}. Then F is closed

under linear combinations, and for f, g,∈ F and α, β ∈ R we have
∫
P

(αf + βg) = α
∫
P
f + β

∫
P
g.

Remark 7.5. It is true that if f, g ∈ F , then fg ∈ F , but not necessarily true that
∫
P
fg =

∫
P
f
∫
P
g.

Remark 7.6. Let P be a closed rectangle in Rn and let ∆ = {P1, . . . , Pk} be a division of P . If f : P → R
is integrable on P , then f is integrable on each of P1, . . . , Pk and

∫
P
f =

∑k
i=1

∫
Pi
f

8 Integration of functions modulo null sets

Definition 8.1. C ⊆ Rn is said to be a null set when the following happens:
For every ε > 0, we can find a finite family of closed rectangles Q1, . . . , Qm ∈ Rn such that

1. Q1 ∪ · · · ∪Qm ⊃ C
2. vol(Q1) + · · ·+ vol(Qm) < ε

Theorem 8.2.∗ Let P ⊂ Rn be a closed ractangle and f : P → R be bounded. Suppose we find subsets
B,G ⊆ P such that B ∪G = P and such that

1. f is continuous at every ~x ∈ G
2. B is a null set

Then f is integrable over P .

Corollary 8.3. Let P ⊆ Rn and f : P → R be continuous. Then f is integrable over P .
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Corollary 8.4.∗ Let A ⊂ Rn be compact such that bd(A) is a null set. Let P ⊇ A be a closed rectangle and

define F : P → R by f(~x) =

{
1 ~x ∈ A
0 else

Then f is integrable over P .

Remark 8.5. The above function f is termed the characteristic function of A, and denoted by χ
A

. We can
use χ

A
to define the volume of A by vol(A) =

∫
P
χ

A
.

9 Theorem of Fubini

Remark 9.1. Let n = p+ q with p, q ∈ N. Then
· For A ∈ Rp and B ∈ Rq, define the Cartesian product A×B = {(~a,~b)

~a ∈ A,~b ∈ B} ⊆ Rn.
· Every closed rectangle P = [a1, b1]× · · · × [an, bn] ⊆ Rn can be written as P = M ×N with

M = [a1, b1]× · · · × [ap, bp] ⊆ Rp and N = [ap+1, bp+1]× · · · × [an, bn] ⊆ Rq.

Definition 9.2. Let P = M ×N as above. Let f : P → R be a function. For every ~v ∈M , define a
partial function f~v : N → R by f~v(~w) = f(~v, ~w) for all ~w ∈ N .

Theorem 9.3.∗ [Theorem of Stolz-Fubini]
Let P = M ×N as above, and let f : P → R as above. Suppose that

i. f is integrable on P
ii. For every ~v ∈M , the function f~v : N → R is integrable over N .

Define F : M → R by F (~v) =
∫
N
f~v for all ~v ∈M . Then F is integrable on M , and∫

M

F =

∫
P

f

Remark 9.4. With different notation, the above theorem states that:∫
P

f(~x) d~x =

∫
M

(∫
N

f(~v, ~w) d~w

)
d~v

=

∫
P

f(~v, ~w) d~v d~w

This is termed the calculation of iterated integrals.

Lemma 9.5. Let P = M ×N as above. Then for any division ∆ of P , one can find divisions Φ for M and
Ψ for N such that Φ×Ψ always refines ∆.

Lemma 9.6. Let P = M ×N , and f : P → R with F (~v) =
∫
N
f~v for all ~v ∈M as above. Let A ⊆M be a

closed rectangle. Let Ψ = {N1, . . . , Ns} be a division of N . Then

sup
A
{F} 6

s∑
j=1

vol(Nj) sup
A×Nj

{f}

inf
A
{F} >

s∑
j=1

vol(Nj) inf
A×Nj

{f}

Lemma 9.7. Let Φ = {M1 . . . ,Mr} be a division of M . Let Ψ = {N1, . . . , Ns} be a division of N . Let
∆ = Φ×Ψ be the division of P , such that ∆ = {Mi ×Nj

1 6 i 6 r, 1 6 j 6 s}.
Then U(F,Φ) 6 U(f,∆) and L(F,Φ) > L(f,∆)
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10 Integration on more general domains

Lemma 10.1. Let P ⊆ P ′ ⊂ Rn be a closed rectangle, and f : P → P ′ be a bounded function such that
f(~x) = 0 for all ~x ∈ P \ P ′. Then f is integrable on P if and only if f is integrable on P ′.

Proposition 10.2. Let ∅ 6= A ⊆ Rn be bounded. Let f : A→ R be a bounded function. Pick any closed

rectangle P ⊆ Rn such that P ⊃ A, and extend f to f̃ : P → R by f̃ =

{
f(~x) ~x ∈ A
0 ~x ∈ P \A

Then by definition f is integrable on A if and only if f̃ is integrable on P , and if f is integrable on A, then
by definition

∫
A
f =

∫
P
f̃ .

Proposition 10.3. Let ∅ 6= A ⊂ Rn be a bounded set. Suppose bd(A) = cl(A) \ int(A) is a null set. Let
f : A→ R be a bounded, continuous function. Then f is integrable on A.

Definition 10.4. Let ∅ 6= A ⊂ Rn be a bounded set. Consider f : A→ R with f(~x) = 1 for all ~x ∈ A. If f
is integrable on A, then A has volume, and define vol(A) =

∫
A
f =

∫
A

1

Corollary 10.5. Let ∅ 6= A ⊂ Rn be a bounded set. If bd(A) is a null set in Rn,
then A has volume.

Definition 10.6. Let ∅ 6= A ⊆ Rn. Let f : A→ R. Suppose that f(~x) > 0
for all ~x ∈ A. Define the graph of f to be Γ = {(~x, t)

~x ∈ A, t = f(~x)}.
A subgraph of f is S = {(~x, t)

~x ∈ A, 0 6 t 6 f(~x)}.
Note that Γ ⊂ S ⊂ Rn+1.

�2
�1

0
1

2

x

�2

�1

0

1

2

y
0

1

2

3

4

z

Remark 10.7. The volume of a subset of Rn is its integral.

Proposition 10.8.∗ Let ∅ 6= A ⊂ Rn be bounded, and let f : A→ R be integrable, with f(~x) > 0 for all
~x ∈ A. Let S ⊂ Rn+1 be the subgraph of f . Then S has volume, and vol(S) =

∫
A
f .

11 Partial derivatives

Definition 11.1. Let A ⊆ Rn be a set with ~a ∈ int(A) with f : A→ R a function. Let ~v ∈ Rn. If

lim
t→0
t 6=0

[
f(~a+ t~v)− f(~a)

t

]
∈ R exists,

then we say that f has directional derivative at ~a in direction ~v and denote the limit by (∂~vf)(~a).

Remark 11.2. With respect to the same notation as above:
· If ~v = ~0, then (∂~vf)(~a) exists and is equal to zero

· If ~v 6= ~0, then there exists r > 0 such that B(~a; r) ⊆ A. Then we may define ϕ :
(
− r
‖~v‖ ,

r
‖~v‖

)
→ R by

ϕ(t) = f(~a+ t~v). Then the directional derivative may be expressed as

lim
t→0
t 6=0

[
f(~a+ t~v)− f(~a)

t

]
= lim

t→0
t 6=0

[
ϕ(t)− ϕ(0)

t− 0

]
= ϕ′(0)

Proposition 11.3. Let A ⊆ Rn with ~a ∈ int(A) with f : A→ R a function, ~v ∈ Rn with ~v 6= 0. Suppose
that (∂~vf)(~a) exists, Then for every α ∈ R, we have that (∂α~v)(~a) exists, and (∂α~vf)(~a) = α(∂~vf)(~a).

