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File 1
Enumeration

1 Relations and strings

1.1 Recurrence relations

n n

1 1 —1({1-

The Fibonacci numbers f,, are given by: f, = +V5 (145 + V5 V5
2\/5 2 2\/5 2

Theorem 1.1.1. [THE BINOMIAL THEOREM]

For any rational number a, (1 + z)* = Z (Z) zk
k>0

1.2 Binary strings
Definition 1.2.1. A binary string is o = b1bs . ..b, such that each b; € {0,1} for 1 <i < n.
Definition 1.2.2. The length of 0 = b1by ... b, is given by ¢(c) = n.

The infinite set of all binary strings is given by {0, 1}*.
The unique binary string of length 0 is denoted by € and is denoted the empty string.

Definition 1.2.3. Given a set of binary strings A, the generating function of A is defined to be

0o oo oo
— wi (o), wa(o) wm (o) _ ni no T
(I)A('r) = E Ty Lo Ty = Cny 1 Cnglo™ =" Cnypy Ty

occA n1=0n2=0 Ny, =0

where [2]] = ¢,,, = w;(0), where w; is a function that keeps track of a certain property of o.

1.3 Regular languages
Definition 1.3.1. A regular language is

Proposition 1.3.2. [PROPERTIES OF REGULAR LANGUAGES

- {e}, {0}, {1}, 0 are regular languages

- If A and B are regular languages, then their union AU B is a regular language

- If A and B are regular languages, then their concatenation AB = {a8 ‘ a € A, B € B} is also

- If A is a regular language, then its iteration A* = {@1as...ay, ‘ n € N and each «; € A} is also

Proposition 1.3.3. Every finite set A C {0,1}* is a regular language.

Definition 1.3.4. Given sets of binary strings A, B, their union is said to be ambiguous if their intersection is
non-empty. Similarly, their concatenation is said to be ambiguous when the same string may be constructed
in more than one unique way.

Eg. {011,101} U {10100, 101} is ambiguous
{011,01}{10,0} is ambiguous
Proposition 1.3.5. [CONSTRUCTION OF GENERATING FUNCTIONS]

- If AU B is unambiguous, then ®4,p(z) = P4(x) + Pp(z)
- If AB is unambiguous, then ® 45(z) = P 4(z)Pp(x)



1.4 Block decompositions

Definition 1.4.1. Let o be a string. Then a block is a maximal substring of consecutive equal bits.

Remark 1.4.2. The following are common block decompositions:
{0,1}* = 0*(1*1 0*0)*1*
=1*(0*0 1*1)*0*
{0,1,2}" ={0,1}7(2"2({0, 1}* \ {e}))*2"
= {1,2}*(0"0({1,2}" \ {e}))*0"
= {2,01" (1" 1({2, 0} \ {e}))"1*

Theorem 1.4.3. Let D C {1,...,b}* be the set of strings with no two consecutive equal bits. Then the
generating function for D is

1 T
D = = 1_§
(331, ’xb) 1_( T L Tp ) ( . 1+$z>

1+x1 1+xp i=1

—~~

1*

-1

where x; is the generating function for i*i, with respect to the b-ary alphabet it came from.

Remark 1.4.4. The set {1,2,...,b}* has generating function 1jbx.
The number of strings of length n in this set is b".

Theorem 1.4.5. If a is a self-avoiding b-ary string such that A" C {1,2,...,b} does not contain « as a

substring, then {1,2,...,b} = N(aN)*. Further, if |a| = a, then P (z) = m.

1.5 Multisets

The expression (mn—; ﬁ; 1) is the number of (m — 1)-element subsets of a set of size m +k — 1 Vk € N.
o~ (m+k—1 1
The coefficient of .I‘k in Z ( m—1 ) l'k = m = Z xn1+---+nm
k=0 {n1,....,nm }EN
is the number of sequences {ny,na,...,ny,} with each n; € Nand ny +ng + -+ +n,,, = k.

