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File I
Lectures

1 Review

Operations with vectors
For # = (M, 2@ .. 2™) e R™, 7= (yV,y@,...,9™) € R* and o € R:

Addition: Z 4 7 := (z(V) 4+ ¢y 22 4@ ) 4y
Scalar multiplication: a2 := (az™M, az® ... az(™)
(Standard) inner product / dot product: < z,y > =z -y
= 2y 4 2@y@ 4. 4 gy

=

Norm (or length): ||Z|| :== /< Z,Z >

Basic properties of the inner product
a. Bilinearity: < 171 + Qo T, g>= o < fl, 7;> +ag < f2,§>
b. Symmetry: < T,y >=< ¢, ¥ >
c. Positivity: < Z,7 >> 0 with < Z,Z >=0if Z =0

Theorem 1.1.% [CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY]
| <&y > <[Z]- 7

Corollary 1.2. [TRIANGLE INEQUALITY]
17 + gl < [I1Z]] + [I9]] v &, ¢ € R™

n

Definition 1.3. The distance between ¥ and 7 is defined to be d(Z, %) = |7 — ¥ = Z(x(i) —y())2,
i=1

Corollary 1.4. For every Z,¢, 2 € R", d(Z,2) < d(Z, ) + d(¥, 2).

Definition 1.5. For @ € R™ and r > 0, define aball by B(d@;r) = {Z € R" | d(Z,@) <r} ={Z e R" | |[Z —d|| <r}
An open ball has a strict inequality, whereas a closed ball may have || — a|| =

Remark 1.6. For all 7 € R”, ||Z]|c < ||z < |71 < nl|Z]]cc.

2 Sequences in R"

Definition 2.1. A sequence in R" is denoted by the following: (%)),

Definition 2.2. Suppose (7%),—, € R” and @ € R". Then (#4),-, converges to @ when the following holds:
Given € > 0, there exists a k, € N such that ||Z) — d|| < € for all k > k,.

Remark 2.3. Instead of ||Zd]|| < €, we may also write d(Zy,d) < € or &), € B(d;e).

Definition 2.4. Given (i”k);il € R”, the sequence is a Cauchy sequence when the following holds:
Given € > 0, there exists a k, € N such that ||, — Z,|| < € for all p,q > k,.

Definition 2.5. Given (Z);-, € R™, the sequence is bounded when there exists 7 > 0 such that ||Z|| <
for all k > 1. That is, @), € B(0;r) for all k > 1
Definition 2.6. Given (Z;),—, € R", express explicitly Z = ([L'](cl),xl(c ), .. (n)) the k-th element.
From these we get n sequences in R: (_’(1))k ( ](“2))1« R (f,(cn))
1 1’

k=1
These are termed component sequences of the original sequence.




2V ——a®

Proposition 2.7.xLet (Z;);—, € R" and @ € R". Then (Z)7—='d in R") <= : in R

S
Proposition 2.8. Suppose (7x);—; € R™. Then the sequence is Cauchy <= cach of the component

P *Or DUPP k=1 ' d Y sequences is Cauchy.
each of the component

Similarly, the sequence is bounded <= sequences is bounded.

Theorem 2.9. [CAUCHY THEOREM]
Let (£4)4—; € R™. Then it is convergent to some @ € R™ if and only if it is Cauchy.

Theorem 2.10. [BOLZANO-WEIERSTRASS THEOREM]
Suppose (Z)p—; € R™ is bounded. Then there exist values a < k(1) < k(2) < --- < k(p) < - - - such that the

= [ee) .
subsequence (%(p))p: is convergent.

1

Theorem 2.11. [OPERATIONS WITH CONVERGENT SEQUENCES]
Let (Z%) 5=, and (k)pe; be in R™ with lim [#}] = @ and lim [gj] = b. Then for o, 8 € R,
- - k—o0 k—o0

1. lim [od) + BY]) = ad + b
—

2. lim [(Zx,7%)] = (@, D)
k= - "

3. lim [ 7] = l|a]
—00 o

4. lim [d(Z, 5r)] = d(a@,b)
k—oo

Theorem 2.12. [BANACH FIXED POINT THEOREM]

Let A CR™ with f: A — A be a function given by || f(Z) — f(§)|| < 7||Z — ¥]| for all Z,§ € A and v € (0, 1).

Given any 1 € A and Tx41 = f(Z), the function f has a unique fixed point 7 € A such that klim @] =7
— 00

and £(7) = p.

Definition 2.13. A subset A C R" is said to be closed when it has the following property: If (Zj),; is a
sequence in A such that T mg € R™, then it follows that b € A.

3 Open and closed subsets of R"

Definition 3.1. Suppose A CR" and @ € A. Then @ is an interior point of A when there exists an r > 0
such that B(@;r) C A. The set of all interior points of A is termed the interior of A and is denoted by int(A).

Definition 3.2. Suppose A C R™. If every @ € A is an interior point of A, then we say that A is open.
Hence for every A € R™, we have that int(A) C A, and A is open < int(4) = A.

Definition 3.3. Given C' C R", the set C is closed when R™ \ C is open.
Remark 3.4. Most sets are neither open nor closed.

Definition 3.5. Let () # C' € R™. Then C has the cannot escape property when the following happens:
If (F4)5>, € C and F—=b € R", then b € C.

Proposition 3.6.x Let () # C € R™. Then C is closed <= C has the cannot escape property.
Remark 3.7. () and R are clopen; they are both open and closed.

Definition 3.8. For A € R", define the closure of A to be the following set:
cl(A) = {b € R"| there exists (Z4),_, € A such that Zx—==b}.




Remark 3.9. A C cl(A) with A =cl(A) <= A is closed.

Proposition 3.10. For every A C R"™, we have
i int(R™\ A) =R"\ cl(A)
il. cl(R™\ A) =R"\ int(A)
Definition 3.11. A set B € R" is said to be bounded when there exists r > 0 such that [|Z]| < r for all
Z € B, and B is a subset of B(0;r).
Definition 3.12. A set K € R"™ is said to compact when it is closed and bounded.

Theorem 3.13. Let K C R™ be compact, and let (Z4);—, € K. Then there exists a subsequence of Ty
which converges to a limit in K.

Definition 3.14. For A € R", define the boundary of A to be bd(A) = cl(A) \ int(A).
Remark 3.15. An alternative definition is bd(A4) = cl(A) N cl(R™ \ A).

4 Continuous functions

Definition 4.1. Let ) # A € R", and f : A — R” be a function. Let @ € A. We say that f is continuous at
a when the following holds:

For all € > 0, there exists a ¢ > 0 such that if ||& — d@|| < 4, then || f(Z) — f(@)]| < € for all ¥ € A.
Moreover, f is continuous if f is continuous at every & € A.

Definition 4.2. For ) # A € R", a function f: A — R", and d@ € A, we say that f respects sequences in A
which converge to @ when the following happens: B
Whenever (%), ; € A is such that &, +—d, it follows that f(Z)—="f(b)

k—oo

Proposition 4.3.x For ) # A € R", a function f: A — R", and @ € A, we have that
( f respects sequences in ( f is continuous )

A which converge to @ at @

Definition 4.4. For () # A € R", a function f : A — R", for every @ € A write explicitly
f@=(fM@,....f™@)er"
then get the functions f), ..., f(® : A — R, termed the components of f.