Definition 11.4. Let A ⊆ Rn with ~a ∈ int(A) and f : A→ R. For every 1 6 i 6 n, consider the vector ~ei.
If (∂~eif)(~a) exists, then we call it the i-th partial derivative of f at ~a and denote it by (∂if)(~a).
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12 C1-functions

Definition 12.1. Let ∅ 6= A ⊆ Rn be an open set, and f : A→ R be a function. Let ~v ∈ Rn. Suppose
that (∂~vf)(~a) exists for every ~a ∈ A. Then we get a new function ∂~vf : A→ R by A 3 ~a 7→ (∂~vf)(~a). The
function ∂~vf is termed the directional derivative of f in the direction of ~v.

Definition 12.2. Let ∅ 6= A ⊆ Rn be an open set. A function f : A→ R is said to be a C1-function when
it has the following properties:
· f is continuous on A
· f has partial derivatives at every ~a ∈ A.
· The new functions ∂if : A→ R for 1 6 i 6 n are all continuous on A.

The collection of all C1-functions from A to R is denoted C1(A,R).

Theorem 12.3.∗ Let ∅ 6= A ⊆ Rn be an open set. Let f ∈ C1(A,R). Then for every ~v = (v(1), v(2), . . . , v(n)),
the directional derivative ∂~vf exists, and we have ∂~vf = v(1)(∂1f) + · · ·+ v(n)(∂nf).

Theorem 12.4.∗ Let ∅ 6= A ⊆ Rn be an open set. Let ~a ∈ A and r > 0 be such that B(~a; r) ⊆ A. Fix
i ∈ {1, . . . , n} and let ~x, ~y ∈ B(~a; r) be such that they only differ in component i. Let f ∈ C1(A,R). Then

there exists ~b ∈ B(~a; r) such that f(~x)− f(~y) = (y(i) − x(i))(∂if)(~b).

Lemma 12.5. Let ∅ 6= A ⊆ Rn be an open set. Let f ∈ C1(A,R). Fix ~a ∈ A. Then

lim
~x→~a
~x 6=~a

[
f(~x)− f(~a)−

∑n
i=1(x(i) − a(i)) · (∂if)(~a)

‖~x− ~a‖

]
= 0

Definition 12.6. Let ∅ 6= A ⊆ Rn be an open set. Let f ∈ C1(A,R). For every ~a ∈ A, the gradient vector
of f at ~a is (∇f)(~a) = ((∂1f)(~a), . . . , (∂nf)(~a)).

Remark 12.7. Let ∅ 6= A ⊆ Rn be open and f ∈ C1(A,R). Consider the graph Γ = {(~a, t)
~a ∈ A, t = f(~a)},

with Γ ⊂ Rn+1. Consider ~p ∈ Γ, so ~p = (~a, f(~a)). Then Γ has a tangent hyperplane at ~a, which can be
calculated by using (∇f)(~a).

Proposition 12.8. The vector tangent to Γ in the direction ~v ∈ Rn at ~p = (~a, f(~a)) is given by (~v, (∂~vf)(~a)).

Proposition 12.9. The vector in the normal direction to Γ at ~p = (~a, f(~a)) is given by (−(∇f)(~a), 1).

Remark 12.10. Let ∅ 6= A ⊆ Rn be open. The set of functions C1(A,R) is closed under algebraic operations.
That is, for all f, g ∈ C1(A,R) and α ∈ R,

1. f + g ∈ C1(A,R) =⇒ ∂~v(f + g) = (∂~vf) + (∂~vg)
2. αf ∈ C1(A,R) =⇒ ∂~v(αf) = α(∂~vf)
3. fg ∈ C1(A,R) =⇒ ∂~v(fg) = (∂~vf)g + (∂~vg)f

Definition 12.11. Let ~a,~b ∈ Rn. Denote ~v = ~b− ~a. The line segment Co(~a,~b) from ~a to ~b is given by

{~a+ t~v
t ∈ [0, 1]} = {(1− t)~a+ t~b

t ∈ [0, 1]}. The vector (1− t)~a+ t~b for t ∈ [0, 1] is termed a convex com-

bination of ~a and ~b.

Definition 12.12. A set A ⊆ Rn is said to be convex when for every ~a,~b ∈ A we have Co(~a,~b) ⊆ A.

Proposition 12.13. [Mean Value Theorem]

Let ∅ 6= A ⊆ Rn be open and f ∈ C1(A,R). Suppose ~a,~b ∈ Rn with ~a 6= ~b. Let ~v = ~b− ~a. Then there exists

~c ∈ Co(~a,~b) with ~c 6= ~a,~c 6= ~b such that f(~b)− f(~a) = 〈~b− ~a, (∇f)(~c)〉 = (∂~vf)(~c).
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13 The chain rule

Definition 13.1. Let I ⊆ R be an open interval. A function γ : I → Rn has n components γ(1), . . . , γ(n) : I → R
and γ(t) = (γ(1)(t) . . . γ(n)(t)) ∈ Rn for all t ∈ I. If every γ(i) is continuous on I, then we say that γ is a
path in Rn. If every γ(i) is differentiable on I, then we say that γ is a differentiable path in Rn.

Definition 13.2. Let γ : I → Rn be a differentiable path in Rn. For every vector t ∈ I, the vector
γ′(t) = ((γ(1))′(t), . . . , (γ(n))′(t)) ∈ Rn is termed the velocity vector of γ at t.

Lemma 13.3. Suppose f ∈ C1(A,R). Let K ⊆ A be compact and convex. Then there exists c > 0 such
that |f(~x)− f(~y)| 6 c‖~x− ~y‖ for all ~x, ~y ∈ K. Here, c is termed the Lipschitz constant.

Theorem 13.4.∗ [Chain rule 1]
Let ∅ 6= A ⊆ Rn be open with f ∈ C1(A,R). Suppose γ : I → Rn is a differentiable path such that γ(t) ∈ A
for all t ∈ I. Consider the composed function ϕ = f ◦ γ, with ϕ : I → R given by ϕ(t) = f(γ(t)) for all t ∈ I.
Then ϕ is differentiable and we have ϕ′(t) =

∑n
i=1(∂if)(γ(t))(γ(i))′(t) for all t ∈ I.

The chain rule may also be given by (f ◦ γ)′(t) = 〈(∇f)(γ(t)), γ′(t)〉.

14 Partial derivatives of higher order

Definition 14.1. Let ∅ 6= A ⊆ Rn be open and f ∈ C1(A,R). Consider the partial derivatives

∂1f : A→ R, ∂2f : A→ R, . . . , ∂nf : A→ R

If ∂if ∈ C1(A,R) for every 1 6 i 6 n, then we say that f ∈ C2(A,R).

Definition 14.2. More generally, for every p ∈ N, define Cp(A,R) = {f : A→ R
f has continuous partial

derivatives up to order p}

Definition 14.3. Functions f ∈ C∞(A,R) are termed smooth for

C∞(A,R) =

∞⋂
p=1

Cp(A,R) = {f : A→ R
f has continuous partial derivatives for all orders }

Lemma 14.4. Let ∅ 6= A ⊆ Rn be open with ~a ∈ A and f ∈ C2(A,R).
· Fix two indices i 6= j ∈ {1, . . . , n}.
· Fix r > 0 such that B(~a; r) ⊆ A.