Remark 1.5.1. There is an isomorphism between
( multisets of size n with ¢ types ) and ((t — 1)-element subsets of {1,2,...,n+t— 1})

Proposition 1.5.2.
The probability of having exactly k p-type elements is a set of length n containing ¢ types of elements is

_1-1Ct—
P = n+zn]:&-t51; -
t—1

2 Paths and trees

2.1 Latice paths
- On a square lattice grid, the number of ways to get from (0, 0) to (a,b) by only moving N (north) and E

cast) is (¢ tb —(*t b . Given the restriction that the path to (a,b) may not cross the diagonal x = y,
a b

the number of paths is ¢(a, b) = (1 _ ﬁl) <a —l|)— b>



1
Definition 2.1.1. With respect to above, if (a,b) lies on the diagonal z = y, then ¢(n,n) = 1 <2n> is
n

the n-th Catalan number.
Moreover, these paths are then termed super-diagonal lattice paths, or Dyck paths.

Remark 2.1.2. There exists a bijection between Dyck paths and well-formed parenthesizations.

2.2 Plane planted trees

Definition 2.2.1. A plane planted tree has
- a root node
- a finite number of nodes
- every node has k > 0 children

Theorem 2.2.2. [LAGRANGE IMPLICIT FUNCTION THEOREM]|

Let G(u) be a power series with non-zero constant term, i.e [z°]G(u) # 0. Then
1. There exists a unique power series R(z) such that R(z) = 2G(R(x))
2. [2°)R(z) =0 and for all n > 1, [2"|R(z) = L [u" "G (u)".

n

Remark 2.2.3. There is a bijection among every pair of
- plane-planted trees
- well-formed parenthesizations
- binary root rees

File II
Graph theory

3 Walks, trails and paths

3.1 Base definitions

Definition 3.1.1. A graph, denoted by G = (V, FE) where
-V is a finite set of vertices
- E is a finite set of 2-element subsets of V', termed edges

Definition 3.1.2. The degree of a vertex v in a graph G = (V, E) is the number of edges connected to v,
or the number of occurrences of v in E.

Definition 3.1.3. A graph is said to be k-regular is every vertex of the graph has degree k.

Remark 3.1.4. More general graphs are termed multigraphs or directed graphs. A subset of these, simple
graphs, are discussed below, and do not contain directed edges, multiples edges, or loops.

Definition 3.1.5. Graphs G = (V, E) and H = (W, F') are isomorphic if there is a function f: V — W s.t.
- f is a bijection
- For any v,w € W, {f(u), f(w)} € F <= {v,w} € E

This relationship is then denoted by G = H.

Definition 3.1.6. For a graph G = (V, E) , a subgraph of G is a graph H = (W, F) with W C Vand F C E.

Definition 3.1.7. If a subgraph H = (W, F') of G = (V, E) such that F consists of edges in G with both
ends in W, then H is termed an induced subgraph of G.

Note that (0,0) is a subgraph of every graph.



Definition 3.1.8. A perfect matching of a graph is a 1-regular spanning subgraph.

Definition 3.1.9. A walk in a graph G =(V,E) is a sequence W =wgejv;...exv, for v; € V and
e; = {v;_1,v;} € E. Vertices and edges in a walk do not have to be distinct.

Definition 3.1.10. A trail is a walk with no repeated edges.

Definition 3.1.11. A path is a trail with no repeated vertices.

3.2 Networking and connectedness

Definition 3.2.1. For a graph G = (V, E) , define a relation R on V by putting 2Ry for z,y € V if there
exists a walk W : x = vgeqvy ... exvp =y from = to y in G. Then we say that x reaches y.

Definition 3.2.2. The equivalence classes of R induce subgraphs of G termed the (connected) components
of G. Further, G is connected if and only if it contains one component.

Definition 3.2.3. A cycle is a 2-regular connected graph.

Proposition 3.2.4. Let G = (V, E) be a connected graph with =,y € V. If there is a walk in G from z to
1y, then there is a path in G from x to y.

Definition 3.2.5. The distance from x to y in G is the minimum number of edges of any path from z to y
in G, if there exists such a path. If  and y are in different components, then their distance between them
is defined to be oco.

Definition 3.2.6. A subgraph H of G is spanning if H contains all the vertices of G. Note that G is the
only spanning-induced subgraph of G.

