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1 Background

1.1 Topology
Theorem 1.1. Let M be a compact manifold, and f : M → R a smooth function with 2 critical points. Then M is
homeomorphic to Sn.

1.1.1 Homotopy

For our uses, homomorphism is too restrictive. We will use homotopy, in which case the following figures are said to be
homotopic to each other.

≈ ≈

These spaces are known as, left to right, the pair of pants, the pair of underwear, and the g-string.

Definition 1.2. Let X,Y be topological spaces and f ; g : X → Y continuous functions. Then the maps f and g are termed
homotopic iff there exists a continuous map H : X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Example 1.3. Let X = S1 and Y = R2. Then

f(x) ≈ g(x)

Let X = S1 and Y = R2 \ {(0, 0)}. Then as now f(x) encircles a hole, and g(x) does not, one may not be deformed continously
in this space to get the other, so

f(x) 6≈ g(x)

Definition 1.4. A continuous map f : X → Y is termed a homotopy equivalence if there exists a continuos map g : Y → X
such that f ◦ g ∼= idY and g ◦ f ∼= idX . In this case, the spaces X and Y are termed homotopic. Note that this is an equivalence
relation.

Example 1.5. Let X = Rn \ {0} and Y = Sn−1 = {x ∈ Rn : |x| = 1}. Fix two maps:

f : X → Y
x 7→ x

|x| = x̂
g : Y → X

x 7→ x

Now check that they are homotopy equivalent.

(f ◦ g)(x) = f(x) = x

(g ◦ f)(x) = g(x̂) = x̂

Next consider the following two homotopies.

H1 : X × I → X
(x, t) 7→ tx+ (1− t)x̂

H2 : Y × I → Y
(x, t) 7→ x

Then we have that H1(x, 0) = x̂ = (g ◦ f)(x), and H1(x, 1) = x = idx. This shows that X and Y are homotopic.

1.1.2 Retracts

Definition 1.6. Let X be a topological space with A ⊆ X. Then A is termed a retract of X iff there exists a continuous map
r : X → A such that r(a) = a for all a ∈ A.

A simple example is X = S1 and A = {y} for some y ∈ S1, with r(x) = y.

Definition 1.7. Let X be a topological space with A ⊆ X. Then A is termed a deformation retract of X iff there exists a
retraction r : X → A and a homotopy H : X × I → X with:

H(x, 0) = x
H(x, 1) = r
H(a, t) = a ∀ a ∈ A, t ∈ I
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Lemma 1.8. If A is a deformation retract of X, then X ≈ A.

Proof: Let r : X → A be the retraction, and ι : A ↪→ X be the inclusion. It is clear that r ◦ ι = idA and ι ◦ r = idX , hence A
and X are homotopic. �

1.1.3 CW-complexes

In the finite case, CW stands for nice.

Definition 1.9. An n-cell is en, most commonly given by en = {x ∈ Rn : |x| 6 1}, with ∂en = Sn−1.

Definition 1.10. Let X be a topological space. Let f : ∂en = Sn−1 → X be a continuous map. Then gluing en to X via f
results in the space Y = X tf en = (X t en)/ ∼, for a ∼ f(a) for all a ∈ ∂en.

Example 1.11. For the map ϕ : ∂en → pt, we have en tϕ {pt} = Sn.

Example 1.12. The torus T 2 may be constructed by gluing cells together. Start with a point and attach two 1-cells to the
point by their boundaries as below.

Attach a 2-cell to the shape above, by the identification of ∂e2 as below.

∂e2 : →

The resulting shape will be T 2, which materializes by identifying in the same direction pairs of commonly labeled edges. Start
with the pair labelled by double arrows:

T 2 = ≈ ≈ ≈ ≈

This produces a cylinder, for which we now identify the other pair of arrows:

≈ ≈ = = T 2

Definition 1.13. A CW-complex may be constructed by starting with a finite number of discrete points, then attaching a
finite number of cells of varying dimension.

1.2 Differential geometry

1.2.1 Smooth manifolds

We wish to give our topological spaces some more structure.

Definition 1.14. A smooth n-manifold is a topological space M such that:

1. {Uα} covers M such that for each α, there exists a homeomorphism ϕα : Uα → ϕα(Uα) ⊆ Rn open
2. Where Uα ∩ Uβ 6= 0, the composition ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is a diffeomorphism
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Uα
Uβ

M

Rn Rn

ϕα(Uα) ϕα(Uβ)

ϕα ϕβ

Around each p ∈ M , we may pick a pair (Uα, ϕα) with p ∈ Uα, and thus give p local coordinates, as ϕα = (x1, . . . , xn). The
pair (Uα, ϕα) is termed a coordinate chart.