· Let ϕ
(
−r√
2
, r√

2

)
→ R be defined by ϕ(t) = f(~a+ t~ei + t~ej)− f(~a+ t~ei)− f(~a+ t~ej) + f(~a) for t ∈

(
−r√
2
, r√

2

)
.

· Take a sequence (tn)
∞
n=1 in

(
0, r√

2

)
such that tn−−−→n→∞ 0. Then

1. lim
n→∞

[
ϕ(tn)

t2n

]
= (∂i(∂jf))(~a)

2. lim
n→∞

[
ϕ(tn)

t2n

]
= (∂j(∂if))(~a)

Theorem 14.5. Let ∅ 6= A ⊆ Rn be open with f ∈ C2(A,R). Then for every 1 6 i, j 6 n, ∂i(∂jf) = ∂j(∂if)

Definition 14.6. Let f ∈ C2(A,R) and ~a ∈ A. The below matrix is termed the Hessian matrix of f at ~a:

(Hf)(~a) =


(∂21f)(~a) (∂1∂2f)(~a) · · · (∂1∂nf)(~a)

(∂2∂1f)(~a) (∂22f)(~a) · · · (∂2∂nf)(~a)
...

...
. . .

...
(∂n∂1f)(~a) (∂n∂2f)(~a) · · · (∂2nf)(~a)
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Remark 14.7. Note that (Hf)(~a) ∈Mn×n(R), and the (i, j) entry of (Hf)(~a) is (∂i∂jf)(~a). Also, by the
above theorem, the matrix is symmetric.

Remark 14.8. Let H = Ht ∈Mn×n(R). Then all eigenvalues λ1, . . . , λn ∈ R. If λ1, . . . , λn > 0, then H is
positive definite. When it is positive definite, then the corresponding linear transformation TH : Rn → Rn

satisfies 〈TH(~v), ~v〉 > 0 for all ~v ∈ Rn with ~v 6= ~0.

Remark 14.9. Let ϕ : (a, b)→ R be twice differentiable. Let t ∈ (a, b) such that ϕ′(t) = 0 and ϕ′′(t) > 0.
Then t is a local minimum.

Definition 14.10. Let ∅ 6= A ⊆ Rn be open and f ∈ C1(A,R) with ~a ∈ A. If (∇f)(~a) = ~0, then ~a is a
stationary point for f .

Remark 14.11. Let f ∈ C1(A,R). If ~a ∈ A is a local extremum for f , then ~a is a stationary point.

Lemma 14.12. Let f ∈ C2(A,R), ~a ∈ A such that (Hf)(~a) is positive definite. Then there exists r > 0
such that B(~a; r) ⊆ A and such that (Hf)(~x) is positive definite for every ~x ∈ B(~a; r).

Lemma 14.13. Let f ∈ C2(A,R), ~a ∈ A a stationary point and r > 0 such that B(~a; r) ⊆ A. Sup-

pose that ~b ∈ B(~a; r), and denote ~v = ~b− ~a. Then there exists to ∈ (0, 1) and ~c ∈ Co(~a,~b) such that

f(~b)− f(~a) = to〈T(Hf)(~c)(~v), ~v〉.

Theorem 14.14.∗ Let ∅ 6= A ⊆ Rn be open and f ∈ C2(A,R) with ~a ∈ A a stationary point for f . If the
Hessian matrix (Hf)(~a) is positive definite, then ~a is a local minimum for f .

Remark 14.15. There are analogies for the above theorem and lemmas for ~a a local maximum. Replace f
with −f and have (Hf)(~a) be negative definite.

15 Functions in C1(A,Rm)

Definition 15.1. Let ∅ 6= A ⊆ Rn be open, and f : A→ Rm a function for m > 1. Write f = (f (1), . . . , f (m))
with f (i) : A→ R for 1 6 i 6 m. If each f (i) is in C1(A,R), then we say that f ∈ C1(A,Rm).

Definition 15.2. Let f ∈ C1(A,Rm) and ~a ∈ A. The below matrix is the Jacobian matrix of f at ~a:

(Jf)(~a) =


(∂1f

(1))(~a) (∂2f
(1))(~a) · · · (∂nf

(1))(~a)
(∂1f

(2))(~a) (∂2f
(2))(~a) · · · (∂nf

(2))(~a)
...

...
. . .

...
(∂1f

(m))(~a) (∂2f
(m))(~a) · · · (∂nf

(m))(~a)

 =


(∇f (1))(~a)
(∇f (2))(~a)

...
(∇f (m))(~a)


Proposition 15.3.∗ [Chain rule 2]
Let A ⊆ Rn, B ⊆ Rm be open nonempty sets. Let f ∈ C1(A,Rm) such that f(~x) ∈ B for all ~x ∈ A.
Suppose also g ∈ C1(B,Rp). Consider h = g ◦ f : A→ Rp defined by h(~x) = g(f(~x)) for ~x ∈ A. Then
(Jh)(~x) = (Jg)(f(~x)) · (Jf)(~x) for all ~x ∈ A.

Remark 15.4. The above may be restated as (∂jh
(k))(~x) =

m∑
i=1

(∂ig
(k))(f(~x)) · (∂jf (i))(~x)

Remark 15.5. With respect to the above defined functions, we have h(k)(~x) = g(k)(f (1)(~x), . . . , f (m)(~x))

Proposition 15.6. Let ∅ 6= A ⊆ Rn be open and f ∈ C1(A,Rm). For ~a ∈ A and ~x ≈ ~a, we have

f(~x) = f(~a) + T(Jf)(~a)(~x− ~a) +D(~x)

where the error term D is given by D(~x) = f(~x)− f(~a)− T(Jf)(~a)(~x− ~a) and T(Jf)(~a) is the matrix
transformation associated with the Jacobian of f at ~a.
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16 Inverse function theorem

Theorem 16.1. Let ∅ 6= A ⊆ Rn be open and f ∈ C1(A,Rn). Let ~a ∈ A be such that (Jf)(~a) is invertible.

Let f(~a) = ~b ∈ Rn. Then there exist open sets U, V ⊆ Rn such that

1. ~a ∈ U,~b ∈ V ⊆ f(A)
2. f maps bijectively U onto V , that is, f(U) = V and f is one-to-one on U

3. The function g : V → U which inverts f is a C1-function with (Jg)(~b) = ((Jf)(~a))−1

Lemma 16.2.∗LetM = [αij ] ∈Mn×n(R) be invertible. Then there exists λ > 0 such that ifN = [βij ] ∈Mn×n(R)
with |αij − βij | < λ for all i, j, then N is invertible as well.

Proposition 16.3.∗ Let A ⊆ Rn be open and ~a ∈ A, with f ∈ C1(A,Rn) such that (Jf)(~a) is invertible.
Then there exists r > 0 such that B(~a; r) ⊆ A and f is one-to-one on B(~a; r).

17 Implicit function theorem

Definition 17.1. Let A ⊆ Rn be open with ~a ∈ A and f ∈ C1(A,Rm) with m 6 n. Choose m principal
directions in Rn, that is, choose 1 6 j1 6 j2 6 · · · 6 jm 6 n. The partial Jacobian matrix of f at ~a with
respect to directions j1, . . . , jm is given by (∂j1f

(1)(~a) · · · (∂jmf
(1))(~a)

...
. . .