5 Continuity and compactness

Definition 5.1. Let ) # A € R" with f : A — R™. Then f is uniformly continuous on A when the following
holds:
For all € > 0, there exists a ¢ > 0 such that if ||& — d@|| < ¢, then || f(Z) — f(&)]| < € for all @, & € A.

Remark 5.2. Uniform continuity gives us that:
1. The function f is continuous on A, i.e. f is continuous at every point in A.
2. The choice of § in the epsilon-delta condition of continuity is the same for all @ € A.

Theorem 5.3.x Suppose () # A € R™ is compact. If f : A — R™ is continuous, then f is uniformly continuous
on A.

Proposition 5.4.x Suppose § # A € R™ is compact. Let f: A — R™ be continuous on A. Then the image
set B = f(A) CR", or B={j € R"| there exists & € A such that f(Z) = §} is a compact subset of R".

Theorem 5.5.x [EXTREME VALUE THEOREM]
Suppose ) # A € R™ is compact. Let f: A — R be continuous. Then f has a minimum and maximum on
A. That is, there exist 41,52 € A such that f(71) < f(Z) < f(72) for all Z € A.



6 Integrable functions

Definition 6.1. A closed rectangle in R™ is a set of the form
P =ay,b1] x [az,ba] x -+ X [anabn]
—{xER"‘a1<x(1 <biyap <z < by, ya, <™ < by}

Definition 6.2. For such P as above, define the volume of P by vol(P) = (by — a1)(bs — a2) - (bp — ay)
the diameter of P by diam(P) = ||b — @||
diamso(P) = ||b — @0

Definition 6.3. Let P be a closed rectangle in R™. A division of P is a collection of closed rectangles
A={Py,P,,...,P;} such that P, UP,U---U P, = P with int(P;) Nint(P;) =0 for i # j.

Definition 6.4. For P as above, define |A| = max {diams(P;)}. Hence ||A] is small implies that
X
diams (P;) is small for all i.

Definition 6.5. For divisions A = {Py, P5,..., Py} and ' = {Q1,Q2,...,Q¢} of P, we say that I refines A
and write I' < A if for every 1 < j < £ there exists 1 <4 < k such that Q; C F;.

Remark 6.6. If I' < A as for above, then if A = {Py, Ps,..., P}
F:{Q117"'7Q1m1aQ21a"'aQ2m27 """ 7Qk1a"'7kak}

we will have P; = | J @;, for all i € [1,k].
j=1

Remark 6.7. If P is a closed rectangle in R™ and Ay = {P{,P;,...,P.} and Ay ={P{',Py/,..., P}'} are
divisions of P, then we can find a division I such that I' < A; and I" < Ay. Then I is given by
I'={P/NP/'|1<i<k1<j<(land P/NP/#0}.

Definition 6.8. Suppose () # A C R™ with f: A — R. Then f is bounded when there exists ¢ > 0 such
that |f(z)| < cfor all £ € A. When f is bounded on A, we can talk about

sup{f(Z |x€A}—sup{f}
inf{f(Z |x€A}f1nf{f}

Definition 6.9. Suppose P is a closed rectangle on R™ and f : P — R is bounded. Let A = {Py, Ps,..., P}

be a division of P. Then U(f,A) = Zvol( )sup{f}

1= 1

Z vol (P, 1nf{f}
These are termed the upper and lower Darboux sums of f over P.
Remark 6.10. L(f,A) < U(f,A) for all A, f.

Lemma 6.11.x Suppose P is a closed rectangle on R™ and f : P — R is bounded. Let I'; A be divisions of
P such that I' < A. Then U(f,T') < U(f,A) and L(f,T) > L(f, A).

Proposition 6.12. If P is a closed rectangle in R™ and F : P — R is a bounded function, and A, As are
divisions of P, then L(f, A1) < U(f,As).

Definition 6.13. Let P be a closed rectangle in R"™ and F' : P — R be bounded. Consider then
S ={L(f,A)| A is a division of P}
T ={U(f,A)| A is a division of P}

Then s < ¢ for every s € S and ¢ € T. Denote sup(S) = f f and inf(T fPf Note that f f f.

Remark 6.14. If f is integrable, then f is bounded.



Proposition 6.15.x Let P be a closed rectangle in R™ and F': P — R be bounded. Then
( £ is integrable ) — for every € > 0, there exists a division A of P
& such that U(f,A) — L(f,A) < ¢

Proposition 6.16.x Let P be a closed rectangle in R™ and f : P — R be bounded. Then

o there exists a sequence A1, As, ..., Ay,... of divisions
( f is integrable ) <= of P such that lim [U(f, Ar) = L(f, Ax)] =0
—00
Also, if we let Ay, As, ..., Ag be a sequence of divisions of P as above and f be integrable, then
tim (U(F,A0)) = [ £ = Jim (L7, A0)
k—o0 P k— o0

Theorem 6.17. [Du BOIS-REYMOND THEOREM]
Let P be a closed rectangle in R"™ and f : P — R be bounded. Then
for every € > 0, there exists a § > 0 such that if )

(f s integrable ) <= (A oo Lartition of P with [|A] <6, then U(f,A) — L(f, A) < ¢

7 Linearity of the integral

Lemma 7.1. Let P be a closed rectangle in R™ and f,g: P — R be bounded. Consider h = f + g with
h: P — R by h(Z) = f(Z) + g(Z). Then for every division A = {Py, P,,..., Py} of P we have
U(f+9,4)<U(f,A)+U(g,A)
L(f+9,4) =2 L(f,A) + L(g,A)

Proposition 7.2.x Let P be a closed rectangle in R™ and f,g: P — R be bounded and integrable on P.
Then f + g is integrable also with [,(f+9) = [ f+ [p g

Proposition 7.3. Let P be a closed rectangle in R™ and f : P — R is integrable and o € R. Then h = af
is integrable also with [, af =« [, f.

Theorem 7.4. Let P be a closed rectangle in R™. Let F ={f: P > R | f is integrable}. Then F is closed
under linear combinations, and for f,g,€ F and «, 8 € R we have fP(af +fBg) = afp [+ ﬁfp g.

Remark 7.5. It is true that if f,g € F, then fg € F, but not necessarily true that [, fg= [, f [pg.

Remark 7.6. Let P be a closed rectangle in R™ and let A = {Py,..., P} be a divisionof P. If f : P - R
is integrable on P, then f is integrable on each of Py,..., P, and [, f = Zle fPi f

8 Integration of functions modulo null sets

Definition 8.1. C C R" is said to be a null set when the following happens:
For every € > 0, we can find a finite family of closed rectangles @1, ...,Q, € R" such that
1. Q1U---U@,, DC
2. vol(Q1) + -+ +vol(Qm) < €

Theorem 8.2.x Let P C R™ be a closed ractangle and f: P — R be bounded. Suppose we find subsets
B,G C P such that BUG = P and such that

1. f is continuous at every ¥ € G

2. B is a null set
Then f is integrable over P.

Corollary 8.3. Let P CR™ and f: P — R be continuous. Then f is integrable over P.



Corollary 8.4.x Let A C R™ be compact such that bd(A) is a null set. Let P D A be a closed rectangle and

define F': P — R by f(Z) = { 1 7ed Then f is integrable over P.