1.2.2 Smooth maps

Let M be a smooth m-manifold, and N a smooth n-manifold. We already know what it means for F : Rn → Rm to be smooth.

Definition 1.15. A map f : M → N is termed smooth if it is smooth locally everywhere, i.e. given p ∈ N , there exist charts
(U 3 p, ϕ) and (V 3 f(p), φ) with f(U) ⊆ f(V ), such that φ ◦ f ◦ ϕ−1 : ϕ(U)→ φ(V ) is smooth.

U

M N

V
p

f(p)

Rm Rn

ϕ(U) φ(V )

ϕ f
φ

1.2.3 Tangent spaces and pushforwards

Definition 1.16. (Geometric) Let (U,ϕ) be a coordinate chart around p. A tangent vector is as equivalence class of curves

through p, where a curve is a smooth map c : (−ε, ε)→M with c(0) = p, given c1 ∼ c2 iff (ϕ ◦ c1)′(0) = (ϕ ◦ c2)′(0).

The tangent space TpM at p is the set of all tangent vectors at p.

2 Foundations

2.1 Basic tools

2.1.1 The tangent space

Definition 2.1. Let M ⊇ U 3 p be a smooth manifold. For a chart ϕ : U → Ũ ⊆ Rn, define ApM by

ApM =
{

[(−ε, ε) c−−→M ] : c is smooth, c(0) = p, Im(c) ⊆ U
}

This space is restricted by the relation [c] = [c̃] iff (ϕ ◦ c)′(0) = (ϕ ◦ c̃)′(0). Further, the choice of chart is not important, as for
any other chart ψ : W → W̃ ⊆ R around p, we set [c] = ψ[c̃] iff [c] = ϕ[c̃].

Proposition 2.2. Let f, g ∈ C∞(R2,R) and p ∈ R2. Then

∂

∂x


p

(fg) =

(
∂

∂x


p

(f)

)
g(p) +

(
∂

∂x


p

(g)

)
f(p)

This is termed the product rule.
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Proposition 2.3. Suppose that ϕ : C∞(R2,R)→ R is R-linear, and satisfies, for some p ∈ R,

ϕ(fg) = ϕ(f)g(p) + ϕ(g)f(p) ∀ f, g

Then ϕ ∈ span

{
∂
∂x


p
, ∂
∂y


p

}
.

Definition 2.4. Let M ⊇ U 3 p be a smooth manifold. Define BpM by

BpM = {ϕ : C∞(M,R)→ R : ϕ is R-linear, ϕ(fg) = ϕ(f)g(p) + ϕ(g)f(p)}

Note that dim(ApM) = dim(BpM) = dim(M).

Definition 2.5. For ApM and BpM as above, define µ : ApM → BpM by

µ([c]) : C∞(M,R) → R
f 7→ (f ◦ c)′(0)

This map is an isomorphism.

Definition 2.6. The space TpM , which is both ApM and BpM , is termed the tagent space of M at p.

Next consider a map f : M → N , with p ∈ M . The map and the point p induce a map (f∗)p : TpM → Tf(p)N between
tangent spaces on different manifolds. The definition is straightforward - if we have a path c : [−ε, ε]→ M , then this becomes
f ◦ c : [−ε, ε]→ N , a path on N .

Definition 2.7. Let M,N be smooth manifolds and f : M → N a smooth map. If p ∈M satisfies (f∗)p = 0, then p is termed
a critical point.

2.1.2 Some motivating examples

Example 2.8. Consider the circle sitting on the real line.

(0, 0)

w = (−1, 1) e = (1, 1) µ : S1 → R
eiθ 7→ cos(θ)

rank((µ∗)p) =

{
0 if p ∈ {w, e}
0 else

The map (µ∗)w : Tw : S1 → T−1R is given in the following diagram:

w

t = −ε

t = ε

Example 2.9. Place the torus T 2 on the plane as shown below. Let f : T2 → R be defined by f(x) = (the height of x above
the plane). Further, for a ⊆ T 2, let T 2

a = {x ∈ T 2 : f(x) 6 a}. Mark the points p, q, r, s on the torus as shown.

p

q

r

s

It is clear that the marked points are exactly the critical points of f . Based on these points, define several regions on R as
follows:

f(p) = 0 f(q) f(r) f(s)

)( )( )( )(R1 R2 R3 R4 R5

R
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Let ri ∈ Ri be any element, and define T 2
a = {x ∈ T 2 : f(x) 6 a} for a ∈ R. Then T 2 may be described at the all the ciritical

points and defined regions as follows:

T 2
r1

= ∅

T 2
f(p)

= {p}

T 2
r2

=

T 2
f(q)

=

T 2
r3

=

T 2
f(r)

=

T 2
r4

=

T 2
f(s)

= T 2
r5

=

Next we consider how, in terms of cells, to go from one stage to the next.

