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1 Fundamentals

1.1 The photoelectric effect

E, : Energy of a photon
Ep =nf h : Planck’s constant
hf = By + Wo f : Frequency
hfo =W, Ey,... : Maximum kinetic energy
Ev  =q. V. W, : Work function
e L fo : Threshold frequency
p=— Qe : Charge of an electron
, A Vs : Stopping voltage
A= A= A1 = cos(0)) P : Momentum
h . Ae : Compton wavelength
AX= mec(1 — cos(f)) AX  : Compton shift
_ b me : Mass of target electron
- 2m

- Classical physics cannot explain the following:

1. Stopping potential is independent of intensity. Classically, high intensity should impart more Ej to
electrons.

2. Existence of cut-off frequency and independence of intensity. Classically, intensity governs energy, not
frequency.

3. Additional experimental observation: Zero time lag between incident light and photoemission, regard-
less of low intensity. Classically, at low intensity, photoemission will not occur until electron has absorbed
sufficient energy.

Bragg scattering

n : Order number
o d : Planar separation
nA = 2dsin(0) 0 : Angle between incident and scattered electrons

1.2 Historical background
2 The Stern-Gerlach experiment

2.1 Background

—

s : Intrinsic magnetic dipole momentum

2.2 Bra-ket notation

State vectors in quantum mechanics, which represent arbitrary states of atoms, are denoted by | ) with an
appropriate label inside, depending on the state.



For (g) composed in the z-basis:

(5) =10 =tda+jeo

a+p
V2

a—if

a—p

V2

a+if
V2

= |T:c> + |\Lw>

= |Ty>

The adjoint of bra is ket, and the adjoint of ket is bra. That is,
[ )T =(land { [f=])

2.3 Pauli operators

- The three main experiments are given by the Pauli operators:

y o (1) (el + ) (e
w=(1 o) w=(00) e=(y &) wm o p=3 ML
Oz 172 (=] + [L2) (L]

Above, while the sum of ket-bras gives the operator, each ket-bra represents the + or — operator in each
direction. Any experiment may be represented by a,I + @ - &.

- Any beam of atoms may be passed through a flipper, which reverses the magnetic moment of the input.
The operator that rotates the beam through an angle ¢ is given by:

m) = ( _ote] o

—sin (£) cos
The flipper turns magnetic moments clockwise, given by R, (w), while the antiflipper rotates the moments
counter clockwise, so is represented by R, (—).

Egg ) with Ry(¢1) - Ry(2) = Ry(p1 + ©2)

2

2.4 Expectation values

If a source emits a state | ) and the SGE is calibrated in € direction, then
probability for atoms to be deflected up:  py = [(Te] )|?
probability for atoms to be deflected down: p_ = |({| )|?

For an arbitrary operator A, its expectation value is given by (A).
For the three o operators, we define this to be (0;) = (+1)P(|t:)) + (=1)P(|4:))

2.5 Statistical operator

Given a source of atoms that is not of a pure state (i.e. mixed atom states), employ the statistical operator
to find the outcome with such a beam. The operator is given by:

<UI>
p=32I+5-7) = Zpl|z><z| with Zpi =1 and §=|{(oy)
i % <az

The above described vector § is termed the Bloch vector, and has the property that ||s]| < 1.

In the generalized version, if given a state characterized by p and a Stern-Gerlach experiment in the di-
rection €, represented by €'- &, the expectation value is then given by



5y =Tr{€ -dp} =€-3

T
Q
2

With respect to the above situation, € =

=y

3 Linear algebra

3.1 Fundamentals
Definition 3.1.1. A vector space over C consists of vectors |a), |5), |7), ... and scalars a, b, ¢, ..., € C.

Definition 3.1.2. The dual vector to c|a) is ¢*|a), where ¢* represents the complex conjugate of c.
Note that c*c = |c|?

Definition 3.1.3. The inner product of |a) and |3) is («|8) € C.

Theorem 3.1.4. [PROPERTIES OF THE INNER PRODUCT]
L. (a|B) = (alB)"

2. (a|a) > with equality < (a| =|a) =0
3. (al (b18) + ch)) = blalB) + elaly)

3.2 Orthogonality

(1 e o (1
+z atoms: (O) +x atoms: 75 (1> +1y atoms: 75 (z)

(0 o1 (1 Lo (1
—z atoms: (1> —x atoms: 73 (_1) —y atoms: 75 (—z)

- Note that +e and —e atoms for any e are mutually exclusive. Therefore orthogonality exists between +e
and —e atoms. However, there is not orthogonality between +e; and +e; atoms for i # j.

3.3 Notation

- The transpose:

(a
ﬂ *
. . a _ faoF
- The (complex) conjugate: (5) = (5*)
<a
B

t
The adjoint or (complex) conjugate transpose: ) = (a* ﬁ*)

- The commutator: [A,B] = AB— BA

- The anticommutator: {A,B} = AB+ BA

3.4 Identities

e el = 2cos(z) + 2isin(w)
ef”” + ef” = 2cos(z)

eiT _ it - 0

e —e7® = 2jsin(x)



