
Compact course notes

Math 249, Fall 2010
Introduction to Combinatorics

Professor: D. Wagner
transcribed by: J. Lazovskis

University of Waterloo
December 16, 2010

Contents

I Enumeration 2

1 Relations and strings 2
1.1 Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Binary strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Regular languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Block decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Paths and trees 3
2.1 Latice paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Plane planted trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Graph theory 4

3 Walks, trails and paths 4
3.1 Base definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Networking and connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Minimally connected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Planar graphs 6
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Kuratowski and Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Plane coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Bipartite graphs 8
5.1 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Alternating paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

III Identities 10

IV Selected proofs 11

V Algorithms 12

1



File I

Enumeration

1 Relations and strings

1.1 Recurrence relations

The Fibonacci numbers fn are given by: fn =
1 +
√

5

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

Theorem 1.1.1. [The Binomial Theorem]

For any rational number a, (1 + x)a =
∑
k>0

(
a
k

)
xk

1.2 Binary strings

Definition 1.2.1. A binary string is σ = b1b2 . . . bn such that each bi ∈ {0, 1} for 1 6 i 6 n.

Definition 1.2.2. The length of σ = b1b2 . . . bn is given by `(σ) = n.

The infinite set of all binary strings is given by {0, 1}∗.
The unique binary string of length 0 is denoted by ε and is denoted the empty string.

Definition 1.2.3. Given a set of binary strings A, the generating function of A is defined to be

ΦA(x) =
∑
σ∈A

x
ω1(σ)
1 x

ω2(σ)
2 · · ·xωm(σ)

m =

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

cn1x
n1
1 cn2x

n2
2 · · · cnmx

nm
m

where [xn1 ] = cni
= ωi(σ), where ωi is a function that keeps track of a certain property of σ.

1.3 Regular languages

Definition 1.3.1. A regular language is

Proposition 1.3.2. [Properties of regular languages
· {ε}, {0}, {1}, ∅ are regular languages
· If A and B are regular languages, then their union A ∪B is a regular language
· If A and B are regular languages, then their concatenation AB = {αβ

α ∈ A, β ∈ B} is also

· If A is a regular language, then its iteration A∗ = {α1α2 . . . αn
n ∈ N and each αi ∈ A} is also

Proposition 1.3.3. Every finite set A ⊂ {0, 1}∗ is a regular language.

Definition 1.3.4. Given sets of binary strings A,B, their union is said to be ambiguous if their intersection is
non-empty. Similarly, their concatenation is said to be ambiguous when the same string may be constructed
in more than one unique way.

Eg. {011, 101} ∪ {10100, 101} is ambiguous
{011, 01}{10, 0} is ambiguous

Proposition 1.3.5. [Construction of generating functions]
· If A ∪B is unambiguous, then ΦA∪B(x) = ΦA(x) + ΦB(x)
· If AB is unambiguous, then ΦAB(x) = ΦA(x)ΦB(x)

2



1.4 Block decompositions

Definition 1.4.1. Let σ be a string. Then a block is a maximal substring of consecutive equal bits.

Remark 1.4.2. The following are common block decompositions:
{0, 1}∗ = 0∗(1∗1 0∗0)∗1∗

= 1∗(0∗0 1∗1)∗0∗

{0, 1, 2}∗ = {0, 1}∗(2∗2({0, 1}∗ \ {ε}))∗2∗
= {1, 2}∗(0∗0({1, 2}∗ \ {ε}))∗0∗
= {2, 0}∗(1∗1({2, 0}∗ \ {ε}))∗1∗

Theorem 1.4.3. Let D ⊂ {1, . . . , b}∗ be the set of strings with no two consecutive equal bits. Then the
generating function for D is

D (x1, . . . , xb) =
1

1−
(

x1

1+x1
+ · · ·+ xb

1+xb

) =

(
1−

b∑
i=1

xi
1 + xi

)−1

where xi is the generating function for i∗i, with respect to the b-ary alphabet it came from.

Remark 1.4.4. The set {1, 2, . . . , b}∗ has generating function 1
1−bx .

The number of strings of length n in this set is bn.

Theorem 1.4.5. If α is a self-avoiding b-ary string such that N ⊂ {1, 2, . . . , b} does not contain α as a
substring, then {1, 2, . . . , b} = N (αN )∗. Further, if |α| = a, then ΦN (x) = 1

1−bx+xa .