...
(∂j1f

(m))(~a) · · · (∂jmf
(m))(~a)

 ∈Mm×m(R)

If this matrix is invertible, then ~a is regular wrt j1, . . . , jm. Otherwise, ~a is singular.

Definition 17.2. Let d, n ∈ N with n > d, and ∅ 6= V ⊆ Rd. Let ϕ : V → Rn be one-to-one and ϕ be a C1-
function such that (Jϕ)(~z) ∈Mn×d(R) has rank d for every ~z ∈ V . Then the set S = ϕ(V ) ⊆ Rn is termed
a parametrized C1 manifold of dimension d.

Theorem 17.3. [Implicit function theorem]

Let A ⊆ Rn be nonempty with ~a ∈ A and f ∈ C1(A,Rm) for m < n and n−m = d. Denote f(~a) = ~b ∈ Rm

and consider the level set L = {~x ∈ A
f(~x) = ~b}. Suppose that ~a is a regular point for f with respect

to directions 1, 2, . . . ,m. Then there exists r > 0 such that L ∩B(~a; r) is a parametrized C1 manifold of
dimension d with parametrization obtained by solving for the first m components.

More precisely, while ~a = (~p, ~q) for ~p ∈ Rm, ~q ∈ Rd, then there exists an open set V ⊆ Rd such that ~q ∈ V
and there exists h ∈ C1(V,Rm) such that
· h(~q) = ~p
· {(h(~z), ~z)

~z ∈ V } = L ∩B(~a; r)
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File II

Selected proofs
Theorem 1.1. [Cauchy-Bunyakovsky-Schwarz Inequality]
| < ~x, ~y > | 6 ‖~x‖ · ‖~y‖

Proof: Define f : R→ R by f(t) = 〈~x− t~y, ~x− t~y〉 for all t ∈ R.
= 〈~x, ~x〉 − 〈~x, t~y〉 − 〈t~y, ~x〉+ 〈t~y, t~y〉
= ‖~x‖2 − 2t〈~x, ~y〉+ t2‖~y‖2

Hence f is a quadratic function of the form f = at2 + bt+ c, with a = ‖~y‖2, b = −2〈~x, ~y〉, c = ‖~x‖2.
But observe that f(t) = ‖~x− t~y‖2 > 0
Hence the discriminant ∆ = b2 − 4ac 6 0

= (−2〈~x, ~y〉)2 − 4‖~x‖2‖~y‖2
= 4(〈~x, ~y〉2 − ‖~x‖2‖~y‖2)

Now since ∆ 6 0, 〈~x, ~y〉2 6 ‖~x‖2‖~y‖2
|〈~x, ~y〉| 6 ‖~x‖‖~y‖

Proposition 2.7. Let (~xk)
∞
k=1 ∈ Rn and ~a ∈ Rn. Then (~xk−−−→k→∞ ~a in Rn) ⇐⇒


~x
(1)
k
−−−→
k→∞ ~a(1)

... in R
~x
(n)
k
−−−→
k→∞ ~a(n)


Proof: Suppose that ~xk−−−→k→∞ ~a in Rn.

Fix i.
Observe that for every k > 1, |x(i) − a(i)| = |(~xk − ~a)(i)| 6 ‖~xk − ~a‖−−−→k→∞ 0

Hence x
(i)
k
−−−→
k→∞ a(i).

——————
Now suppose that x

(i)
k
−−−→
k→∞ a(i) for every 1 6 i 6 n.

Hence |x(i) − a(i)|−−−→
k→∞ 0 for every 1 6 i 6 n.

So |x(1) − a(1)|+ |x(2) − a(2)|+ · · ·+ |x(n) − a(n)|−−−→
k→∞ 0.

Hence ~xk−−−→k→∞ ~a.

Proposition 3.6. Let ∅ 6= C ∈ Rn. Then C is closed ⇐⇒ C has the cannot escape property.

Proof: Since C is closed, Rn \ C is open.

Take (~xk)∞k=1 ∈ C, with ~xk−−−→k→∞
~b ∈ Rn.

Assume by contradiction that ~b /∈ C and ~b ∈ Rn \ C.

Since Rn \ C is open, we can find r > 0 such that B(~b; r) ⊆ Rn \ C.

But then since ~xk−−−→k→∞
~b, we can find ko ∈ N such that ~xk ∈ B(~b; r) for all k > ko.

In particular, ~xko ∈ B(~b; r) ⊆ Rn \ C.
Contradiction.

——————
Now suppose that C has the cannot escape property.
Assume by contradiction that there does not exist any such r such that for ~b ∈ Rn \ C we have

B(~b; r) ⊆ Rn \ C.

So in particular, B(~b; r) 6⊆ Rn \ C =⇒ there exists ~x1 ∈ B(~b; 1) such that ~x1 ∈ C.

In general for every k > 1, we have B(~b; 1
k ) ⊆ Rn \ C, hence there exists ~xk ∈ B(~b; 1

k ) such that ~xk ∈ C.
In this way we get a sequence (~xk)

∞
k=1 in C.

Observe that for every k > 1, we have ~xk ∈ B(~b; 1
k ) =⇒ ‖~xk −~b‖ < 1

k .

So we have ‖~xk −~b‖−−−→k→∞ 0, and we obtain that ~xk−−−→k→∞
~b.

But ~xk /∈ C and ~b ∈ C, so we have a contradiction.
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Proposition 4.3. For ∅ 6= A ∈ Rn, a function f : A→ Rn, and ~a ∈ A, we have that(
f respects sequences in
A which converge to ~a

)
⇐⇒

(
f is continuous

at ~a

)
.

Proof: Suppose f respects sequences in A which converge to A.
Fix ε > 0.
Suppose there exists no such δ > 0 such that ‖~x− ~a‖ < δ and ‖f(~x)− f(~a)‖ < ε.
In the process of trying different δ, we have a sequence (~xk)

∞
k=1 ∈ A with ‖~xk − ~a‖ < 1

k for all k > 1 and
‖f(~x) = f(~a)‖ > ε for all k > 1.

Since ‖~xk − ~a‖ < 1
k , we have ‖~xk − ~a‖−−−→k→∞ 0.

Also we do not have that ‖f(~x) = f(~a)‖−−−→
k→∞ 0.

So f does not respect (~xk)
∞
k=1, which is a contradiction.

——————
Suppose that f is continuous at ~a, using the ε− δ definition.
Let (~ak)

∞
k=1 be some sequence of points converging to ~a.

Let ε > 0.
Then we can find δ > 0 such that whenever ‖~a− ~x‖ < δ for ~x ∈ A, we have ‖f(~x)− f(~a)‖ < ε.
Since (~ak)

∞
k=1 converges to ~a, we can find ko > 0 such that ‖~a− ~ak‖ < δ whenever k > ko.

Let k > ko, and we have that ‖~a− ~ak‖ < δ, so ‖f(~a)− f(~ak)‖ < ε.
Hence f(~ak) converges to f(~a).

Theorem 5.3. Suppose ∅ 6= A ∈ Rn is compact. If f : A→ Rn is continuous, then f is uniformly continuous
on A.