0 else

Remark 8.5. The above function f is termed the characteristic function of A, and denoted by x,. We can
use X, to define the volume of A by vol(A) = [, x.,-

9 Theorem of Fubini

Remark 9.1. Let n = p+ ¢ with p,q € N. Then
. For A € R? and B € R, define the Cartesian product A x B = {(a@, b) |de€ A, be B} CR".
- Every closed rectangle P = [a1,b1] X - -+ X [an, by] € R™ can be written as P = M x N with
M =la1,b1] X -+ X [ap,by] CRP and N = [apt1,bpt1] X -+ X [an, by] C R

Definition 9.2. Let P= M x N as above. Let f: P — R be a function. For every v € M, define a
partial function fz: N — R by fz(wW) = f(0,w) for all & € N.

Theorem 9.3.x [THEOREM OF STOLZ-FUBINI]
Let P =M x N as above, and let f : P — R as above. Suppose that
i. f is integrable on P
ii. For every v € M, the function fz: N — R is integrable over N.
Define F': M — R by F(¢) = [, f for all ¢ € M. Then F is integrable on M, and

Jur=].

Remark 9.4. With different notation, the above theorem states that:

/ f(@) d:z?:/ </ £ (v, ) dﬁ) dv
P M \JN
:/ f (0, W) dv dw
P
This is termed the calculation of iterated integrals.

Lemma 9.5. Let P = M x N as above. Then for any division A of P, one can find divisions ® for M and
U for N such that ® x ¥ always refines A.

Lemma 9.6. Let P =M x N, and f : P — R with F(0) = [ fz for all ¥ € M as above. Let A C M be a
closed rectangle. Let ¥ = {Ny,..., N5} be a division of N. Then

sup{F'} < ;vol(Nj) :;ljgj{f}
inf{F} > ;vol(Nj) Jnf {f}

Lemma 9.7. Let ® = {M; ..., M,} be a division of M. Let ¥ = {Ny,...,Ns} be a division of N. Let
A = ® x U be the division of P, suchthatA:{MixNngigr,l <j<sh
Then U(F,®) < U(f,A) and L(F,®) > L(f,A)



10 Integration on more general domains

Lemma 10.1. Let P C P C R™ be a closed rectangle, and f: P — P’ be a bounded function such that
f(#) =0for all ¥ € P\ P’. Then f is integrable on P if and only if f is integrable on P’.

Proposition 10.2. Let ) # A C R" be bounded. Let f: A — R be a bounded function. Pick any closed
= = f(@) ZeA

C n . —
rectangle P C R™ such that P D A, and extend f to f: P - R by f { 0 FeP\A
Then by definition f is integrable on A if and only if fis integrable on P, and if f is integrable on A, then
by definition [, f = [, f.
Proposition 10.3. Let ) # A C R™ be a bounded set. Suppose bd(A4) = cl(A) \ int(A) is a null set. Let
f:A— R be a bounded, continuous function. Then f is integrable on A.

Definition 10.4. Let ) # A C R™ be a bounded set. Consider f: A — R with f(Z) =1forallZ € A. If f
is integrable on A, then A has volume, and define vol(A) = [, f = [, 1

Corollary 10.5. Let § # A C R™ be a bounded set. If bd(A) is a null set in R,
then A has volume.

Definition 10.6. Let ) # A CR™. Let f: A — R. Suppose that f(Z) >0
for all & € A. Define the graph of f to be I' = {(Z,t) | # € A,t = f()}.
A subgraph of fis S = {(Z,t) |7 € A,0 <t < f(Z)}.
Note that I' € § € R**1.

K2

Remark 10.7. The volume of a subset of R" is its integral.

Proposition 10.8.x Let § # A C R™ be bounded, and let f: A — R be integrable, with f(&) > 0 for all
F € A. Let S C R"! be the subgraph of f. Then S has volume, and vol(S) = e

11 Partial derivatives

Definition 11.1. Let A C R™ be a set with @ € int(A) with f: A — R a function. Let ¥ € R™. If
fla+1to) - f(a)
t

lim € R exists,
t—0
t#£0

then we say that f has directional derivative at @ in direction ¥ and denote the limit by (9zf)(&).

Remark 11.2. With respect to the same notation as above:
-If ¥ =0, then (95 f)(d) exists and is equal to zero
. If 7 0, then there exists 7 > 0 such that B(a;r) C A. Then we may define ¢ : (—‘ZTW ﬁ) — R by

o(t) = f(@+ t¥). Then the directional derivative may be expressed as

lim W] — lim {W} - J(0)

Proposition 11.3. Let A C R™ with @ € int(A) with f: A — R a function, ¥ € R” with ¢ # 0. Suppose
that (9zf)(d) exists, Then for every a € R, we have that (0,7)(@) exists, and (Onzf)(@) = a0z f)(a).

t—0

t—0 t oty

t£0

Definition 11.4. Let A C R™ with @ € int(A) and f: A — R. For every 1 < ¢ < n, consider the vector €;.
If (0z, f)(d) exists, then we call it the i-th partial derivative of f at @ and denote it by (9; f)(@).




12 (C'-functions

Definition 12.1. Let ) # A C R"™ be an open set, and f: A — R be a function. Let ¢ € R". Suppose
that (0zf)(a@) exists for every @ € A. Then we get a new function 9zf : A - R by A > d > (95f)(d). The
function Oz f is termed the directional derivative of f in the direction of v.

Definition 12.2. Let ) # A C R™ be an open set. A function f: A — R is said to be a C''-function when
it has the following properties:

- f is continuous on A

- f has partial derivatives at every ad € A.

- The new functions 0;f : A — R for 1 < ¢ < n are all continuous on A.
The collection of all C'-functions from A to R is denoted C'(A,R).

Theorem 12.3.x Let () # A C R™ be an open set. Let f € C1(A,R). Then for every 7 = (v, v ... (™),
the directional derivative d3f exists, and we have dgf = v (91 f) + - -- + v (9, f).

Theorem 12.4.x Let § # A CR™ be an open set. Let @ € A and r > 0 be such that B(a;r) C A. Fix
i€{l,...,n} and let ¥, ¢ € B(@;r) be such that they only differ in component i. Let f € C'(A,R). Then
there exists b € B(@;r) such that f(Z) — f(7) = (y@ — 2®)(8,£)(b).

Lemma 12.5. Let ) # A C R" be an open set. Let f € C'(4,R). Fix @ € A. Then
@) (@) = S @O~ a®) - (@05)(@)

isa 17 —all
TAE

Definition 12.6. Let ) # A C R™ be an open set. Let f € C1(A,R). For every @ € A, the gradient vector
of f at @is (VF)(@) = (01 1)(@),-... (0nf) (@),

Remark 12.7. Let ) # A C R™ be open and f € C*(A,R). Consider the graph I = {(@,t) |d € A, t = f(a)},
with T' € R**!. Consider g€ T, so 5= (@, f(@)). Then I' has a tangent hyperplane at @, which can be
calculated by using (V f)(@).

Proposition 12.8. The vector tangent to I' in the direction ¥ € R™ at p’'= (d, f(a)) is given by (7, (07 f)(a)).
Proposition 12.9. The vector in the normal direction to I' at = (a, f(&)) is given by (—(Vf)(@),1).