T 2
r1
→ T 2

f(p) : Glue on a 0-cell

T 2
f(p) → T 2

r2
: Nothing, as T 2

r2
deformation retracts to T 2

f(p)

T 2
r2
→ T 2

f(q) : Glue on a 1-cell

T 2
r2
t e1 =

def. ret−−−−−−→ = T 2
f(q)

T 2
f(q) → T 2

r3
: Nothing, as T 2

r3
deformation retracts to T 2

f(q)

T 2
r3
→ T 2

f(r) : Glue on a 1-cell

T 2
r3
t e1 =

def. ret−−−−−−→ = T 2
f(r)

T 2
f(r) → T 2

r4
: Nothing, as T 2

r4
deformation retracts to T 2

f(r)

T 2
r4
→ T 2

f(s) : Glue on a 2-cell

T 2
r4
t e2 = = = T 2

f(s)

The behavior of the manifold around the four critical points is interesting to note. If F describes the manifold, and positive
and negative directions are given canonically, then
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around p F ≈ x2 + y2 0
around q F ≈ −x2 + y2 1
around r F ≈ x2 − y2 1
around s F ≈ −x2 − y2 2

number of negative signs

Finally, observe that if around a point F has n negative signs, then to get to that point most recently an n-cell was glued on.

2.2 Morse’s lemma

2.2.1 Preliminaries

Definition 2.10. For M,N smooth manifolds, f : M → N a smooth map, and p ∈M , the map f∗ : TpM → Tf(p)N is termed
the pushforward of f . Given v ∈ TpM , the map is given by

f∗(v)(g) = v(g ◦ f) ∈ R

where g is a smooth map on M passing through p in the direction of v at argument zero, or equivalently, g′(0) = v.

Definition 2.11. Recall that for f : M → R with p ∈ M , the point p is a critical point of f∗ iff f∗ : TpM → Tf(p)R is zero.
A critical point is termed non-degenerate iff given a local coordinate system (x1, . . . , xn), the matrix representing the second
derivative of f at p is non-singular, or  ∂2f

∂xi∂xj
(p)

 6= 0 ∀ 1 6 i, j 6 n

Further, given a critical point p of f , define the Hessian of f at p to be the bilinear form on TpM given by

f∗∗(v, w) = v(w̄(f))

where w̄ is an extension of w to a vector field. That is, w̄ : M →
⊔
q∈M TqM such that we have a map

w̄(f) : M → R
p 7→ wp(f)

2.2.2 Lemmae to the lemma

Lemma 2.12. The map f∗∗ is symmetric and does not depend on the choice of w̄. In general, given vector fields X,Y , we
define [X,Y ] to be the vector field given by

[X,Y ]p(f) = Xp(Y (f))− Yp(X(f))

Proof: To check symmetry, let v̄ be an extension of v to a vector field, for which

f∗∗(v, w)− f∗∗(w, v) = v(w̄(f))− w(v̄(f))

= v̄p(w̄(f))− w̄p(v̄(f))

= [v̄, w̄]p(f)

= [v̄, w̄]p(idR ◦ f)

= f∗([v̄, w̄]p)(idR)

= 0

To check that this is wel-defined, let ŵ be another extension of w to a vector field, so

v(w̄(f)) = w(v̄(f))

= w̄p(v̄(f))

= v(ŵ(f)) (by symmetry)

�

Next we take a local coordinate system (x1, . . . , xn) on M . One can check that in terms of the basis of TpM given by

{ ∂
∂x1

, . . . , ∂
∂xn
}, the matrix representation of the bilinear form f∗∗ is given as before, by ∂2f/∂xi∂xj(p). It follows that f∗∗ as

a bilinear form is non-degenerate iff p is non-degenerate.

Definition 2.13. Let H be a non-degenerate bilinear form. Then the index of H is the number of negative eigenvalues in any
matrix representation of H. The independence of matrix representations comes from a theorem of Sylvester.

Lemma 2.14. Let f ∈ C∞(Rn,R) be in a convex neighborhood of 0 ∈ Rn, with f(0) = 0. Then

f(x1, . . . , xn) =
n∑
i=1

xigi(x1, . . . , xn)

for some smooth g defined in this same neighborhood with g(0) = ∂f
∂x

(0).