Proof: Suppose that no δ exists such that for any ε > 0, ‖~x− ~a‖ < δ =⇒ ‖f(~x)− f(~a)‖ < ε for ~a, ~x ∈ A.
Let δ = 1

k for k ∈ N.
Then there exist ~xk,~ak ∈ A such that ‖~xk − ~ak‖ < 1

k =⇒ ‖f(~xk)− f(~ak)‖ > ε.
This generates two sequences, (~xk)

∞
k=1 and (~ak)

∞
k=1 in A.

Since A is compact, we can find 1 6 k(1) 6 k(2) 6 · · · 6 k(p) 6 · · · such that
(
~xk(p)

)∞
p=1

converges to

some ~xo ∈ A.
But then also we have that (~ak)

∞
k=1 converges to the same limit:

‖~ak(p) − ~xo‖ 6 ‖~ak(p) − ~xk(p)‖+ ‖~xk(p) − ~xo‖

<
1

k(p)
+ ‖~xk(p) − ~xo‖

= 0 as p→∞

Since f is continuous at ~xo ∈ A, it respects convergence of ~xk(p)−−−→p→∞ ~xo and ~ak(p)−−−→p→∞ ~xo.
Therefore ‖f(~xk(p))− f(~ak(p))‖−−−→p→∞ 0.
Contradiction, so such a δ exists.

Proposition 5.4. Suppose ∅ 6= A ∈ Rn is compact. Let f : A→ Rn be continuous on A. Then the image
set B = f(A) ⊆ Rn, or B = {~y ∈ Rn

 there exists ~x ∈ A such that f(~x) = ~y} is a compact subset of Rn.

Proof: Fix ~b ∈ cl(B).

From definition of cl(B), there exists (~yk)
∞
k=1 ∈ B with ~yk−−−→k→∞

~b.
For every k > 1, we have ~yk ∈ B = f(A), hence there exists ~xk ∈ A such that f(~xk) = ~yk.
Since A is compact and (~xk)

∞
k=1 ∈ A, there exists a subsequence

(
~xk(p)

)∞
p=1

of the original sequence with

~xk(p)−−−→p→∞ ~xo ∈ A for some ~xo.
Since f is continuous, f(~xk(p))−−−→p→∞ f(~xo).

Therefore ~yk(p)−−−→p→∞ f(~xo) while ~yk−−−→k→∞
~b, which implies that ~yk(p)−−−→p→∞

~b.
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Since limits are unique, f(~xo) = ~b.
Hence B is closed.
Suppose B is not bounded.
Then there exists a sequence (~yk)

∞
k=1 ∈ B such that ‖~yk‖ > k for all k > 1.

For every k > 1, pick ~xk ∈ A such that f(~xk) = ~yk.
Then select a convergent subsequence

(
~yk(p)

)∞
p=1

for (~yk)
∞
k=1.

Then we reach a contradiction by the same process as above.

Theorem 5.5. [Extreme Value Theorem]
Suppose ∅ 6= A ∈ Rn is compact. Let f : A→ Rn be continuous. Then f has a minimum and maximum on
A. That is, there exist ~γ1, ~γ2 ∈ A such that f(~γ1) 6 f(~x) 6 f(~γ2) for all ~x ∈ A.

Proof: Denote f(A) = K ⊆ R.
From a previous proposition, K is compact.
Denote inf(A) = α, sup(A) = β.
Then α, β ∈ A.
Then there exist ~γ1, ~γ2 ∈ A such that f(~γ1) = α, f(~γ2) = β.
Then for every ~x ∈ A, we have f(~x) ∈ K =⇒ α 6 f(~x) 6 β, or f(~γ1) 6 f(~x) 6 f(~γ2).

Lemma 6.11. Suppose P is a closed rectangle on Rn and f : P → R is bounded. Let Γ,∆ be divisions of
P such that Γ ≺ ∆. Then U(f,Γ) 6 U(f,∆) and L(f,Γ) > L(f,∆).

Proof: This proof will show inequality for U ; the procedure for L is analogous.
Write ∆ = {P1, P2, . . . , Pk} and Γ = {Q11 , . . . , Q1m1

, Q21 , . . . , Q2m2
, . . . . . . , Qk1 , . . . , Qkmk

}

Then we have Pi =

mi⋃
j=1

Qij for all i ∈ [1, k].

Then U(f,Γ) =

k∑
j=1

vol(Qij) sup
Qij

{f}

Observe that for every 1 6 i 6 k and 1 6 j 6 mk, we have sup{f(~x)
~x ∈ Qij} 6 sup{f(~x)

~x ∈ Pi} = supPi
{f}

Then we have

U(f,Γ) 6
k∑
i=1

mi∑
j=1

vol(Qij) sup
Pi

{f}


=

k∑
i=1

mi∑
j=1

vol(Qij)

 sup
Pi

{f}

=

k∑
i=1

vol(Pi) sup
Pi

{f}

= U(f,∆)

Proposition 6.15. Let P be a closed rectangle in Rn and F : P → R be bounded. Then(
f is integrable

)
⇐⇒

(
for every ε > 0, there exists a division ∆ of P

such that U(f,∆)− L(f,∆) < ε

)
Proof: We know that sup{L(f,∆)

∆ is a partition of P} =
∫
P
f =

∫
P
f = inf{U(f,∆)

∆ is a partition of P}.
Let ε > 0.
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Then we can find a division ∆1 of P such that L(f∆1) >
∫
P
f − ε

2 by the definition of sup.

Similarly, we can find a division ∆2 of P such that U(f∆2) <
∫
P
f + ε

2 .
From this we have that for ∆ ≺ ∆1,∆2, U(f,∆) 6 U(f,∆2) < L(f,∆1) + ε 6 L(f,∆) + ε.

——————
Now, for every k ∈ N, apply the hypothesis with ε = 1

k .
This gives divisions ∆k of P such that U(f,∆k) < L(f,∆k) + 1

k .

But then
∫
P
f 6 U(f,∆k) < L(f,∆k) + 1

k 6
∫
P
f + 1

k .

So
∫
P
f 6

∫
P
f + 1

k for all k ∈ N.

Let k →∞, so that
∫
P
f 6

∫
P
f becomes

∫
P
f =

∫
P
f .

Hence f is integrable.

Proposition 6.16. Let P be a closed rectangle in Rn and f : P → R be bounded. Let ∆1,∆2, . . . ,∆k be
a sequence of divisions of P such that limk→∞[U(f,∆k)− L(f,∆k)] = 0, and f be integrable, then

lim
k→∞

[U(f,∆k)] =

∫
P

f = lim
k→∞

[L(f,∆k)]

Proof: Let ε > 0.
We know that there exists ko such that U(f,∆k)− L(f,∆k) < ε for all k > ko.

So then for k > ko,
∫
P
f 6 U(f,∆k) < L(f,∆k) + ε 6

∫
P
f + ε =

∫
P
f + ε

This implies that |U(f,∆k)−
∫
P
f | < ε for all k > ko.

To prove that lower sums converge to the same integral, write

L(f,∆k) = U(f,∆k)− (U(f,∆k)− L(f,∆k))−−−→
k→∞

∫
P
f − 0 =

∫
P
f

Proposition 7.2. Let P be a closed rectangle in Rn and f, g : P → R be bounded and integrable on P .
Then f + g is integrable also with

∫
P

(f + g) =
∫
P
f +

∫
P
g.

Proof: Find sequences of divisions of P , (∆′k)
∞
k=1 such that U(f,∆′k)− L(f,∆′k)−−−→

k→∞ 0 and (∆′′k)
∞
k=1 such

that U(g,∆′′k)− L(g,∆′′k)−−−→
k→∞ 0.