Remark 12.10. Let ) # A C R™ be open. The set of functions C* (4, R) is closed under algebraic operations.
That is, for all f,g € C*(4,R) and « € R,

1. f+g€CHAR) = 9(f +g) = (0:f) + (0z9)

2. af € CHAR) = 9z(af) = a(dsf)

3. fge CYAR) = 0s(f9) = (95f)g + (O59)f

Definition 12.11. Let EL’,EE R". Denote 7 =b—a. The line segment Co(a, ) from @ to b is given by
{@+t7]te[0,1]} = {(1 —t)@+tb|t € [0,1]}. The vector (1 —)a + tb for t € [0,
bination of @ and b.

1] is termed a convex com-

Definition 12.12. A set A C R” is said to be convex when for every d, b € A we have Co(d, l;) C A.

Proposition 12.13. [MEAN VALUE THEOREM]
Let ) # A CR"™ be open and f € C’l(A,R) Suppose d@,b € R™ with @ # b. Let ¥ = b — d@. Then there exists
¢ e Co(a,b) with @+ @,¢# b such that f(b) — f(a@) = <5 a, (V@) = (9z1)().



13 The chain rule

Definition 13.1. Let I C R be an open interval. A function : I — R” has n components v, ... . ~(™ : T - R
and y(t) = (YD (t) ... _’y(”) (t)) € R™ for all t € I. If every () is continuous on I, then we say that ~ is a
path in R™. If every () is differentiable on I, then we say that v is a differentiable path in R™.

Definition 13.2. Let «: I — R™ be a differentiable path in R™. For every vector t € I, the vector
Y (t) = (Y)Y (t), ..., (v™)(t)) € R is termed the velocity vector of v at t.

Lemma 13.3. Suppose f € C'(A,R). Let K C A be compact and convex. Then there exists ¢ > 0 such
that | f(Z) — f(§)| < ¢||Z — g]| for all ¥, ¢ € K. Here, c is termed the Lipschitz constant.

Theorem 13.4.%x [CHAIN RULE 1]

Let ) # A C R™ be open with f € C'(A4,R). Suppose 7 : I — R" is a differentiable path such that v(t) € A
for all t € I. Consider the composed function ¢ = f o, with ¢ : I — R given by ¢(t) = f(y(t)) for all t € I.
Then ¢ is differentiable and we have ¢'(t) = >0 (9; ) (7)) (v?)'(¢) for all t € I.

The chain rule may also be given by (f ov)'(t) = (V) (v(?)), 7 (1)).

14 Partial derivatives of higher order

Definition 14.1. Let () # A C R™ be open and f € C'(A,R). Consider the partial derivatives
Nnf:A—=>ROf:A—-R,...,0f: A—=>R
If 9;f € C1(A,R) for every 1 < i < n, then we say that f € C%(4,R).

Definition 14.2. More generally, for every p € N, define CP(A,R) ={f: A —> R | f has continuous partial
derivatives up to order p}

Definition 14.3. Functions f € C°°(A,R) are termed smooth for

C*(A,R) = m CP(A,R) ={f: A— R| f has continuous partial derivatives for all orders }

p=1

Lemma 14.4. Let ) # A C R™ be open with @ € A and f € C?(A,R).
- Fix two indices i # j € {1,...,n}.
- Fix r > 0 such that B(a;r) C A.

Let ¢ (% ﬁ) — Rhbe defined by ¢(t) = f(@+ t& + t&;) — (@ +1&) — f(@ + t&;) + f(@) fort € (;2 ﬁ)

- Take a sequence (t,),-; in (O, %) such that ¢,,———0. Then

2 n— oo

1. lim {‘p%”)] = (0:(0;1))(@)

n—oo

2. Tim {*"g)] — (0;(0:))(@)

n—roo

Theorem 14.5. Let (} # A C R™ be open with f € C?(A4,R). Then for every 1 < i,j < n, 8;(0;f) = 9;(di f)
Definition 14.6. Let f € C?(A,R) and @ € A. The below matrix is termed the Hessian matrix of f at a:

@@ @00 - @10
wn - |@AD@  @ED@ - @)

@)@ @udaf)@ - (O21)@)

10



Remark 14.7. Note that (Hf)(@) € Mpx,(R), and the (4, j) entry of (H f)(a@) is (9;0;f)(@). Also, by the

above theorem, the matrix is symmetric.

Remark 14.8. Let H = H* € M,,»,(R). Then all eigenvalues A1,..., A\, € R. If A\1,..., A\, =0, then H is
positive definite. When it is positive definite, then the corresponding linear transformation 7Ty : R* — R™

satisfies (T (7), ) > 0 for all 7 € R™ with 7@ # 0.

Remark 14.9. Let ¢ : (a,b) — R be twice differentiable. Let t € (a,b) such that ¢'(¢) = 0 and ¢"(¢) > 0.
Then ¢ is a local minimum.

stationary point for f.
Remark 14.11. Let f € C'(A,R). If @ € A is a local extremum for f, then @ is a stationary point.

Lemma 14.12. Let f € C%(A,R), @ € A such that (Hf)(a@) is positive definite. Then there exists r > 0
such that B(@;r) C A and such that (H f)(Z) is positive definite for every Z € B(a;r).

Lemma 14.13. Let f € C?(A,R), @€ A a stationary point and r >0 such that B(a;r) C A. Sup-

-

pose that b€ B(@;r), and denote 7 =b—d. Then there exists t, € (0,1) and € Co(d,b) such that
f(b) = f(@) = to(T(ap) ) (V), 0).

Theorem 14.14.x Let () # A C R™ be open and f € C?(A,R) with @ € A a stationary point for f. If the
Hessian matrix (H f)(d@) is positive definite, then @ is a local minimum for f.

Remark 14.15. There are analogies for the above theorem and lemmas for @ a local maximum. Replace f
with —f and have (H f)(a@) be negative definite.

15 Functions in C1(A4,R™)

Definition 15.1. Let ) # A C R" be open, and f : A — R™ a function for m > 1. Write f = (f(,..., f(™)
with f) : A — R for 1 <i < m. If each £V is in C1(A,R), then we say that f € C*(A,R™).

Definition 15.2. Let f € C'(A,R™) and @ € A. The below matrix is the Jacobian matrix of f at a:

@O1fM)(@)  (2fD)@) - (OufV)(a@) (VW)@
@1f®)(@)  (2fP)@) - (0.P)(@) (Vf®)(@)

Q

(Jh)(@) =

@ufr )@ @)@ - (Guf™)(@) (V)@
Proposition 15.3.% [CHAIN RULE 2]
Let ACR" B CR™ be open nonempty sets. Let f& CY(A,R™) such that f(&) € B for all ¥ € A.
Suppose also g € C*(B,RP). Consider h=go f: A— RP defined by h(%) = g(f(¥)) for £€ A. Then
(Jh)(Z) = (Jg)(f(Z)) - (Jf)(Z) for all T € A.

m

Remark 15.4. The above may be restated as (9;h%))(7) = Z(@ig(k))(f(f)) (0 f) (@)

i=1
Remark 15.5. With respect to the above defined functions, we have h(®) (&) = &) (fO(Z), ..., f(™)(Z))
Proposition 15.6. Let ) # A C R™ be open and f € C'(A4,R™). For @ € A and ¥ ~ @, we have
f(@) = f(@) + Ty p)@) (- @) + D(T)

where the error term D is given by D(Z) = f(Z) — f(@) — T(s5)(a) (¥ — @) and T 5)s) is the matrix
transformation associated with the Jacobian of f at a.
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16 Inverse function theorem

Theorem 16.1. Let ) # A C R™ be open and f € C1(A,R"). Let @ € A be such that (Jf)(@) is invertible.
Let f(@) = b € R™. Then there exist open sets U,V C R™ such that

1. acUbeV C f(A)

2. f maps bijectively U onto V', that is, f(U) =V and f is one-to-one on U

3. The function g : V — U which inverts f is a C'-function with (Jg)(b) = ((Jf)(a@))~"

Lemma 16.2.x Let M = [o;;] € M, x»n(R) be invertible. Then there exists A > 0 such that if N = [3;;] € My, xn(R)
with | — Bi;| < A for all 4, j, then N is invertible as well.