7



Proof: This is merely a straightforward calculation.

f(x1, . . . , xn) =

∫ 1

0

df(tx1, . . . , txn)

dt
dt

=

∫ 1

0

n∑
i=1

∂f

∂xi
(tx1, . . . , txn) dt

=
n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx1, . . . , txn) dt︸ ︷︷ ︸

gi

�

2.2.3 The real lemma

Lemma 2.15. [Morse]
Let p be a non-degenerate critical point for f . Then there is a local coordinate system (y1, . . . , yn) on a neighborhood U of p
with yi(p) = 0 for all i, and

f = f(p)− y21 − · · · − y2λ + y2λ+1 + · · ·+ y2n

holds throughout U , where λ is the index of f at p.

Proof: First we show that if there is any such expression, then λ is indeed the index of p. Suppose that f is as given above.
Then the matrix of f∗∗ with respect to the basis mentioned above is

f∗∗ =



−2

. . .

−2

0

0
2

.. .

2


As the entries −2 extend up to the λth row of the matrix, λ is indeed the index of f∗∗.

Next, assume that f(p) = 0. Let (x1, . . . , xn) be a local coordinate system on the manifold, so x1(p) = · · · = xn(p) = 0. By the
previous lemma, f(x1, . . . , xn) =

∑n
i=1 xjgj(x−1, . . . , xn) where gj(0) = ∂f/∂xj(0). Since p is a critical point, ∂f/∂xj(0) = 0,

and so we may apply the lemma again, to get that

gj(x1, . . . , xn) =

n∑
i=1

xihij(x1, . . . , xn) =⇒ f(x1, . . . , xn) =

n∑
i,j=1

xixjhij(x− 1, . . . , xn)

Let h̄ij = 1
2

(hij + hji), so h̄ij = h̄ji, and f =
∑
xixj h̄ij . Further,

1

2

(
∂2f

∂xi∂xj
(0)

)
= h̄ij(0) =⇒ |h̄ij(0)| 6= 0

That is, h̄ij is non-singular, which shows the base case of the following claim:

For each 0 6 r 6 n, there are coordinates (y1(p), . . . , yr(p)) = 0 such that

f = ±y21 ± · · · ± y2r +
∑

i,j>r+1

yiyjHij(y1, . . . , yn)

where Hij = Hji and Hij(0) is non-singular.

The induction step is much more involved, and will not be covered in this lecture. �

Corollary 2.16. Non-degenerate critical points are isolated.

subsectionExamples from the previous lecture
The previous lecture concluded with the corallary that non-degenerate points are isolated. Let us consider a few manifolds

with different types of critical points.

8



Example 2.17. For the function F , the only critical point, at (0, 0, 0), is non-degenerate, and is indeed isolated. The function
G, however, has critical points that are degenerate, all along the y-axis, and they are not isolated.

F (x, y) = x2 + y2 :

x

y

z

G(x, y) = x2 :

x

y

z

3 Morse’s theorem
An important theorem about compact sets needs to be proven before we can mave to the full proof of Morse’s theorem.

3.1 Diffeomorphism groups
Definition 3.1. A 1-parameter group of diffeomorphisms of a manifold M is a smooth map ϕ : R×M →M such that

1. ϕ(t, q) = ϕt(q) : M →M is a diffeomorphism
2. ϕt+s = ϕt ◦ ϕs

Note that group properties are indeed satisfied - we have associativity from the composition of maps, the identity from the
identity isomorphism q0, and inverses from ϕ−t for ϕt.

Next, for a given smooth map f : M → R, we define a 1-dimensional vector field X:

Xq(t) =
∂

∂t
f(ϕt(q))|t=0

So we associate X to a 1-parameter group of diffeomorphisms, and say that X generates ϕ, implying that we may recover the
group only having the vector field. The succeeding lemma will show that we may do this in a unique manner.

Lemma 3.2. A compactly-supported vector field on a smooth manifold M generates a unique 1-parameter group of diffeo-
morphisms of M .

Proof: Let ϕ be a 1-parameter group of diffeomorphisms generated by X. From the definition of this vector field, we have a
differential equation with a boundary condition:

∂

∂t
ϕt(q) = Xϕt(q)

The boundary condition is the given vector field Xϕ0(q).

By the uniqueness of solutions for diffirential equations, for each q ∈ M there exists a neighborhood Uq ⊆ M containing q,
and εq > 0 such that the differential equation has a unique solution for all |t| < εq and p ∈ Uq . Further, as the vector field is
supported on some K ⊆M , we can find elements qi ∈M such that

⋃̀
i=1

Uqi ⊃ K

Setting ϕt(q) = q for all q 6 K , we have a unique solution on M for all t such that |t| < ε0 = min{εqi : 1 6 i 6 `}. And for
|t| > ε0, we set

ϕt(q) = (ϕε0/2 ◦ · · · ◦ ϕε0/2︸ ︷︷ ︸
s

◦ϕr)(q)

Here, t = s · ε0/2 + r, and 0 6 r < ε0/2. This completes the proof. �

3.2 Homotopy type
Recall that for a smooth function f : M → R, we had Ma = {p ∈ M : f(p) 6 a}. Further, recall that a Riemannien metric
TpM × TpM → R is a smooth, bilinear, symmetric, positive definite inner product on a tangent space.