1.5 Multisets

The expression

(
m+ k − 1
m− 1

)
is the number of (m− 1)-element subsets of a set of size m+ k − 1 ∀k ∈ N.

The coefficient of xk in

∞∑
k=0

(
m+ k − 1
m− 1

)
xk =

1

(1− x)m
=

∑
{n1,...,nm}∈N

xn1+···+nm

is the number of sequences {n1, n2, . . . , nm} with each ni ∈ N and n1 + n2 + · · ·+ nm = k.

Remark 1.5.1. There is an isomorphism between(
multisets of size n with t types

)
and

(
(t− 1)-element subsets of {1, 2, . . . , n+ t− 1}

)
Proposition 1.5.2.
The probability of having exactly k p-type elements is a set of length n containing t types of elements is

P =
n+t−1−kCt−1(

n+t−1
t−1

)

2 Paths and trees

2.1 Latice paths

· On a square lattice grid, the number of ways to get from (0, 0) to (a, b) by only moving N (north) and E

(east) is

(
a+ b
a

)
=

(
a+ b
b

)
. Given the restriction that the path to (a, b) may not cross the diagonal x = y,

the number of paths is c(a, b) =
(

1− a
b+1

)(
a+ b
b

)

3



Definition 2.1.1. With respect to above, if (a, b) lies on the diagonal x = y, then c(n, n) =
1

n+ 1

(
2n
n

)
is

the n-th Catalan number.
Moreover, these paths are then termed super-diagonal lattice paths, or Dyck paths.

Remark 2.1.2. There exists a bijection between Dyck paths and well-formed parenthesizations.

2.2 Plane planted trees

Definition 2.2.1. A plane planted tree has
· a root node
· a finite number of nodes
· every node has k > 0 children

Theorem 2.2.2. [Lagrange implicit function theorem]
Let G(u) be a power series with non-zero constant term, i.e [x0]G(u) 6= 0. Then

1. There exists a unique power series R(x) such that R(x) = xG(R(x))
2. [x0]R(x) = 0 and for all n > 1, [xn]R(x) = 1

n [un−1]G(u)n.

Remark 2.2.3. There is a bijection among every pair of
· plane-planted trees
· well-formed parenthesizations
· binary root rees

File II

Graph theory

3 Walks, trails and paths

3.1 Base definitions

Definition 3.1.1. A graph, denoted by G = (V,E) where
· V is a finite set of vertices
· E is a finite set of 2-element subsets of V , termed edges

Definition 3.1.2. The degree of a vertex v in a graph G = (V,E) is the number of edges connected to v,
or the number of occurrences of v in E.

Definition 3.1.3. A graph is said to be k-regular is every vertex of the graph has degree k.

Remark 3.1.4. More general graphs are termed multigraphs or directed graphs. A subset of these, simple
graphs, are discussed below, and do not contain directed edges, multiples edges, or loops.

Definition 3.1.5. Graphs G = (V,E) and H = (W,F ) are isomorphic if there is a function f : V →W s.t.
· f is a bijection
· For any v, w ∈W , {f(u), f(w)} ∈ F ⇐⇒ {v, w} ∈ E

This relationship is then denoted by G ∼= H.

Definition 3.1.6. For a graph G = (V,E) , a subgraph of G is a graph H = (W,F ) with W ⊂ V and F ⊂ E.

Definition 3.1.7. If a subgraph H = (W,F ) of G = (V,E) such that F consists of edges in G with both
ends in W , then H is termed an induced subgraph of G.

Note that (∅, ∅) is a subgraph of every graph.

4



Definition 3.1.8. A perfect matching of a graph is a 1-regular spanning subgraph.

Definition 3.1.9. A walk in a graph G = (V,E) is a sequence W = v0e1v1 . . . ekvk for vi ∈ V and
ei = {vi−1, vi} ∈ E. Vertices and edges in a walk do not have to be distinct.

Definition 3.1.10. A trail is a walk with no repeated edges.

Definition 3.1.11. A path is a trail with no repeated vertices.

3.2 Networking and connectedness

Definition 3.2.1. For a graph G = (V,E) , define a relation R on V by putting xRy for x, y ∈ V if there
exists a walk W : x = v0e1v1 . . . ekvk = y from x to y in G. Then we say that x reaches y.

Definition 3.2.2. The equivalence classes of R induce subgraphs of G termed the (connected) components
of G. Further, G is connected if and only if it contains one component.

Definition 3.2.3. A cycle is a 2-regular connected graph.