Proposition 16.3.x Let A CR™ be open and @ € A, with f € C1(A,R") such that (Jf)(@) is invertible.
Then there exists » > 0 such that B(@;r) C A and f is one-to-one on B(a;r).

17 Implicit function theorem

Definition 17.1. Let A C R" be open with @ € A and f € C'(A,R™) with m < n. Choose m principal
directions in R™, that is, choose 1 < j; < jo < -+ < jm < n. The partial Jacobian matrix of f at a@ with
respect to directions ji, ..., jm, is given by

@5 fM@ - (95, )@
: : € Mpxm(R)
@5, f) (@) - (95, f™)(@)
If this matrix is invertible, then @ is regular wrt ji, ..., jm,. Otherwise, @ is singular.

Definition 17.2. Let d,n € N withn > d, and § # V C R%. Let ¢ : V — R™ be one-to-one and ¢ be a C-
function such that (J¢)(Z) € M, «q(R) has rank d for every Z € V. Then the set S = o(V) C R" is termed
a parametrized C! manifold of dimension d.

Theorem 17.3. [IMPLICIT FUNCTION THEOREM]

Let A C R™ be nonempty with @ € A and f € C*(A,R™) for m < n and n —m = d. Denote f(@) = b € R™
and consider the level set L={Fe€ A | f(@) = I;} Suppose that @ is a regular point for f with respect
to directions 1,2,...,m. Then there exists r > 0 such that L N B(@;r) is a parametrized C' manifold of
dimension d with parametrization obtained by solving for the first m components.

More precisely, while @ = (7, ¢) for € R™, § € R%, then there exists an open set V C R? such that g€ V
and there exists h € C'(V,R™) such that

 h(@) =P
-A{(h(2),2) | ZeV}=LnB(ar)

12



File II
Selected proofs

Theorem 1.1. [CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY]
[ <Zg>[< |7 7]
Proof: Define f: R — R by f(t) = (¥ — ty, & — ty) for all t € R.
= [|7]* — 2t(Z, ) + |41
Hence f is a quadratic function of the form f = at? + bt + ¢, with a = ||7]|?, b = —2(Z, 7)), c = ||Z]|?.
But observe that f(t) = ||Z —tg]|> > 0
Hence the discriminant A = b2 — 4ac < 0
— (-2(2, ) - 4771
= 4((Z, 9)° — |27 71°)
Now since A < 0, (Z, )2 < ||Z]|?||7]|
(@, 91 < 1217

f/(cl) k— o0 d‘(l)
Proposition 2.7. Let (Z),-, € R" and @ € R". Then (F;7==*d in R") <= : in R
T
Proof: Suppose that @ ———d in R".
Fix 3.
Observe that for every k > 1, |2 — a®| = |(Z), — @)V | < || — @||-==0

Hence 2\ ——a(®.

Now suppose that x,(f)mm(i) for every 1 < i < n.
Hence |2 — a()|-———=0 for every 1 < i < n.
SO |x(1) — a(1)| _|_ |x(2) — a(2)| + . + ‘x(n) — a/(n)‘—)o.

k— oo
Hence 7= a.

Proposition 3.6. Let () # C € R™. Then C is closed <= C has the cannot escape property.

Proof: Since C is closed, R™ \ C is open.
Take ()72, € C, with #,=—b € R™.
Assume by contradiction that b ¢ C and b € R™ \ C.
Since R™ \ C is open, we can find r > 0 such that B(b;r) C R™ \ C.
But then since fkmg, we can find k, € N such that &, € B(l_;;r) for all k > k,.
In particular, &, € B(b;r) CR™\ C.
Contradiction.

Now suppose that C has the cannot escape property.
Assume by contradiction that there does not exist any such r such that for b € R"\ C' we have

B(b;r) CR™\ C.
So in particular, B(b;r) € R™\ C = there exists Z; € B(b; 1) such that &, € C.
In general for every k > 1, we have B(b; 1) CR"™\ C, hence there exists &, € B(b; 1) such that @, € C.
In this way we get a sequence (), in C.
Observe that for every k > 1, we have #, € B(b; 1) = || — b|| < 1.
So we have ||Z), — b —=>0, and we obtain that & ——>b.
But Z ¢ C and b € C, so we have a contradiction.
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Proposition 4.3. For ) # A € R", a function f: A — R", and d € A, we have that

f respects sequences in f is continuous
A which converge to @ at @ '

Proof: Suppose f respects sequences in A which converge to A.

Fix e > 0.

Suppose there exists no such 6 > 0 such that |7 — d|| < § and || f(Z) — f(@)| < e.

In the process of trying different &, we have a sequence (Zx),-, € A with ||Z; — a|| < 1 for all k > 1 and
I/ (&) = f(@)]| = e for all k > 1.

Since ||Z; — @l < 1 , we have ||Z}, — @||5==0.

k— o0

Also we do not have that || f(Z) = f(@)||—==*0.

k— o0

So f does not respect (Zy)4-,, which is a contradiction.

Suppose that f is continuous at @, using the € — § definition.

Let (dj)z—, be some sequence of points converging to a.

Let € > 0.

Then we can find § > 0 such that whenever ||@ — Z|| < § for & € A, we have || f(Z) — f(@)]] <e.
Since (dy)pe., converges to @, we can find k, > 0 such that ||@ — @y < § whenever k > k,.

Let k > ko, and we have that ||@ — dx|| < J, so || f(@) — f(dr)| <e.

Hence f(dy) converges to f(a).

Theorem 5.3. Suppose ) # A € R™ is compact. If f : A — R™ is continuous, then f is uniformly continuous
on A.

Proof: Suppose that no ¢ exists such that for any € > 0, | — @|| < 6 = ||f(Z) — f(@)|| < € for @, T € A.
Leté:%forkEN.
Then there exist #x, @, € A such that [|Z), — @x|| < + = || (&%) — f(d@r)|| > €.
This generates two sequences, (Z)pe, and (dx)p, in A.
Since A is compact, we can find 1 < k(1) < k(2) < --- < k(p) < --- such that (fk(p)):il converges to
some T, € A.
But then also we have that (d@y),., converges to the same limit:

l@k(p) — Zoll < ll@k(p) — Tl + 1 Zr(p) — Dol

1 . R
< =+ [[Frp) — Dol

k(p)

=0 as p — 00

Since f is continuous at &, € A, it respects convergence of Ty (,) %o and Gy (p) -5 To-
Therefore || f(Zx(p)) — f(@r(p))ll 55220

p—o0

Contradiction, so such a ¢ exists.