Theorem 3.3. Let f : M → R be smooth, and a < b ∈ R with no critical points of f in [a, b]. If f−1([a, b]) is compact, then
Ma is diffeomorphic to Mb. Moreover, Ma is a deformation retract of Mb, and hence induces a homotopy equivalence between
Ma and Mb.
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Proof: Fix a Riemannien metric 〈·〉 on M , and let the gradient of f be the vector field grad(f) on M given by 〈X, grad(f)〉 = X(f)
for any vector field X on M . Heuristically, grad(f) is the directional derivative of f along X. Define a map ρ : M → R by

q ∈ f−1([a, b]) 7→ 〈grad(f)q , grad(f)q〉−1

q ∈ K 7→ 0

Here, K ⊃ f−1([a, b]) is a compact neighborhood such that in K \ f−1([a, b]) we may interpolate ρ to get a smooth function.
Next, define a vector field X on M by Xq = ρ(q)grad(f)q , which satisfies the conditions of the previous lemma, hence generates
a unique 1-parameter group of diffeomorphisms ϕt : M →M . Then, for ϕt(q) ∈ f−1([a, b]), we have

∂

∂t
f(ϕt(q)) = 〈

∂

∂t
ϕt(q), grad(f)〉

= 〈X, grad(f)〉
= X(f)

= 1

Hence the map t 7→ ϕt(q) is linear for ϕt(a) ∈ f−1([a, b]), and so ϕb−a : M →M is a dffeomorphism from Ma to Mb.

For the deformation retraction map, let it be given by

r : Mb × I → Ma

(q, t) 7→
{
ϕt(a−f(q))(q) f(q) ∈ [a, b]

q f(q) 6 a

Then r0 = idMb and Im(r1) = Ma, so r is indeed a retraction from Mb to Ma. �

3.3 The theorem
Theorem 3.4. [Morse]
Let f : M → R be smooth, and p ∈M a non-degenerate critical point. Suppose that f(p) = c, and for some ε > 0,

1. f−1([c− ε, c+ ε]) is compact
2. f−1([c− ε, c+ ε]) contains no critical points of f except p

Then Mc−ε ∪ eλ ∼= Mc+ε, where λ is the index of f at p.

Proof: The proof will proceed by pushing Mc+ε down to Mc−ε except at p:

Mc+ε

Mc−ε

∼=−−→

Mc+ε

Without loss of generality, we assume that f(p) = 0. Choose local coordinates u1, . . . , un in a small neighborhood U of p such
that

f(x) = −(u1)2 − · · · − (uλ)2︸ ︷︷ ︸
−ξ

+ (uλ+1)2 + · · ·+ (un)2︸ ︷︷ ︸
η

Choose an ε > 0 such that conditions 1 and 2 above hold, and so that B(0,
√

2ε) ⊆ U . Let eλ = {(u1, . . . , un) ∈ U : ξ 6 ε, η =
0}. This gives the following situation:

ξ

η

f = 0

f = −εf = −ε

f = ε

f = ε
f = 0

10



Consider the following function:

u(r) =


0 r > 2ε

ε
(

1
1000000

+ 1
)

exp
(

1
2ε

)
exp

(
−1

2ε−r

)
r ∈ [0, 2ε)

ε else

=

u(r)

r

Note that u(0) > ε, and that u vanishes on [2π,∞). On [0, 2π], we also have that u′ ∈ (−1, 0). Next, we define a function
F : M → R given by F = f −u(ξ+ 2η). We claim that F−1((−∞, ε]) = Mε. To see this, note that outside the hyperbola f = ε
described above, F = f . Inside the hyperbola,

F 6 f = −ξ + η 6
ε

2
+ η 6 ε

This follows as ξ+ 2η 6 ε, and proves the claim. Next we claim that F and f have the same critical points. To see this, observe
that outside B(0,

√
2ε), F = f . Inside B(0,

√
2ε) ⊆ U , we have that

F = ξ + η − u(ξ + 2η) =⇒ dF =
∂F

∂ξ
dξ +

∂F

∂η
dη

Observe that dξ and dη are of the form
∑
i ciu

idui, for some constants ci. Hence dξ and dη only vanish at the origin (that is,
at p). Further observe that

∂F

∂ξ
= −i− u′(ξ + 2η) < 0

∂F

∂η
= 1− 2u′(ξ + 2η) > 1

Hence dF only vanishes at 0, and the claim is proven. The final claim to be proven is that F−1((−∞,−ε]) is a deform retract
of Mε. First we note that as F 6 f , if F (x) > −ε, then f(x) > F (x) > −ε, so F−1([−ε,∞)) ⊆ f−1([−ε,∞)). By the first
claim above, F−1([−ε, ε]) ⊆ f−1([−ε, ε]), and as f−1([−ε, ε]) is compact and F−1([−ε, ε]) is closed, it follows that F−1([−ε, ε])
is compact.