Proposition 3.2.4. Let G = (V,E) be a connected graph with x, y ∈ V . If there is a walk in G from x to
y, then there is a path in G from x to y.

Definition 3.2.5. The distance from x to y in G is the minimum number of edges of any path from x to y
in G, if there exists such a path. If x and y are in different components, then their distance between them
is defined to be ∞.

Definition 3.2.6. A subgraph H of G is spanning if H contains all the vertices of G. Note that G is the
only spanning-induced subgraph of G.

Definition 3.2.7. A Hamilton cycle in a graph G is a spanning subgraph that is a cycle.

Definition 3.2.8. A Gray code is a Hamilton cycle in Qd, where Qd denotes the d-dimensional cube.

Theorem 3.2.9. For all d > 2, Qd has a Hamilton cycle.

3.3 Minimally connected graphs

Definition 3.3.1. If G = (V,E) is a connected graph, then an edge e ∈ E is a cut edge if G \ e is not
connected.

Definition 3.3.2. A minimally connected graph is such that every edge of the graph is a cut edge.

Proposition 3.3.3. Let G = (V,E) be connected. Then e ∈ E is a cut edge if and only if e is not contained
in any cycle of G.

Lemma 3.3.4. Let G = (V,E) be a connected graph, and let e ∈ E be a cut edge e = {x, y}. Then G \ e
has exactly two components X,Y with x ∈ V (X) and y ∈ V (Y ).

Theorem 3.3.5. A graph G = (V,E) is minimally connected if and only if G is connected and contains no
cycles.

Definition 3.3.6. A connected graph G which contains no cycles is a tree. A graph which only contains
trees is a forest.

Proposition 3.3.7. If T is a tree with p > 2 vertices, then T has at least 2 vertices of degree 1.

Proposition 3.3.8. A tree with p vertices has p− 1 edges.

5



Theorem 3.3.9. [2-out-of-3 theorem]
Let G = (V,E) be a graph with p vertices and q edges. Any two of the three conditions below together imply
the third:

1. G is connected
2. G contains no cycles
3. q = p− 1

Proposition 3.3.10. Every connected graph contains a spanning tree, and hence if it has p vertices, then
it has at least p− 1 edges.

Lemma 3.3.11. [Handshake lemma]

Let G = (V,E) be a graph with q edges. Then
∑
v∈V

deg(v) = 2q.

4 Planar graphs

4.1 Definitions

Definition 4.1.1. A plane embedding of a graph G = (V,E) is a set {p(v)
v ∈ V } of distinct points in R2

indexed by V and distinct curves {γe
e ∈ E} ⊂ R2 indexed by E such that

1. If e = {x, y}, then γe has endpoints p(x), p(y)
2. Each γe is a simple curve
3. Each γe does not contain p(v) unless v ∈ e
4. If γe and γf intersect, then they intersect only at a common endpoint

Definition 4.1.2. A graph is planar if it has a plane embedding. Note that a graph may have more than 1
unique plane embedding.

Definition 4.1.3. A subdivision of a graph is the discussed graph with vertices of degree 2 added on the
edges of the graph.

4.2 Kuratowski and Euler

Definition 4.2.1. A complete graph Kn is an (n− 1)-regular graph with n vertices. That is, each vertex
is connected to every other vertex by an edge.

Note that Ki for i ∈ [1, 4] is planar, whereas Kj for j > 5 fail to be.

Definition 4.2.2. A complete bipartite graph Ka,b is a graph G = (V,E) such that V = A ∪B and
A ∩B = ∅, with |A| = a and |B| = b, and every vertex in A is connected to every vertex in B.

Note that K3,3 is not planar.

Theorem 4.2.3. [Kuratowski’s theorem]
A graph is planar if and only if it does not contain a subdivision of K5 or K3,3 as a subgraph.

Definition 4.2.4. The connected components of R2 \

(⋃
e∈E

γe

)
are termed the faces of the embedded graph.

Definition 4.2.5. The degree of a face F is the sum of the lengths of the closed walks around the boundary
of F .

Proposition 4.2.6. [Handshake lemma for faces]

For any graph G = (V,E) properly embedded in the plane,
∑

faces F

deg(F ) = 2|E|

6



Lemma 4.2.7. Let G = (V,E) be a graph properly embedded in the plane. Let e ∈ E. Let F and F ′ be
the faces on the two sides of the curve γe. Then F = F ′ ⇐⇒ e is a cut edge of E.