Proposition 5.4. Suppose () # A € R™ is compact. Let f: A — R™ be continuous on A. Then the image
set B = f(A) CR", or B ={j€R"| there exists & € A such that f(Z) = §} is a compact subset of R".

Proof: Fix b € cl(B).
From definition of cl(B), there exists (§k),e; € B with g ——b.
For every k > 1, we have i € B = f(A), hence there exists Z € A such that f(Zx) = k.

Since A is compact and (T ), € A, there exists a subsequence (fk(p))zozl of the original sequence with
Tr(p) 557 To € A for some .

p—o0

Since f is continuous, f(Zyp)) == f (7o)

Therefore 4,y == f(%5) while Jr——>b, which implies that Uk(p) 5557

p—oo
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Since limits are unique, f(Z,) = b.

Hence B is closed.

Suppose B is not bounded.

Then there exists a sequence (¥ )pe; € B such that [|gi| > k for all k > 1
For every k > 1, pick & € A such that f(Zx) = F.

Then select a convergent subsequence (g’k(p)):il for (k) y-

Then we reach a contradiction by the same process as above.

Theorem 5.5. [EXTREME VALUE THEOREM]
Suppose () # A € R™ is compact. Let f: A — R" be continuous. Then f has a minimum and maximum on
A. That is, there exist 41,72 € A such that f(71) < f(Z) < f(¥2) for all & € A.

Proof: Denote f(A) = K CR.
From a previous proposition, K is compact.
Denote inf(A) = a,sup(4) = B.
Then a, 5 € A.
Then there exist 41,72 € A such that f(71) = «, f(72) =08
Then for every # € A, we have f(Z) € K = a < f(Z) < B, or f(71) < f(Z) < f(F2).

Lemma 6.11. Suppose P is a closed rectangle on R™ and f: P — R is bounded. Let I'; A be divisions of
P such that I' < A. Then U(f,T) < U(f,A) and L(f,T') > L(f,A).

Proof: This proof will show inequality for U; the procedure for L is analogous.

Write A = {P1, P, ..., P} and T'={Q1,,...,Q1,, , Q2,5 -, Q2,5+ s Qhyy ooy Qi }
Then we have P; = 6 Qq; for all i € [1,k].
j=1
Then U(f,T) Zvol Qij) Sglp{f}
Observe that for]ewlery 1<i<kand1<j < my, wehavesup{f(Z) |7 € Qi;} <sup{f(Z)|Z € P} =supp {f}

Then we have

k
U(f,I) Z Zvol Qij) sup{f}

=1 \j=1
k
- Z Zvol Qij) sgp{f}

k
= vol(P,) sup{f}
i=1 Py

Proposition 6.15. Let P be a closed rectangle in R™ and F': P — R be bounded. Then
( £ is integrable ) — for every € > 0, there exists a division A of P
& such that U(f,A) — L(f,A) < ¢

Proof: We know that sup{L(f, A) | A is a partition of P} = f f= fpf inf{U(f, A) | A is a partition of P}.
Let € > 0.
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Then we can find a division A; of P such that L(fA;) > fPf — 5 by the definition of sup.

Similarly, we can find a division Ay of P such that U(fAz) < Tpf + 5.
From this we have that for A < Ay, Ay, U(f,A) < U(f,A2) < L(f, A1)+ e < L(f,A) + ¢

Now, for every k € N, apply the hypothesis with € = %
This gives divisions A of P such that U(f, Ay) < L(f, Ag) + +.

But then [,f < U(f,Ay) < L(f, Ax) + < S fi
So [pf < Jf+ 4 forall k€ N.

Let k — oo, sothatf f< fbeecomesin:fPf.
Hence f is integrable.

Proposition 6.16. Let P be a closed rectangle in R"™ and f: P — R be bounded. Let Ay, Ao, ..., Ag be
a sequence of divisions of P such that limg_[U(f, Ax) — L(f, Ag)] =0, and f be integrable, then

k— o0 k—o0

lim [U(f, Ap)] :/ f= lim [L(f,Ag)]

Proof: Let € > 0.
We know that there exists k, such that U(f, Ag) — L(f, A) < e for all k > k,.

So then for k > kmfpf U(f,Ar) < L(f,Ag) + € < f f+6—fpf+e
This implies that [U(f, Ax) — [, f| < € for all k > k,.
To prove that lower sums converge to the same integral, write

L(f,Ak) =U(f, Ax) = (U(f, k) = L(f, k)i Jp f 0= [p f

Proposition 7.2. Let P be a closed rectangle in R” and f,g: P — R be bounded and integrable on P.
Then f + g is integrable also with [,,(f +¢) = [p f+ [p 9.

Proof: Find sequences of divisions of P, (A});Z, such that U(f, A}) — L(f,A},)5==0 and (A});~, such
that U(g, A}) — L(g, A})7—==0.

For every k > 1, let Ay, be a common refinement for A} and AY.

Then 0 < U(f, Ar) — L(f, Av) < U(f, A) — L(f, ) 720

k— o0

Hence U(f, Ar) — L(f, Ax)7==>0 and similarly U(g, Ax) — L(g, Ag)7==0.
Also for every k > 1, we have

U(f+9,Ak) = L(f + g, Ar) < (U(f, Ax) + U(g, Ax)) — (L(f, Ag) + L(g, A))
= (U(fa Ak) - L(f7 Ak)) + (U(gv Ak) - L(gv Ak))
—0as k — o0

Then apply a previous proposition to get that f + g is integrable.
Moreover, the above gives us that / fHg<U(f+9 Ar) <U(f,Ar) +U(g,Ag) forall k > 1
P

Let k — oo, andwehavethat/f+g< lim [U(f,Ak)+U(g,Ak)]:/f+/g
P k—oo P P

In a similar fashion with the lower sums we get that / f+g> / f+ / g.
P P P

Therefore/f+g:/f+/g
P P P
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Theorem 8.2. Let P CR"™ and f: P — R be bounded. Suppose we find subsets B,G C P such that
B UG = P and such that

1. f is continuous at every ¥ € G

2. B is a null set
Then f is integrable over P.

Proof: Let ¢ > 0.
We want to find a division A of P such that U(f, A) — L( JA) <
Fix some bounds «, ,6’ for values of f. That is, have a < f(%) < 8 for all 7 € P.
Consider €, = m

Now, B is a null set, that is, we can find closed rectangles Q1,...,Q. in R® with Q1,...,Q, C P and
QU UQpm D P with )", Q; <.

By enlarging Q1, ..., Qm as necessary, assume that int(Q1) U---Uint(Qy) D B

Let us denote int(Qq) U - - Uint(Q,,) = D. Then D is an open set.

Let us denote P\ D = K. Since K = PN (R™\ D) it is a closed set.

K is also bounded, so K is compact.

Observe that K C G, since D D B by 1

Since K C G, f is continuous at every ¥ € K.

Hence f is uniformly continuous on K.

Then there exists § > 0 such that for Z, ¢ € K with || — ]| < 4, it follows that | f(Z) — f(¥)| < e.

So we can make a division A of P such that every rectangle of A is either counted in Q1 U ---U @, or
contained in K.