Since f−1([−ε, ε]) has no critical points, F−1([−ε, ε]) has no critical points by the claim above, except possibly at 0. And at p,
F (p) = f(p) − u(0) = −u(0) < ε, so p 6∈ F−1([−ε, ε]). Now apply the previous theorem to get a deformation retract from Mε

to F−1((−∞,−ε)). This completes the final claim.

We proceed as in the pictures below, by pushing along the indicated edges.

ξ

η

f = 0

f = −εf = −ε

f = 0

→ ξ

η

→ ξ

η

Although these pictures are heuristic, it is possible to construct formal retractions as above, by dividing up the disappearing
region into two cases, and formulating two appropriate functions. This completes the proof. �

4 The homotopy type of a manifold

4.1 Motivation
Previously we saw that for f : M → R smooth and p ∈ M a critical point with f(p) = c, if f−1([c − ε, c + ε]) is compact and
continuous with no other critical points except p, then Mc+ε ∼= Mc−ε ∪ eλ, for λ the index of p.

Proposition 4.1. Suppose p1, . . . , pk ∈ f−1(c) are all non-degenerate critical points. Then Mc+ε ∼= Mc−ε ∪ eλ1 ∪ · · · ∪ eλk ,
where λk is the index of pk.
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For example, we may have the following situation:

M =

p q

Mc−ε ∼=

Mc+ε ∼= ∼= ∼=

4.2 Preliminary lemmae
Lemma 4.2. Let ϕ0

∼= ϕ1 : Sλ−1 → X via H(x, t) = ϕt(x). Then the identity on X extends to a homotopy equivalence

k : X
⋃
ϕ0

eλ → X
⋃
ϕ1

eλ

Proof: Define the maps k and its inverse ` as follows:

k(x) = x ∀ x ∈ X

k(tu) =

{
2tu t ∈ [0, 1/2]

ϕ2−2t(u) t ∈ [1/2, 1]

`(x) = x ∀ x ∈ X

`(tu) =

{
2tu t ∈ [0, 1/2]

ϕ2t−1(u) t ∈ [1/2, 1]

Here u ∈ Sλ−1. The effect, heuristically, is simply stretching parts of eλ along X to where ϕ1 glues eλ. �

Lemma 4.3. Let ϕ : Sλ−1 → X be a gluing map. Let δ : X → Y be a homotopy equivalence. Then f extends to a homotopy
equivalence

F : X
⋃
ϕ

eλ → Y
⋃
ϕ

eλ

Proof: Let the maps f : X → Y and g : Y → X define the homotopy equivalence between X and Y , so gf = idX via ht. Define
the following two maps:

F : X
⋃
ϕ

eλ → Y
⋃
fϕ

eλ by F |X = f, F |eλ = id

G : X
⋃
fϕ

eλ → Y
⋃
gfϕ

eλ by G|Y = g, G|eλ = id

First note that gfϕ : Sλ−1 → X, which follows if we let H : Sλ−1 × I → X be given by H(y, t) = ht(ϕ(y)). By the above
lemma, there exists a function k : X ∪gfϕ eλ → X ∪ϕ eλ. We next claim that if F has a left and right homotopy inverse (call
them L and R), then F is a homotopy equivalence, and L (or R) is a 2-sided inverse.

To prove the claim, note that LF ≈ id and FR ≈ id. Hence

L ≈ L(FR) = (LF )R ≈ R =⇒ LF = RF

Hence with this map k, we have kGF : X ∪ϕ eλ → X ∪ϕ eλ ≈ id. Hence F is a homotopy equivalence. To see that G has a left
homotopy inverse, observe that

kGF ≈ id =⇒ GFk ≈ id =⇒ FkG ≈ id

Hence F has a right homotopy inverse, and the proof is complete. �

4.3 Implications of the lemmae
Theorem 4.4. Let f : M → R be smooth with no degenerate critical points. If each Ma is compact, then M has the homotopy
type of a CW complex with one cell of dimension λ for each index λ of a critical point.