For every k > 1, let ∆k be a common refinement for ∆′k and ∆′′k .
Then 0 6 U(f,∆k)− L(f,∆k) 6 U(f,∆′k)− L(f,∆′k)−−−→

k→∞ 0
Hence U(f,∆k)− L(f,∆k)−−−→

k→∞ 0 and similarly U(g,∆k)− L(g,∆k)−−−→
k→∞ 0.

Also for every k > 1, we have

U(f + g,∆k)− L(f + g,∆k) 6 (U(f,∆k) + U(g,∆k))− (L(f,∆k) + L(g,∆k))

= (U(f,∆k)− L(f,∆k)) + (U(g,∆k)− L(g,∆k))

→ 0 as k →∞

Then apply a previous proposition to get that f + g is integrable.

Moreover, the above gives us that

∫
P

f + g 6 U(f + g,∆k) 6 U(f,∆k) + U(g,∆k) for all k > 1.

Let k →∞, and we have that

∫
P

f + g 6 lim
k→∞

[U(f,∆k) + U(g,∆k)] =

∫
P

f +

∫
P

g

In a similar fashion with the lower sums we get that

∫
P

f + g >
∫
P

f +

∫
P

g.

Therefore

∫
P

f + g =

∫
P

f +

∫
P

g.
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Theorem 8.2. Let P ⊆ Rn and f : P → R be bounded. Suppose we find subsets B,G ⊆ P such that
B ∪G = P and such that

1. f is continuous at every ~x ∈ G
2. B is a null set

Then f is integrable over P .

Proof: Let ε > 0.
We want to find a division ∆ of P such that U(f,∆)− L(f,∆) < ε.
Fix some bounds α, β for values of f . That is, have α 6 f(~x) 6 β for all ~x ∈ P .
Consider εo = ε

(β−α)+vol(P )+1

Now, B is a null set, that is, we can find closed rectangles Q1, . . . , Qm in Rn with Q1, . . . , Qm ⊆ P and
Q1 ∪ · · · ∪Qm ⊃ P with

∑m
i=1Qi < εo.

By enlarging Q1, . . . , Qm as necessary, assume that int(Q1) ∪ · · · ∪ int(Qm) ⊃ B
Let us denote int(Q1) ∪ · · · ∪ int(Qm) = D. Then D is an open set.
Let us denote P \D = K. Since K = P ∩ (Rn \D) it is a closed set.
K is also bounded, so K is compact.
Observe that K ⊆ G, since D ⊃ B by 1.
Since K ⊆ G, f is continuous at every ~x ∈ K.
Hence f is uniformly continuous on K.
Then there exists δ > 0 such that for ~x, ~y ∈ K with ‖~x− ~y‖ < δ, it follows that |f(~x)− f(~y)| < ε.
So we can make a division ∆ of P such that every rectangle of ∆ is either counted in Q1 ∪ · · · ∪Qm or

contained in K.
Then write ∆ = { P ′1, . . . , P ′q︸ ︷︷ ︸

in Q1∪···∪Qm

, P ′′1 , . . . , P
′′
r︸ ︷︷ ︸

in K

}

By further refinement, we may arrange the divisions such that diam(P ′′j ) < δ for all j.
Note that for every j, we have ~x, ~y ∈ P ′′j which implies that ‖~x− ~y‖ < δ.
This implies that |f(~x)− f(~y)| < εo.
This implies that sup

P ′′
j

{f} − inf
P ′′

j

{f} 6 εo for each j

Then we have

U(f,∆)− L(f,∆) =

 q∑
i=1

vol(P ′i ) sup
P ′

i

{f}+

r∑
j=1

vol(P ′′j ) sup
P ′′

j

{f}

−
 q∑
i=1

vol(P ′i ) inf
P ′

i

{f}+

r∑
j=1

vol(P ′′j ) inf
P ′′

j

{f}


=

q∑
i=1

vol(P ′i )

(
sup
P ′

i

{f} − inf
P ′

i

{f}

)
+

r∑
j=1

vol(P ′′j )

(
sup
P ′′

j

{f} − inf
P ′′

j

{f}

)

6
q∑
i=1

vol(P ′i ) (β − α) +

r∑
j=1

vol(P ′′j )εo

= (β − α)

q∑
i=1

vol(P ′i ) + εo

r∑
j=1

vol(P ′′j )

6 (β − α)εo + εovol(P )

6
ε(β − α+ vol(P ))

(β − α) + vol(P ) + 1

< ε

Corollary 8.4. Let A ⊆ Rn be compact such that bd(A) is a null set. Let P be a closed rectangle with

A ⊆ P , and define f : P → R by f(~x) =

{
1 ~x ∈ A
0 else

Then f is integrable over P .
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Proof: Take B = bd(A), which is a null set by the hypothesis, and G = P \ bd(A).
Note that bd(A) = cl(A) \ int(A).
Therefore G = int(A) ∪ (P \A)
For every ~a ∈ int(A) we can find r > 0 such that f(~x) = 1 for all ~x ∈ B(~a; r)
This implies that f is continuous at ~a.
For every ~v ∈ P \A, we can find r > 0 such that f(~x) = 0 for all ~x ∈ B(~v; r) ∩ P
This implies that f is continuous on G.
Hence f is integrable on G, and by the above theorem, over P .

Theorem 9.3. [Theorem of Stolz-Fubini]
Let P = M ×N as above, and let f : P → R as above. Suppose that

i. f is integrable on P
ii. For every ~v ∈M , the function f~v : N → R is integrable over N .

Define F : M → R by putting F (~v) =
∫
N
f~v for all ~v ∈M . Then F is integrable on M , and∫

M

F =

∫
P

f

Proof: Given f is integrable, there exists a sequence (∆k)∞k=1 of divisions of P with U(f,∆k)− L(f,∆k)−−−→
k→∞ 0.

Refine every ∆k to a division ∆′k = Φk ×Ψk where Φk is a division of M and Ψk is a division of N .
For every k > 1, we have U(F,Φk) 6 U(f,∆′k) 6 U(f,∆k) and L(F,Φk) > L(f,∆′k) > L(f,∆k).
Hence we have U(F,Φk)− L(F,Φk) 6 U(f,∆k)− L(f,∆k)−−−→

k→∞ 0.
Therefore F is integrable.

From a previous proposition, we have

∫
M

F = lim
k→∞

[U(F,Φk)]

And we also have U(f,∆k) > U(F,Φk) > L(F,Φk) > L(f,∆k) so as k →∞,
∫
P
f >

∫
M
F >

∫
P
f

Therefore
∫
M
F =

∫
P
f .

Proposition 10.8. Let ∅ 6= P ⊂ Rn be bounded, and let f : P → R be integrable, with f(~x) > 0 for all
~x ∈ P . Let S ⊂ Rn+1 be the subgraph of f . Then S has volume, and vol(S) =

∫
P
f .

Proof: Pick a sufficiently large upper bound for for f , c = sup
P
{f}+ 2.

Then clearly S ⊂ P × [0, c], which is a rectangle in Rn+1.

Define χ : P × [0, c]→ R by χ((~x, t)) =

{
1 if (~x, t) ∈ S
0 else

It will be shown that χ is integrable with

∫
P×[0,c]

χ =

∫
P

f .