Definition 3.2.7. A Hamilton cycle in a graph G is a spanning subgraph that is a cycle.
Definition 3.2.8. A Gray code is a Hamilton cycle in @4, where Q4 denotes the d-dimensional cube.

Theorem 3.2.9. For all d > 2, ); has a Hamilton cycle.

3.3 Minimally connected graphs

Definition 3.3.1. If G = (V,E) is a connected graph, then an edge e € E is a cut edge if G\ e is not
connected.

Definition 3.3.2. A minimally connected graph is such that every edge of the graph is a cut edge.

Proposition 3.3.3. Let G = (V, E) be connected. Then e € F is a cut edge if and only if e is not contained
in any cycle of G.

Lemma 3.3.4. Let G = (V, E) be a connected graph, and let e € E be a cut edge e = {z,y}. Then G\ e
has exactly two components X,Y with z € V(X) and y € V(Y)).

Theorem 3.3.5. A graph G = (V, E) is minimally connected if and only if G is connected and contains no
cycles.

Definition 3.3.6. A connected graph G which contains no cycles is a tree. A graph which only contains
trees is a forest.

Proposition 3.3.7. If T is a tree with p > 2 vertices, then T has at least 2 vertices of degree 1.

Proposition 3.3.8. A tree with p vertices has p — 1 edges.



Theorem 3.3.9. [2-OUT-OF-3 THEOREM|
Let G = (V, E) be a graph with p vertices and ¢ edges. Any two of the three conditions below together imply
the third:

1. G is connected

2. @ contains no cycles

3.q=p—-1

Proposition 3.3.10. Every connected graph contains a spanning tree, and hence if it has p vertices, then
it has at least p — 1 edges.

Lemma 3.3.11. [HANDSHAKE LEMMA]
Let G = (V, E) be a graph with ¢ edges. Then Z deg(v) = 2q.
veV

4 Planar graphs

4.1 Definitions

Definition 4.1.1. A plane embedding of a graph G = (V, E) is a set {p(v) | v € V'} of distinct points in R?
indexed by V and distinct curves {7. |e € E} C R? indexed by E such that

1. If e = {x,y}, then v, has endpoints p(z), p(y)

2. Each ~, is a simple curve

3. Each 7. does not contain p(v) unless v € e

4. If 7. and 7y intersect, then they intersect only at a common endpoint

Definition 4.1.2. A graph is planar if it has a plane embedding. Note that a graph may have more than 1
unique plane embedding.

Definition 4.1.3. A subdivision of a graph is the discussed graph with vertices of degree 2 added on the
edges of the graph.

4.2 Kuratowski and Euler

Definition 4.2.1. A complete graph K, is an (n — 1)-regular graph with n vertices. That is, each vertex
is connected to every other vertex by an edge.

Note that K; for ¢ € [1,4] is planar, whereas K for j > 5 fail to be.

Definition 4.2.2. A complete bipartite graph K, is a graph G = (V,E) such that V=AU B and
AN B =0, with |[A| = a and |B| = b, and every vertex in A is connected to every vertex in B.

Note that K3 3 is not planar.

Theorem 4.2.3. [KURATOWSKI’S THEOREM]
A graph is planar if and only if it does not contain a subdivision of K5 or K33 as a subgraph.

Definition 4.2.4. The connected components of R? \ ( U ’ye> are termed the faces of the embedded graph.
ecE

Definition 4.2.5. The degree of a face F' is the sum of the lengths of the closed walks around the boundary
of F.

Proposition 4.2.6. [HANDSHAKE LEMMA FOR FACES]
For any graph G = (V, E) properly embedded in the plane, Z deg(F) = 2|E|

faces F



Lemma 4.2.7. Let G = (V, E) be a graph properly embedded in the plane. Let e € E. Let F and F’ be
the faces on the two sides of the curve 7.. Then F' = F/ <= e is a cut edge of E.

Theorem 4.2.8. [EULER’S FORMULA]
Let G = (V, E) be a graph properly embedded in the plane. Then if G has
p vertices
q edges
r faces
¢ connected components

thenp—q+r=c+1

Proposition 4.2.9. Let G = (V, E) be a graph properly embedded in the plane with p vertices and g > 2
edges. Then g < 3p — 6.