Proof: This follows by applying the second lemma as many times as there are critical points at each a. �
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Example 4.5. This fact extends to the Euler characteristic of a space X. For example,

X =

λ0 = 0

λ1 = 1

λ2 = 1

λ3 = 1

λ4 = 1

λ5 = 2

χ(X) =
∑
i

(−1)λi = 1− 1− 1− 1− 1 + 1 = −2

4.4 Cellular approximation
Definition 4.6. Let X be a CW complex. The n-skeleton of X, denoted Xn, is the union of all cells of X of dimension at
most n.

Definition 4.7. A map f : X → Y between CW complexes is termed cellular if f(Xn) ⊆ Y n for all n.

Theorem 4.8. [Cellular approximation theorem]
Every map f : X → Y of CW complexes is homotopic to a cellular map.

Theorem 4.9. Let M be a compact n-manifold and f : M → R smooth with exactly 2 critical points, both non-degenerate.
Then M is homeomorphic to Sn.

Proof: The compact points must be the maximum and minimum of f . Without loss of generality, we may assume that f(p) = 0

and f(q) = 1, for p, q the critical points. Then for small enough ε, the sets f−1([0, ε]) and f−1([1− ε, 1]) are closed n-cells. The
first set Mε is homeomorphic to M1−ε = f−1([0, 1− ε]), and so

M = f−1([0, 1− ε]) ∪ f−1([1− ε, 1]) ≈ en
⊔

glue on
boundary

en = Sn

�

Note that the above theorem holds also if the critical points are degenerate. Moreover, we must have homeomorphism, not
diffeomorphism, as Milnor, in 1956, constructed an exotic 7-sphere that was homeomorphic, but not diffeomorphic to S7.

Example 4.10. Let M = CPn = {[z0, . . . , zn]}, and pick distinct c0, c1, . . . , cn ∈ R. Define f : M → R by

[z0, z1, . . . , zn] 7→
∑
ci|zi|2∑
|zi|2

=
∑

ci|zi|2

This follows as we may assume that
∑
|zi|2 = 1 by normalisation. Let U0 = {z0 6= 0}, with |z0|

zj
z0

= xj + iyj . Here we use

x1, y1, . . . , xn, yn as local coordinates around [1, 0, . . . , 0]. Note that U0 is diffeomorphic to a closed 2n-ball in R2n, and

n∑
j=1

|xj |2 + |yj |2 =

n∑
j=1

|zj |2 <
n∑
j=0

|zj |2 = 1

Hence all the points are within the unit ball. Furthermore,

f = c0|z0|2 +
n∑
j=1

cj |zj |2

= c0(1− |z1|2 − · · · − |zn|2) +
n∑
j=1

cj |zj |2

= c0 +

n∑
j=1

(cj − c0)(x2j + y2j )

And this holds on all of U0. Next we take the partials, and note that they vanish when xj = 0 or yj = 0, respectively.

∂f

∂xj
= 2xj(cj − c0)

∂f

∂yj
= 2yj(cj − c0)
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Note the only critical point is x1 = y1 = · · · = xn = yn = 0, which corresponds to p0 = [1, 0, . . . , 0]. Then

Hessian(f)p0 =



2c1 − 2c0 0
0 2c1 − 2c0

2c2 − 2c0 0
0 2c2 − 2c0

. . .

2cn − 2c0 0
0 2cn − 2c0


Zeroes are in the cells not filled in. Next,

index(f, p0) = (# of eigenvalues of Hessian(f)p0 ) = 2|{ck : ck < c0}|

Similarly, p1 = [0, 1, 0, . . . , 0], and pi for all i = 1, . . . , n are all the other critical points. Iterating index(f, pi) over i = 0, . . . , n,
we will get every even index between 0 and 2n exactly once, and hence

M ≈ e0 t e2 t e4 t · · · t e2n

As, for example, CP 2 = C2 t CP 1 = C2 t C0 = e4 t e2 t e0, this is a CW decomposition of CPn. �

Example 4.11. Suppose that f : M → R has exactly 3 non-degenerate critical points and is orientable. Then the indeces of
cells are 0, n, n/2, and M has homotopy type of en/2 t en.

5 The nature of Morse functions
So far we have been studying Morse functions, but the question arises, do Morse functions always exist? The answer is yes, as
for M ↪→ Rn, with M n/2 = k-dimensional, we fix a p ∈ Rn, and define

Lp : M → R
q 7→ ‖p− q‖

This may not work directly; we must put some conditions on p. The function Lp will be Morse iff p is not a focal point of M ,
a trem which we will define later.

Remark 5.1. We need some structures for the following analysis. First, let M ⊆ Rn be a manifold of dimension k < n. Define
an n-dimensional manifold

N = {(q, v) : q ∈M, v ⊥M at q} ⊆M × Rn

Next, define a function E : N → Rn by E(q, v) = q + v, where addition is vector addition.