Since f is integrable, there exists a sequence (∆k)∞k=1 of divisions of P such that U(f,∆k)− L(f,∆k)−−−→
k→∞ ∞.

Moreover, we have that lim
k→∞

[U(f,∆k)] = lim
k→∞

[L(f,∆k)].

Suppose that ∆k = {P1, P2, . . . , Pr}.
For every 1 6 i 6 r, denote αi = inf

Pi

f and βi = sup
Pi

f .

Construct ∆̃k = {Pi × [0, αi]
1 6 i 6 r} ∪ {Pi × [αi, βi + 1

k ]
1 6 i 6 r} ∪ {Pi × [βi + 1

k , c]
1 6 i 6 r}.

Note that

sup
P×[0,αi]

χ = inf
P×[0,αi]

χ = 1

sup
P×[βi+

1
k ,c]

χ = inf
P×[βi+

1
k ,c]

χ = 0
and

sup
Pi×[αi,βi+

1
k ]

χ = 1

inf
Pi×[αi,βi+

1
k ]
χ = 0

hence we have
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U(χ, ∆̃k) =

r∑
i=1

vol(Pi × [0, αi]) · 1 +

r∑
i=1

vol(Pi × [αi, βi + 1/k]) · 1 +

r∑
i=1

vol(Pi × [βi + 1/k, c]) · 0

=

r∑
i=1

vol(Pi)αi · 1 +

r∑
i=1

vol(Pi)(βi + 1/k − αi) · 1

=

r∑
i=1

vol(Pi)(βi + 1/k)

=

r∑
i=1

vol(Pi)βi +

r∑
i=1

vol(Pi)1/k

= U(f,∆k) + vol(P )/k

Similarly, we find L(χ, ∆̃k) = L(f,∆k). Then we have

U(χ, ∆̃k)− L(χ, ∆̃k) = U(f,∆k)− L(f,∆k) + vol(P ) 1
k
−−−→
k→∞ 0

Hence χ is integrable. Moreover,∫
P×[0,c]

χ = lim
k→∞

[
L(χ, ∆̃k)

]
= lim
k→∞

[
U(χ, ∆̃k)

]
= lim
k→∞

[L(f,∆k)] = lim
k→∞

[U(f,∆k)] =

∫
P

f

Theorem 12.3. Let ∅ 6= A ⊆ Rn be an open set. Let f ∈ C1(A,R). Then for every ~v = (v(1), v(2), . . . , v(n)) ∈ Rn,
the directional derivative ∂~vf exists, and we have ∂~vf = v(1)(∂1f) + · · ·+ v(n)(∂nf).

Proof: Fix ~a ∈ A and let
∑n
i=1 v

(i)(∂if)(~a) = L.
It will be shown that (∂~vf)(~a) for all ~a ∈ A exists and is equal to L.
Given ε > 0, use the lemma with ε

1+‖~v‖ to get δo > 0 such that B(~a; δo) ⊆ A.

So then for every ~x 6= ~a ∈ B(~a; δo), we have

f(~x)− f(~a)−
∑n
i=1(x(i) − a(i)) · (∂if)(~a)

‖~x− ~a‖

 < ε

1 + ‖~v‖
Let δ = δo

1+‖~v‖ .

It is claimed that for every t 6= 0 such that |t| < δ, we have
 f(~a+t~v)−f(~a)t − L

 < ε, as follows.

Let t 6= 0 be such that |t| < δ.
Let ~x = ~a+ t~v.
Then ‖~x− ~a‖ = ‖t~v‖ < δ‖~v‖ < δo
Also x(i) − a(i) = (a(i) + tv(i))− a(i) = tv(i) for 1 6 i 6 n.

Hence

n∑
i=1

(x(i) − a(i))(∂if)(~a) =

n∑
i=1

tv(i)(∂if)(~a) = tL.

Finally we havef(~x)− f(~a)−
∑n
i=1(x(i) − a(i)) · (∂if)(~a)

‖~x− ~a‖

 =

f(~a+ t~v)− f(~a)− tL
|t|‖~v‖

 < ε

1 + ‖~v‖f(~a+ t~v)− f(~a)− tL
|t|

 < ε‖~v‖
1 + ‖~v‖f(~a+ t~v)− f(~a)

t
− L

 < ε
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Theorem 12.4. Let ∅ 6= A ⊆ Rn be an open set. Let ~a ∈ A and r > 0 be such that B(~a; r) ⊆ A. Fix
i ∈ {1, . . . , n} and let ~x, ~y ∈ B(~a; r) be such that they only differ in component i. Let f ∈ C1(A,R). Then

there exists ~b ∈ B(~a; r) such that f(~x)− f(~y) = (y(i) − x(i))(∂if)(~b).

Proof: The case x(i) = y(i) is trivial, so assume x(i) < y(i).
Note that (x(1), . . . , x(i−1), s, x(i+1), . . . , x(n)) ∈ B(~a; r) for all s ∈ [x(i), y(i)].
Define ϕ : [x(i), y(i)]→ R by ϕ(s) = (x(1), . . . , x(i−1), s, x(i+1), . . . , x(n)) for all s ∈ [x(i), y(i)].
Then ϕ is continuous on [x(i), y(i)].

Then ϕ is differentiable on (x(i), y(i)), and for every s ∈ (x(i), y(i)), we have ϕ′(s) = (∂if)(~b) for ~b = ϕ(s).
Apply the mean value theorem to ϕ, so there exists s ∈ (x(i), y(i)) such that

ϕ(y(i))− ϕ(x(i))

y(i) − x(i)
= ϕ′(s)

f(~y)− f(~y)

y(i) − x(i)
= (∂if)(~b)

f(~y)− f(~y) = (y(i) − x(i))(∂if)(~b)

Theorem 13.4. [Chain rule 1]
Let ∅ 6= A ⊆ Rn be open with f ∈ C1(A,R). Suppose γ : I → Rn is a differentiable path such that γ(t) ∈ A
for all t ∈ I. Consider the composed function ϕ = f ◦ γ, with ϕ : I → R given by ϕ(t) = f(γ(t)) for all t ∈ I.
Then ϕ is differentiable and we have ϕ′(t) =

∑n
i=1(∂if)(γ(t))(γ(i))′(t) for all t ∈ I.

Proof: Fix to ∈ I.
Denote ~a := γ(to) = (γ(1)to, . . . , γ

(n)(to))
~v := γ′(to) = ((γ(1))′to, . . . , (γ

(n))′(to))

It will be proven that lim
h→0
h 6=0

[
ϕ(to + h)− ϕ(to)

h

]
= ϕ′(to) = (∂~vf)(~a).

Choose r > 0 such that B(~a; r) ⊆ A
Fix c > 0 such that if ~x, ~y ∈ B(~a; r2 ), then |f(~x)− f(~y)| 6 c‖~x− ~y‖.
Fix ` > 0 such that (to − `, to + `) ⊆ I and such that |t− to| < ` =⇒ ‖γ(t)− γ(to)‖ < r

2 .
Use h 6= 0 such that |h| < ` and |h| < r

2(1−‖~v‖) =⇒ ‖(~a+ h~v)− ~a‖ < r
2 .

Denote `o = max{`, r
2(1−‖~v‖)}.