Proposition 4.2.10. Let G = (V, E) be a graph properly embedded in the plane with p vertices and ¢ edges
and no cycles of length 3. Then ¢ < 2p — 4.

Definition 4.2.11. The girth of a graph G = (V, E) is the minimum length of a cycle in G (or defined to
be oo if G is a tree).

Definition 4.2.12. Let G = (V, E) be a connected graph. For each v € V, let ¢(v) be the maximum value
of distg (v, w) for all w € V. The radius of G is defined to be the maximum value of ¢(v) for all v € V.

4.3 Plane coloring

Definition 4.3.1. A proper coloring of a graph G = (V| E) properly embedded in the plane is a function
f:V —={1,2,...,k} such that if e = {v,w} € E, then f(v) # f(w).

Proposition 4.3.2. A plane graph cannot be properly colored if any only if it has a cut edge.

Definition 4.3.3. Let G = (V, E) be a graph properly embedded in the plane. For each face F' of G, pick
a point F* in F. For each edge e of G, let F; and F5 be the faces bordering .. Draw a curve e* from
Fy to Fy that intersects the graph G at a single point that is in .. This can be done so that the points
F* and curves e* also form a graph properly embedded in the plane. The unique such graph is termed the
planar dual of G, and is denoted G*.

Definition 4.3.4. The minimum value of k (with respect to the coloring function) for which G has a proper
coloring is the chromatic number of G, denoted by x(G).

Definition 4.3.5. Let G = (V, E) be a planar graph. List the vertices L : v1,vg,...,v, in some order. Let
d(v;) be the number of neighbors v; has among its predecessors. Let ¢(L) be the maximum of d(v;) over all
i. Define 6(G) to be the minimum of ¢(L) over all ways L of listing the vertices. This number is then termed
the online width of G.

Proposition 4.3.6. x(G) < 6(G) +1

Definition 4.3.7. For G = (V, E) planar, define A(G) to be the maximum degree of any vertex of G.
Trivially we have that (G) < A(G).

Theorem 4.3.8. Let G = (V, E) be a planar graph. Then G has a vertex of degree at most 5.
Theorem 4.3.9. Every planar graph G has 60(G) < 5.

Theorem 4.3.10. [FIVE-COLOR THEOREM]|
Every planar graph may be properly colored with at most 5 colors. Or, for any G planar, x(G) < 5.



5 Bipartite graphs

5.1 Matchings

Definition 5.1.1. A matching in a graph G = (V, E) is a set M of edges M C FE such that (V, M) is a
spanning subgraph of G of maximum degree < 1.

To clarify: In a matching, every vertex v € V is incident with at most one edge in M.

Definition 5.1.2. A perfect matching is a spanning matching, or a 1-regular spanning subgraph.

Definition 5.1.3. A vertex-cover in a graph G = (V, E) is a subset S C V such that each edge of G is
incident with at least one vertex in S.

Lemma 5.1.4. Let G = (V, E) be a graph, M a matching in G, and S a vertex-cover in G. Then |M| < |5].

Remark 5.1.5. Let G = (V, E) be a graph, M a matching in G, and S a vertex-over in G. If |M| = |5,
then M is a maximum size matching and S is a minimum size vertex-cover.

Theorem 5.1.6.% [KONIG’S THEOREM]
Let G = (V, E) be a bipartite graph, M a maximum matching in G, and S a minimum vertex-over in G.
Then |M| =S|

5.2 Alternating paths

Definition 5.2.1. Let G = (V, E) be a graph, and M a matching in G. A vertex v € V is M-saturated if
it is incident with at least one edge of M, and M-unsaturated if it not.

Definition 5.2.2. A path P : vgejvy ... exvy is M-alternating if every second edge is in M, and every second
edge is not in M.

Definition 5.2.3. An M-augmented path is an M-alternating path with first and last vertex both M-
unsaturated and not the same vertex.