Theorem 4.2.8. [Euler’s formula]
Let G = (V,E) be a graph properly embedded in the plane. Then if G has

p vertices
q edges
r faces
c connected components

 then p− q + r = c+ 1

Proposition 4.2.9. Let G = (V,E) be a graph properly embedded in the plane with p vertices and q > 2
edges. Then q 6 3p− 6.

Proposition 4.2.10. Let G = (V,E) be a graph properly embedded in the plane with p vertices and q edges
and no cycles of length 3. Then q 6 2p− 4.

Definition 4.2.11. The girth of a graph G = (V,E) is the minimum length of a cycle in G (or defined to
be ∞ if G is a tree).

Definition 4.2.12. Let G = (V,E) be a connected graph. For each v ∈ V , let c(v) be the maximum value
of distG(v, w) for all w ∈ V . The radius of G is defined to be the maximum value of c(v) for all v ∈ V .

4.3 Plane coloring

Definition 4.3.1. A proper coloring of a graph G = (V,E) properly embedded in the plane is a function
f : V → {1, 2, . . . , k} such that if e = {v, w} ∈ E, then f(v) 6= f(w).

Proposition 4.3.2. A plane graph cannot be properly colored if any only if it has a cut edge.

Definition 4.3.3. Let G = (V,E) be a graph properly embedded in the plane. For each face F of G, pick
a point F ∗ in F . For each edge e of G, let F1 and F2 be the faces bordering γe. Draw a curve e∗ from
F ∗1 to F ∗2 that intersects the graph G at a single point that is in γe. This can be done so that the points
F ∗ and curves e∗ also form a graph properly embedded in the plane. The unique such graph is termed the
planar dual of G, and is denoted G∗.

Definition 4.3.4. The minimum value of k (with respect to the coloring function) for which G has a proper
coloring is the chromatic number of G, denoted by χ(G).

Definition 4.3.5. Let G = (V,E) be a planar graph. List the vertices L : v1, v2, . . . , vp in some order. Let
d(vi) be the number of neighbors vi has among its predecessors. Let t(L) be the maximum of d(vi) over all
i. Define θ(G) to be the minimum of t(L) over all ways L of listing the vertices. This number is then termed
the online width of G.

Proposition 4.3.6. χ(G) 6 θ(G) + 1

Definition 4.3.7. For G = (V,E) planar, define ∆(G) to be the maximum degree of any vertex of G.
Trivially we have that θ(G) 6 ∆(G).

Theorem 4.3.8. Let G = (V,E) be a planar graph. Then G has a vertex of degree at most 5.

Theorem 4.3.9. Every planar graph G has θ(G) 6 5.

Theorem 4.3.10. [Five-color theorem]
Every planar graph may be properly colored with at most 5 colors. Or, for any G planar, χ(G) 6 5.

7



5 Bipartite graphs

5.1 Matchings

Definition 5.1.1. A matching in a graph G = (V,E) is a set M of edges M ⊆ E such that (V,M) is a
spanning subgraph of G of maximum degree 6 1.

To clarify: In a matching, every vertex v ∈ V is incident with at most one edge in M .

Definition 5.1.2. A perfect matching is a spanning matching, or a 1-regular spanning subgraph.

Definition 5.1.3. A vertex-cover in a graph G = (V,E) is a subset S ⊆ V such that each edge of G is
incident with at least one vertex in S.

Lemma 5.1.4. Let G = (V,E) be a graph, M a matching in G, and S a vertex-cover in G. Then |M | 6 |S|.

Remark 5.1.5. Let G = (V,E) be a graph, M a matching in G, and S a vertex-over in G. If |M | = |S|,
then M is a maximum size matching and S is a minimum size vertex-cover.

Theorem 5.1.6.∗ [König’s theorem]
Let G = (V,E) be a bipartite graph, M a maximum matching in G, and S a minimum vertex-over in G.
Then |M | = |S|.

5.2 Alternating paths

Definition 5.2.1. Let G = (V,E) be a graph, and M a matching in G. A vertex v ∈ V is M -saturated if
it is incident with at least one edge of M , and M -unsaturated if it not.

Definition 5.2.2. A path P : v0e1v1 . . . ekvk is M -alternating if every second edge is in M , and every second
edge is not in M .

Definition 5.2.3. An M -augmented path is an M -alternating path with first and last vertex both M -
unsaturated and not the same vertex.