For 0 < |h| 6 `o write

ϕ(to + h)− ϕ(to)

h
=
f(γ(to + h))− f(γ(to))

h

=
f(γ(to + h))− f(γ(to) + h~v)

h
+
f(γ(to) + h~v)− f(γ(to))

h

=
f(γ(to + h))− f(~a+ h~v)

h
+
f(~a+ h~v)− f(~a)

h

Now the limit of the first term as h→ 0 will go to zero by the following:f(γ(to + h))− f(~a+ h~v)

h

 6 c

wwwwγ(to + h)− ~a− h~v
h

wwww
= c

wwwwγ(to + h)− γ(to)

h
− γ′(to)

wwww
6 c

n∑
i=1

γ(i)(to + h)− γ(i)(to)
h

− (γ(i))′(to)


Taking limits of the above, since the last line is a sum of n zeros, we have
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lim
h→0

[f(γ(to + h))− f(~a+ h~v)

h

] = 0

Clearly, we also have lim
h→0

[
f(~a+ h~v)− f(~a)

h

]
= (∂~vf)(~a), so the theorem is proved.

Theorem 14.15. Let ∅ 6= A ⊆ Rn be open and f ∈ C2(A,R) with ~a ∈ A a stationary point for f . If the
Hessian matrix (Hf)(~a) is positive definite, then ~a is a local minimum for f .

Proof: Pick r > 0 as in first lemma above.
Then for every ~b 6= ~a in B(~a; r/2) we have ~c ∈ Co(~a,~b) ⊆ B(~a; r/2).

Therefore f(~b)− f(~a) = to〈T(Hf)(~c)(~v), ~v〉 > 0 since (Hf)(~c) is positive definite.

Hence f(~b) > f(~a).

Proposition 15.3. [Chain rule 2]
Let A ⊆ Rn, B ⊆ Rm be open nonempty sets. Let f ∈ C1(A,Rm) such that f(~x) ∈ B for all ~x ∈ A.
Suppose also g ∈ C1(B,Rp). Consider h = g ◦ f : A→ Rp defined by h(~x) = g(f(~x)) for ~x ∈ A. Then
(Jh)(~x) = (Jg)(f(~x)) · (Jf)(~x) for all ~x ∈ A.

Proof: This will be reduced to the chain rule as proved above.
Fix ~x ∈ A, 1 6 k 6 p, 1 6 j 6 n.

It will be shown that lim
t→0
t 6=0

[
h(k)(~x+ t~ej)− h(k)(~x)

t

]
= (∂jh

(k))(~x) =

m∑
i=1

(∂ig
(k))(f(~x)) · (∂jf (i))(~x) .

For ~x ∈ A, there exists r > 0 such that B(~x; r) ⊆ A, in particular ~x+ t~ej ∈ A for all t ∈ (−r, r).
Define γ : (−r, r)→ B ⊆ Rm by γ(t) = f(~x+ t~ej) for t ∈ (−r, r).
Apply the chain rule above to γ and to g(k) ∈ C1(B,Rm).
Define ϕ : (−r, r)→ Rp by ϕ(t) = g(k)(γ(t)) for t ∈ (−r, r).
Observe that for every t ∈ (−r, r), we have ϕ(t) = g(k)(γ(t)) = g(k)(f(~x+ t~ej)) = h(k)(~x+ t~ej).

Then we have lim
t→0
t 6=0

[
h(k)(~x+ t~ej)− h(k)(~x)

t

]
= lim

t→0
t6=0

[
ϕ(t)− ϕ(0)

t

]
Proving the necessary limit then amounts to proving that ϕ is differentiable at 0 and that ϕ′(0) is the

desired limit.
Now it will be shown that γ is a differentiable path with a formula for γ′(t).
Then we have

(γ(i))′(t) = lim
s→0
s 6=0

[
γ(i)(t+ s)− γ(i)(t)

s

]
= lim

s→0
s 6=0

[
f (i)(~x+ (t+ s)~ej)− f (i)(~x+ t~ej)

s

]
= lim

s→0
s 6=0

[
f (i)(~x+ t~ej + s~ej)− f (i)(~x+ t~ej)

s

]
= (∂jf

(i))(~x+ t~ej)

Now apply chain rule 1 to ϕ = g(k) ◦ γ to get

ϕ′(0) =

m∑
i=1

(∂ig
(k))(γ(0))(γ(i))′(0)

=

m∑
i=1

(∂ig
(k))(f(~x))(∂jf

(i))(~x)

And this is the desired limit.
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Lemma 16.2. LetM = [αij ] ∈Mn×n(R) be invertible. Then there exists λ > 0 such that ifN = [βij ] ∈Mn×n(R)
with |αij − βij | < λ for all i, j, then N is invertible as well.

Proof: Denote |det(M)| = ε > 0, since M is invertible.
Recall that the determinant of an n× n matrix T is a polynomial Pn of the matrix with Pn(T ) = det(T ).
So we have continuity of Pn at (α11, α12, . . . , αnn) for ε/2.
Hence there exists δ > 0 such that ‖(β11, β12, . . . , βnn)− (α11, α12, . . . , αnn)‖ < δ.
This implies that |Pn((β11, β12, . . . , βnn))− Pn((α11, α12, . . . , αnn))| < ε/2.
Let λ = δ/n.
If N = [βij ] has |βij − αij | < λ for all i, j, then we get

‖(β11, β12, . . . , βnn)− (α11, α12, . . . , αnn)‖ =

√∑
i,j

(βij − αij)2

<
√
n2λ2

= nλ

= δ

Then also

ε = |det(M)|
6 |det(N)|+ |det(M)− det(N)|
< |det(N)|+ ε/2

|det(N)| > ε/2

Therefore N is invertible.

Proposition 16.3. Let A ⊆ Rn be open and ~a ∈ A, with f ∈ C1(A,Rn) such that (Jf)(~a) is invertible.
Then there exists r > 0 such that B(~a; r) ⊆ A and f is one-to-one on B(~a; r).

Proof: Denote (Jf)(~a) = M = [αij ], which is invertible, with αij = (∂jf
(i))(~a).

Lemma gives a λ > 0 such that if N = [βij ] with |βij − αij | < λ for all 1 6 i, j 6 n, then N is invertible.
Due to continuity of ∂jf

(i)at ~a, we can find r > 0 such that B(~a; r) ⊆ A and such that
|(∂jf (i))(~x)− (∂jf

(i))(~a)| < λ for all ~x ∈ B(~a; r).
Assume that f is not one-to-one on B(~a; r).
Hence there exists ~p, ~q ∈ B(~a; r) such that f(~p) = f(~q).
For every 1 6 i 6 n, apply the mean value theorem to f (i) ∈ C1(A,R) between ~p and ~q.

The mean value theorem gives a point ~ci ∈ Co(~a,~b) such that 0 = f (i)(~p)− f (i)(~q) = 〈(∇f (i))(~ci), ~p− ~q〉

Consider the matrix N =


(∇f (1))(~c1)
(∇f (2))(~c2)

...
(∇f (n))(~cn)

 where N = [βij ] with βij = (∂jf
(i))(~ci) for all 1 6 i, j 6 n.

By choice of r and because ~ci ∈ B(~a; r), we get |βij − αij | = |(∂jf (i))(~ci)− (∂jf
(i))(~a)| < λ for all

1 6 i, j 6 n.
Hence N is invertible.
Since 〈(∇f (i))(~ci), ~p− ~q〉 = 0 for all 1 6 i 6 n, we have that ~p− ~q ∈ Null(N).
This is a contradiction, since N is invertible, we have Null(N) = {0}.
Therefore f is one-to-one on B(~a; r).
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