Definition 5.2.4. The symmetric difference of two sets of vertices A, B is

AAB=(A\B)U(B\A) =(AUB)\ (AN B)

Lemma 5.2.5. Let G = (V, E) be a graph, M a matching, and P and augmented path.
Then M’ = M A E(P) is a matching in G with |M'| =14 |M]|, so M is not a maximum matching.

Observation 5.2.6. Construct a bipartite graph G = (V, E) with bipartition (A, B). Then
Let X, C A be the set of M-unsaturated vertices in A.
Let X C A be the set of vertices in A connected to some z, € X, by an M-alternating path.
Let Y C B be the set of vertices in B connected to some z, € X, by an M-alternating path.
Then the following three observations may be made:
1. There are no edges of G between X and B\Y.
2. There are no edges of M between Y and A\ X.
3. If M is a maximum matching, then every vertex in Y is M-saturated.

Definition 5.2.7. Let G = (V, E) be a bipartite graph with bipartition AU B =V. A matching M such
that it contains every vertex in A is an A-saturating matching.

Definition 5.2.8. For a graph G = (V, E) with bipartition AU B =V, for S C A, define the neighbors of
S by the set N(S) = {w € B|{v,w} € E for some v € S}.

Remark 5.2.9. [HALL'S CONDITION]
If a graph G = (V, FE) has an A-saturating matching given a bipartition AN B =V, then for all S C A,
IN(S)| = |S].



Theorem 5.2.10. [HALL’S THEOREM]
A graph G = (V, E)) with bipartition A N B = V has an A-saturating matching if and only if it satisfies Hall’s

condition.

Corollary 5.2.11. If £ > 1, then any k-regular bipartite graph has a perfect matching.
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Identities
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File IV
Selected proofs

Theorem 5.1.5. [KONIG’S THEOREM]

Let G = (V, E) be a bipartite graph, M a maximum matching in G, and S a minimum vertex-over in G.
Then | M| = |S].

Proof: Let G have a bipartition (A, B) and M be a maximum matching in G.
Let X, C A be the set of M-unsaturated vertices in A.
Let X C A be the set of vertices in A connected to some x, € X, by an M-alternating path.
Let Y C B be the set of vertices in B connected to some x, € X, by an M-alternating path.
Note that X =Y U (A \ X) is a vertex cover of G.
Every vertex in S is M-unsaturated, since X, C A and by observation 3.
By observation 2, there is no edge of M with both ends in S.
Every edge of M has exactly one end in S and every vertex in S has exactly one edge in M.
So there is a one-to-one and onto correspondence between M and S: every e € M is matched with a
v € S if and only if v € e.
Hence |S| = |M]|.

11



File V
Algorithms
All algorithms are in Python.

All input graphs are of form G = [[z1,y1], [x2,¥2], ---, [Tn, yn]] for vertices x; and y;.

Algorithm 5.1.1. [SEARCH TREE ALGORITHM]
Input: A set of edges F of a graph G = (V, E) , a vertex v € V.
Output: A spanning tree for the component containing v.

def st(G,v):

W= [v]
F =[]
D = []
while 1==1:

for i in G:
if (i[0] in W and i[1] not in W) or (i[1] in W and i[0] not in W):
D.append (i)
if D == []:
return F
else:
if D[0] [0] not in W:
W.append (D[0] [0])
F.append(D[0])
else:
W.append (D[0] [1])
F.append(D[0])
D =[]

Algorithm 5.1.2. [DISTANCE COMPUTING ALGORITHM]

This algorithm is a special case of the search tree algorithm. It uses Prim’s algorithm and the BFS.
Input: A set of edges F of a graph G = (V, E) , a root vertex v € V.
Output: A spanning tree rooted at v for the component containing v.

def d(G,v):
= [v]
=[]
= [v]
=0
while len(Q) '= O:
s = Q[0]
for i in G:
if s == i[0] and i[1] not in W:
D.append (i)
elif s == i[1] and i[0] not in W:
D.append (i)
while len(D) != O:
for j in D:
if s == j[0]:
W.append (j[11)
Q.append(j[11)
elif s == j[1]:
W.append (j [0])

o m=
|
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Q.append(j [01)
F.append(j)
D.remove(j)
Q.remove(s)
return F
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