Definition 5.2.4. The symmetric difference of two sets of vertices A,B is

A4B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B)

Lemma 5.2.5. Let G = (V,E) be a graph, M a matching, and P and augmented path.
Then M ′ = M 4 E(P ) is a matching in G with |M ′| = 1 + |M |, so M is not a maximum matching.

Observation 5.2.6. Construct a bipartite graph G = (V,E) with bipartition (A,B). Then
Let Xo ⊆ A be the set of M -unsaturated vertices in A.
Let X ⊆ A be the set of vertices in A connected to some xo ∈ Xo by an M -alternating path.
Let Y ⊆ B be the set of vertices in B connected to some xo ∈ Xo by an M -alternating path.

Then the following three observations may be made:
1. There are no edges of G between X and B \ Y .
2. There are no edges of M between Y and A \X.
3. If M is a maximum matching, then every vertex in Y is M -saturated.

Definition 5.2.7. Let G = (V,E) be a bipartite graph with bipartition A ∪B = V . A matching M such
that it contains every vertex in A is an A-saturating matching.

Definition 5.2.8. For a graph G = (V,E) with bipartition A ∪B = V , for S ⊆ A, define the neighbors of

S by the set N(S) = {w ∈ B
{v, w} ∈ E for some v ∈ S}.

Remark 5.2.9. [Hall’s condition]
If a graph G = (V,E) has an A-saturating matching given a bipartition A ∩B = V , then for all S ⊆ A,
|N(S)| > |S|.

8



Theorem 5.2.10. [Hall’s theorem]
A graph G = (V,E) with bipartition A ∩B = V has an A-saturating matching if and only if it satisfies Hall’s
condition.

Corollary 5.2.11. If k > 1, then any k-regular bipartite graph has a perfect matching.

9



File III

Identities
1

(1− x)m
=

∞∑
k=0

(
m+ k − 1
m− 1

)
xk

(
a+ b
a

)
=

(
a+ b
b

)
lim
n→∞

[(
1 +

x

n

)n]
= ex

10



File IV

Selected proofs
Theorem 5.1.5. [König’s theorem]
Let G = (V,E) be a bipartite graph, M a maximum matching in G, and S a minimum vertex-over in G.
Then |M | = |S|.

Proof: Let G have a bipartition (A,B) and M be a maximum matching in G.
Let Xo ⊆ A be the set of M -unsaturated vertices in A.
Let X ⊆ A be the set of vertices in A connected to some xo ∈ Xo by an M -alternating path.
Let Y ⊆ B be the set of vertices in B connected to some xo ∈ Xo by an M -alternating path.

Note that X = Y ∪ (A \X) is a vertex cover of G.
Every vertex in S is M -unsaturated, since Xo ⊆ A and by observation 3.
By observation 2, there is no edge of M with both ends in S.
Every edge of M has exactly one end in S and every vertex in S has exactly one edge in M .
So there is a one-to-one and onto correspondence between M and S: every e ∈M is matched with a

v ∈ S if and only if v ∈ e.
Hence |S| = |M |.

11



File V

Algorithms
All algorithms are in Python.
All input graphs are of form G = [[x1, y1], [x2, y2], ..., [xn, yn]] for vertices xi and yi.

Algorithm 5.1.1. [Search tree algorithm]
Input: A set of edges E of a graph G = (V,E) , a vertex v ∈ V .
Output: A spanning tree for the component containing v.

def st(G,v):

W = [v]

F = []

D = []

while 1==1:

for i in G:

if (i[0] in W and i[1] not in W) or (i[1] in W and i[0] not in W):

D.append(i)

if D == []:

return F

else:

if D[0][0] not in W:

W.append(D[0][0])

F.append(D[0])

else:

W.append(D[0][1])

F.append(D[0])

D = []

Algorithm 5.1.2. [Distance computing algorithm]
This algorithm is a special case of the search tree algorithm. It uses Prim’s algorithm and the BFS.

Input: A set of edges E of a graph G = (V,E) , a root vertex v ∈ V .
Output: A spanning tree rooted at v for the component containing v.

def d(G,v):

W = [v]

F = []

Q = [v]

D = []

while len(Q) != 0:

s = Q[0]

for i in G:

if s == i[0] and i[1] not in W:

D.append(i)

elif s == i[1] and i[0] not in W:

D.append(i)

while len(D) != 0:

for j in D:

if s == j[0]:

W.append(j[1])

Q.append(j[1])

elif s == j[1]:

W.append(j[0])

12



Q.append(j[0])

F.append(j)

D.remove(j)

Q.remove(s)

return F

13