Then write A={ Py,...,P, ,P/,..., P/}
H—/ %/—/
in Q1UUQm in K

By further refinement, we may arrange the divisions such that diam(P)) < § for all j.
Note that for every j, we have &, 3 € P;’ which implies that || — ]| < 0.
This implies that |f(Z) — f(¥)] < €.
This implies that sup{f} — 1Pn,f{f} < ¢, for each j
P J

Then we have

U(f,A)—L Zvol sup{f}+Zvol P) sup{f} - Zvol mf{f}—i—Zvol P mf{f}

|
<MQ

=1

vol(P) <sup{f} mf{f}> £3 wol(P) <s;p{f} —i;;{f})

Jj=1

N
<M*°

s
Il
-

vol(P}) (B — a) + Z vol(Pj')e,

j=1
q

Z V0 )+ € Zvol P”

i=1

< (B — a)eo + €,00l(P)

€(8 — a+vol(P))
(8 —a)+vol(P)+1
<e

N

Corollary 8.4. Let A CR™ be compact such that bd(A) is a null set. Let P be a closed rectangle with

A C P, and define f: P — R by f(Z) = { 1 7ed Then f is integrable over P.

0 else
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Proof: Take B = bd(A), which is a null set by the hypothesis, and G = P \ bd(A).
Note that bd(A) = cl(A) \ int(A).
Therefore G = int(A) U (P \ A)
For every @ € int(A) we can find r > 0 such that f(Z) =1 for all Z € B(d;r)
This implies that f is continuous at d.
For every ¢ € P\ A, we can find r > 0 such that f(Z) =0 for all ¥ € B(¢;r) NP
This implies that f is continuous on G.
Hence f is integrable on G, and by the above theorem, over P.

Theorem 9.3. [THEOREM OF STOLZ-FUBINI|
Let P =M x N as above, and let f: P — R as above. Suppose that
i. f is integrable on P
ii. For every v € M, the function fz: N — R is integrable over N.
Define F': M — R by putting F/(0) = [ fy for all ¥ € M. Then F is integrable on M, and

fr= b

Proof: Given f is integrable, there exists a sequence (Ag)52 ; of divisions of P with U(f, Ay) — L(f, Ax)-==0.
Refine every Ay to a division A) = & x ¥y, where @, is a division of M and ¥y, is a division of N.
For every k > 1, we have U(F, ®x) < U(f,A}) < U(f,Ax) and L(F,®y) > L(f,A}) > L(f, Ag).
Hence we have U(F, ®y) — L(F, ®x) < U(f,Ax) — L(f, Ag) 7==0.
Therefore F' is integrable.

From a previous proposition, we have / F = lim [U(F,®y)]

M k—o0

And we also have U(f,Ay) > U(F,®y) > L(F,®) > L(f,Ax) soas k = oo, [ f> [, F > [pf
Therefore fMF: fP f-

Proposition 10.8. Let () # P C R™ be bounded, and let f: P — R be integrable, with f(Z) > 0 for all
# € P. Let S C R""! be the subgraph of f. Then S has volume, and vol(S) = fp f.

Proof: Pick a sufficiently large upper bound for for f, ¢ = sup{f} + 2.
P
Then clearly S C P x [0, c], which is a rectangle in R™*1,

Define x : P x [0,c] = R by x((Z,t)) = { (1) ;fls(:,t) es

It will be shown that x is integrable with / X = / f
Px[0,c] P

Since f is integrable, there exists a sequence (Ag)52 , of divisions of P such that U(f, Ag) — L(f, Ag) 5= 0c.
Moreover, we have that klim U(f,Ar)] = klim [L(f, Ak)]-
— 00 — 00
Suppose that Ay, = {Py, Py, ..., P.}.
For every 1 < i < r, denote a;; = i}r31f fand B; =sup f.
i P;

Constructﬁk:{Pix[O,aingigr}U{Pix[ai,ﬁi+%]‘1<i<r}U{Pi><[BiJr%,cngigr}.

sup x o= i%(l)f ]X =1 sup x = 1
) X 10,4 ) . B4 L
Note that Bx[0.0] _ . _ and Tixleafitzl hence we have
sup X = inf L X = 0 inf X =
Px[Bi+4.c] Px[Bitgc] P x [, Bit %]
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U(X,ﬁk) = ivol(Pi x [0,04]) - 1+ ivol(Pi X [a, Bi +1/K]) - 14+ ZT:UOZ(B x [Bi +1/k,c]) -0

=1 i=1 i=1

—Zvol ) - 1+Zvol Bi+1/k—a;)-1
—Zvol )(Bi + 1/k)

—Zvol 514—21101 )1/k
= U(f,Ak) + vol(P )/k
Similarly, we find L(x, Ay) = L(f, Ay). Then we have

U(x, Ar) — L(x, Ay) = U(f, Ak) — L(f, Ay) + vol(P) £ =20

Hence x is integrable. Moreover,

/ X = lim { (x, Ek)] = lim {U()@ Ek)} = lim [L(f,Ap)] = lim [U(f,Ag)] = / f
Px[0,c] k— o0 k— o0 k—o0 k—o0 P
Theorem 12.3. Let () # A C R” be an open set. Let f € C*(A,R). Then for every 7 = (v(M), 0 ... v() e R",
the directional derivative dgf exists, and we have Oz f = v (91 f) + - - - + v (D, f).
Proof: Fix @ € A and let Y1 v (9; f)( Q) =

It will be shown that (0zf)(a@) for alld € A ex1sts and is equal to L.

Given € > 0, use the lemma with ey o get 0o > 0 such that B(d;d,) C A.

2 (@) =S (2@ — a®) . (8 )
So then for every ¥ # d € B(a;J,), we have (@) = f(@) Zz:_,l( - ) - (9:4)(@) < ‘ -
14— | el

_ _J
Let 6 = T

It is claimed that for every ¢ # 0 such that |¢| < ¢, we have w - L ‘ < ¢, as follows.

Let ¢ # 0 be such that [¢| < 0.

Let & = @+ tv.

Then ||1: —dll = ||t7]] < §]|¥]] < o

Also () — o) = (a ()+tv())fa(l)*tv()forlgign.

Hence Z (29 — a0, f) (@) = Ztv@ (0if)(@) = tL.

i=1
Finally we have

’f(’f)—f(c?)—Z?—l(x“)—a(i))-(é’if)(d') ML (R
17—l ] T+ a0
[fEr0 SOtk 4
4 T+ a1
[LETEL PP
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Theorem 12.4. Let ) # A CR™ be an open set. Let @ € A and r > 0 be such that B(a;r

ie{l,...,

n} and let ¥, % € B(@;r) be such that they only differ in component i. Let f € C(

there exists b € B(@;r) such that f(Z) — f(7) = (y@ — z®)(8,£)(b).

Proof: The case (9 =y is trivial, so assume 2" < y(®.
Note that (x(l), A G BN Co s B ,m(")) € B(a;r) for all s € [Q;(i)’ y(i)]_
Define P [‘r(i)7 y(Z)} - R by ‘p(s) = (1.(1)’ v ax(i71)7 S, x(i+1)a cee ’x(n)) for all s € [x(i)a y(Z)]
Then ¢ is continuous on [z(*),y(*)].

Then ¢ is differentiable on ((?,4(), and for every s € (z(?,4"), we have ¢/(s) =

Apply the mean value theorem to ¢, so there exists s € (x(i), y(i)) such that

") — o) _
S0 g )

@) — 1) .
y(i) — 20 = (8Zf)( )

F@) = £@) = W = 29)(@:f)()

Theorem 13.4. [CHAIN RULE 1]
Let ) # A C R"™ be open with f € C'(A,R). Suppose v : I — R" is a differentiable path such that y(t) € A

for all t € I. Consider the composed function ¢ = f oy, with ¢ : I — R given by ¢(t) =

Then ¢ is differentiable and we have ¢'(t) = >0 (9; ) (v(#)) () (¢) for all t € 1.