5.1 Focal points
Definition 5.2. A point e ∈ Rn is termed a focal point of (M, q) with multiplicity µ if e = q+v for (q, v) ∈ N , and Jac(E)(q,v)
has nullity µ > 0. Then we say that e is a focal point of a manifold M if it is a focal point of (M, q) for some q ∈M .

Heuristically, focal points are where nearby normals intersect.

Theorem 5.3. [Sard]
If M1 and M2 are n-dimensional manifolds and f : M1 → M2 is C1, then the image of the set of critical points of f has
Lebesgue measure zero in M2.

If p is a critical point, then equivalently det(Jac(f)p) = 0.

Corollary 5.4. For almost all p ∈ Rn, p is not a focal point.

For the next part, we let u1, . . . , uk be local coordinates for M ⊆ Rn around q. The inclusion map induces smooth functions
X1(u1, . . . , uk), . . . , Xn(u1, . . . , uk). We let ~x = (x1, . . . , xn).

Definition 5.5. The first fundamental form is the matrix (gij) =
(
∂~x
∂ui
· ∂~x
∂uj

)
. Without loss of generality, we may choose

coordinates such that (gij) = Ik.

Definition 5.6. The second fundamental form is the matrix (`ij) defined through
(

∂2~x
∂uiuj

)
, which may be expressed as an

element of TM plus a perpendicular vector (`ij). That is,(
∂2~x

∂uiuj

)
= Aij︸︷︷︸

tan.

+ `ij︸︷︷︸
perp.

Let ~v be any unit vector normal to M at q. Then (~v · `ij) is a matrix of real-valued functions, and the eigenvalues k1, . . . , kk of
(~v · `ij) are termed the principal curvatures of M at q.
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Example 5.7. Consider the simple manifold M = (x, sin(x)), for which

TM = c(1, cos(x)) c ∈ R
NM = ((x, sin(x), λ(− cos(x), 1))

q

q + v

M

Here, TM is the tangent bundle and NM is the normal bundle. We may also make the following calculations:

Im(E) = (x− λ cos(x), sin(x) + λ)

Jac(E) =

[
1 + λ sin(x) − cos(x)

cos(x) 1

]

det(Jac(E)) = 0 =⇒ λ =
cos2(x)+1
− sin(x)

Note that at (π/2, 1) (this is p) we have a focal point (π/2, 0) (this is q + v). We may also calculate the fundamental forms:

(gij) = ((1, cos(x)) · (1, cos(x))) = (1 + cos2(x))
(v`ij) = − sin(x)/(1 + cos2(x))

5.2 Implications on a manifold

Lemma 5.8. The focal points of (M, q) along ` = ~q + t~v are ~q + k−1
i ~v, for 1 6 i 6 k and k 6= 0.Hence the are at most

k(= dim(M)) focal points along `.

Proof: We may choose coordinates so that at ~q + t~v,

rank (Jac(E)q,tv) = rank

([
gij − t~v`ij ∗

0 Ikn

])
Hence ~q + t~v is a focal point with multiplicity µ if and only if (gij − t~v`ij) is singular with nullity µ. But if gij = I, then
Ik − t~v`ij is singuler if and only if 1/t is an eigenvalue of (~v`ij). Hence 1/t = ki, and t = 1/ki if ki 6= 0. �

Next we fix p ∈ Rn, and let Lp : M → R be given as Lp(~x) = ‖~x − ~p‖2 = ~x~x − 2~x~p + ~p~p. Then due to the following
calculations, Lp has a critical point at q if and only if ~q − ~p is normal to M at q (say ~p = ~x± t~v).

∂Lp

∂ui
= 2

∂~x

∂ui
(~x− ~p)

∂2Lp

∂uiuj
= 2

(
∂~x

∂ui
·
∂~x

∂uj
+

∂2~x

∂uiuj
(~x− ~p)

)
= 2(gij − t~v`ij)

This implies the following lemma.

Lemma 5.9. A point ~q ∈ M is a degenerate critical point of Lp if and only if p is a focal point of Mq with nullity(~q) =
multiplicity(~p).

Theorem 5.10. For almost all p ∈ Rn, Lp : M → R has no degenerate critical points.

Proof: Follows from the lemma and the corollary to Sard’s theorem. �

Theorem 5.11. On a manifold M , there exists a differentiable function with no degenerate critical points such that Ma is
compact for all a.

Proof: We apply Lp, and note that

Ma = L−1
p ((−∞, a]) = L−1

p ([0, a]) = {a ∈M : ‖p− q‖ < a}

�

Corollary 5.12. Any differentiable manifold M has the homotopy type of a CW complex.

Theorem 5.13. The index of Lp at a non-degenerate critical point is equal to the number of focal points of (M, q) which lie
on the line segment from q to p.
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