Proof: Fix t, € I.

Denote @ := y(t,) = (YVt,,.. "(t,))
7 i=7/(t) = (1)t . (7(" )'(t6))
It will be proven that lim plto + hf)L plto) | _ ' (to) = (0zf)(@).

Choose r > 0 such that B(a;r) C A
Fix ¢ > 0 such that if ¥, 7 € B(a@

h#£0

;5), then | f(Z) — f(9)] < ¢l|lZ — ¢

Fix £ > 0 such that (t, — £,t, +£) C I and such that [t —t,| < £ => [|y(t) —v(t,)| < 5.

Use h # 0 such that |h| < £ and |h| <

Denote E = max{f, m}
For 0 < |h| < £, write

Qp(to + h) — @(to) f(’}/(to + h)) — f(’}/(to))

h h
_ f(y(to + 1)) = f(y(to) + hD) + f(y(to) + hv) — f(v(t0))
h h
_ JOlo +1) = fla+hv) | J(@+ho) - f(@)
h h

Now the limit of the first term as h — 0 will go to zero by the following:

fOy(to + 1)) = fla+ ho)
h

<CH'y(to—l—h)—a—hv
h

Y(to +h) — (o

( })L ( )_Vf(to)

V(i)(to + h) - 'Y(i)(tO)
h

-6V ()|

n
< CZ
i=1

Taking limits of the above, since the last line is a sum of n zeros, we have
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(8;f)(b) for b= p(s).

f(y(t)) for all ¢ € I.



iy [[ L0t 344D ]
h—0 h
Clearly, we also have }llirr%] {f(a + hq;l) — f(a)} = (0zf)(@), so the theorem is proved.
—

Theorem 14.15. Let ) # A C R" be open and f € C?(A,R) with @ € A a stationary point for f. If the
Hessian matrix (H f)(@) is positive definite, then & is a local minimum for f.

Proof: Pick 7 > 0 as in first lemma above. ~
Then for every b # @ in B(d;r/2) we have ¢ € Co(d,b) C B(d;r/2).
Therefore f(b) — f(a@) = to(T )2 (V),¥) > 0 since (H f)(€) is positive definite.
Hence f(b) > f(a).

Proposition 15.3. [CHAIN RULE 2]
Let ACR" B CR™ be open nonempty sets. Let f& C'(A,R™) such that f(&) € B for all ¥ € A.
Suppose also g € C*(B,RP). Consider h =go f: A— RP defined by h(%) = g(f(Z)) for £€ A. Then

(Jh)(@) = (Jg)(f(Z)) - (J])(Z) for all ¥ € A.

Proof: This will be reduced to the chain rule as proved above.
FixreA 1<k<p, 1<j<n.

*) (¢ N pR)(F s

It will be shown that 1%13 [h (Z+ te;) h (x)} (0; h(k) Z (0s g(k) ) - (9; f(z))< r) .
t#0 i=1

For & € A, there exists r > 0 such that B(&;r) C A, in particular & +t€; € A for all t € (—r, 7).

Define v : (—=r,7) = B CR™ by (t) = f(& +te;) for t € (—r,71).

Apply the chain rule above to v and to ¢(¥) e C1(B,R™).

Define ¢ : (—r,7) = RP by o(t) = g™ (y(t)) for t € ( T, 7).

Observe that for every t € (—r,r), we have ¢(t) = g™ (y(1)) = g® (f(Z + t&;)) = hF(Z + t&)).
(k) (7 42\ _ 1K) (5
Then we have lim {h (Z+165) — b (x)] = lim { () — (0 )}
o t 20 t

Proving the necessary limit then amounts to proving that ¢ is differentiable at 0 and that ¢’(0) is the
desired limit.

Now it will be shown that ~ is a differentiable path with a formula for +/(¢).

Then we have

, (#) — ~®) @ (z Z) — FO) (7 4 tes
(0 (@) = tiy | TR gy | FEEE 000 2 T 16)]
o s o s
iy [ £ 518,06 = £ 1)
s—0 S
s#£0
= (0, fD)(& + 1)
Now apply chain rule 1 to ¢ = g*) oy to get
' (0) = (3" (7(0)(v)' (0)
i=1

—209’“) 2)(0;£9)(@)

And this is the desired limit.
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Lemma 16.2. Let M = [a;;] € M« (R) be invertible. Then there exists A > 0 such that if N = [8;;] € M, xn(R)
with |a;; — Bi;| < A for all 4, j, then N is invertible as well.

Proof: Denote |det(M)| =€ > 0, since M is invertible.
Recall that the determinant of an n x n matrix T is a polynomial P, of the matrix with P, (T) = det(T).
So we have continuity of P, at (aq1, @12, .., Qny) for €/2.
Hence there exists ¢ > 0 such that ||(811, 812, .-+, Bnn) — (@11, @12, -« y Qi) || < 9.
This implies that |P,((811, 812, -, Bnn)) — Pa((11, @12, - -y ann))| < €/2.
Let A =4d/n.
If N = [B;;] has |B;; — auj| < A for all 4, j, then we get

1(B11, Bz, - - Bun) — (@11, @12, ..y ang) || = Z(ﬁzj — ;)2

]
< Vn2Z)\2
=nA
=4

Then also
e = |det(M)|
< |det(N)] + |det (M) — det(N)|

)
< |det(NV)
|det(N)| > €/2

| +¢/2

Therefore N is invertible.

Proposition 16.3. Let A C R” be open and @ € A, with f € C1(A,R") such that (Jf)(a@) is invertible.
Then there exists r > 0 such that B(d;r) C A and f is one-to-one on B(@;r).

Proof: Denote (Jf)(@) = M = [ay;], which is invertible, with a;; = (9;f)(a).
Lemma gives a A > 0 such that if N = [5;;] with |5;; — a;;| < A for all 1 <4, j < n, then N is invertible.
Due to continuity of ajf(i)at d, we can find r > 0 such that B(d@;r) C A and such that
1(0; fD)&) — (0; D) (@)] < A for all T € B(@;r).
Assume that f is not one-to-one on B(a;r).
Hence there exists g, ¢ € B(d;r) such that f(p) = f(q).
For every 1 < i < n, apply the mean value theorem to f*) € C'(A4,R) between 7 and ¢.
The mean value theorem gives a point & € Co(@, b) such that 0 = f®(5) — fO(g) = (VD) &), 7 — @)

(V) (&)
, _ (Vf®)(E) , D om -
Consider the matrix N = . where N = [B;;] with §;; = (ajf(z))(ci) forall 1 < 4,5 < n.
(V™)) | |
By choice of r and because ¢ € B(a@;r), we get |Bi; — ai;| = [(9;fD)(&) — (9;fD)(@)| < A for all

1<i,7<n.
Hence N is invertible.
Since (V@) (&), p— ¢ =0 for all 1 <4 < n, we have that p— ¢ € Null(N).
This is a contradiction, since N is invertible, we have Null(N) = {0}.
Therefore f is one-to-one on B(d;r).
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