Compact course notes Physics 234, Fall 2010 Quantum Mechanics

Professor: R. Hill transcribed by: J. Lazovskis University of Waterloo December 20, 2010

Contents

1	Fun	ndamentals
	1.1	The photoelectric effect
	1.2	The photoelectric effect
2	$\mathrm{Th}\epsilon$	e Stern-Gerlach experiment
	2.1	Background
		Bra-ket notation
	2.3	Pauli operators
	2.4	Expectation values
	2.5	Statistical operator
3	Line	ear algebra
	3.1	Fundamentals
	3.2	Orthogonality
	3.3	
	3.4	Identities

1 Fundamentals

1.1 The photoelectric effect

$$E_p = hf$$

$$hf = E_{k_{max}} + W_o$$

$$hf_o = W_o$$

$$E_{k_{max}} = q_e V_s$$

$$p = \frac{h}{\lambda}$$

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos(\theta))$$

$$E_p = hf$$

$$k = \frac{p}{2m}$$

$$E_p : Energy of a photon h : Planck's constant f : Frequency Maximum kinetic energy Wo : Work function foo : Threshold frequency Qe : Charge of an electron Vs : Stopping voltage P : Momentum Maxor Compton wavelength Maxor Compton shift Me : Mass of target electron$$

· Classical physics cannot explain the following:

- 1. Stopping potential is independent of intensity. Classically, high intensity should impart more E_k to electrons.
- 2. Existence of cut-off frequency and independence of intensity. Classically, intensity governs energy, not frequency.
- 3. Additional experimental observation: Zero time lag between incident light and photoemission, regardless of low intensity. Classically, at low intensity, photoemission will not occur until electron has absorbed sufficient energy.

Bragg scattering

$$n : \text{Order number}$$

$$d : \text{Planar separation}$$

$$\theta : \text{Angle between incident and scattered electrons}$$

1.2 Historical background

2 The Stern-Gerlach experiment

2.1 Background

$$\vec{\mu}_s = g \frac{q}{2m} \vec{s}$$
 : Intrinsic magnetic dipole momentum

2.2 Bra-ket notation

State vectors in quantum mechanics, which represent arbitrary states of atoms, are denoted by $| \rangle$ with an appropriate label inside, depending on the state.

For $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ composed in the z-basis:

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = | \rangle = | \uparrow_z \rangle \alpha + | \downarrow_z \rangle \beta$$

$$= | \uparrow_x \rangle \frac{\alpha + \beta}{\sqrt{2}} + | \downarrow_x \rangle \frac{\alpha - \beta}{\sqrt{2}}$$

$$= | \uparrow_y \rangle \frac{\alpha - i\beta}{\sqrt{2}} + | \downarrow_y \rangle \frac{\alpha + i\beta}{\sqrt{2}}$$

The adjoint of bra is ket, and the adjoint of ket is bra. That is, $|\ \rangle^\dagger = \langle\ |\ {\rm and}\ \langle\ |^\dagger = |\ \rangle$

2.3 Pauli operators

· The three main experiments are given by the Pauli operators:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{with} \quad \begin{array}{c} \sigma_x \\ \sigma_y \\ \sigma_z \end{array} \right\} = \left\{ \begin{array}{c} |\uparrow_x\rangle\langle\uparrow_x| + |\downarrow_x\rangle\langle\downarrow_x| \\ |\uparrow_y\rangle\langle\uparrow_y| + |\downarrow_y\rangle\langle\downarrow_y| \\ |\uparrow_z\rangle\langle\uparrow_z| + |\downarrow_z\rangle\langle\downarrow_z| \end{array} \right\}$$

Above, while the sum of ket-bras gives the operator, each ket-bra represents the + or - operator in each direction. Any experiment may be represented by $a_o I + \vec{a} \cdot \vec{\sigma}$.

· Any beam of atoms may be passed through a flipper, which reverses the magnetic moment of the input. The operator that rotates the beam through an angle φ is given by:

$$R_y(\varphi) = \begin{pmatrix} \cos\left(\frac{\varphi}{2}\right) & \sin\left(\frac{\varphi}{2}\right) \\ -\sin\left(\frac{\varphi}{2}\right) & \cos\left(\frac{\varphi}{2}\right) \end{pmatrix} \quad \text{with} \quad R_y(\varphi_1) \cdot R_y(\varphi_2) = R_y(\varphi_1 + \varphi_2)$$

The flipper turns magnetic moments clockwise, given by $R_y(\pi)$, while the antiflipper rotates the moments counter clockwise, so is represented by $R_y(-\pi)$.

2.4 Expectation values

If a source emits a state $|\ \rangle$ and the SGE is calibrated in \vec{e} direction, then probability for atoms to be deflected up: $p_+ = |\langle \uparrow_e |\ \rangle|^2$ probability for atoms to be deflected down: $p_- = |\langle \downarrow_e |\ \rangle|^2$

For an arbitrary operator Λ , its expectation value is given by $\langle \Lambda \rangle$. For the three σ operators, we define this to be $\langle \sigma_i \rangle = (+1)P(|\uparrow_i\rangle) + (-1)P(|\downarrow_i\rangle)$

2.5 Statistical operator

Given a source of atoms that is not of a pure state (i.e. mixed atom states), employ the statistical operator to find the outcome with such a beam. The operator is given by:

$$\rho = \frac{1}{2}(I + \vec{s} \cdot \vec{\sigma}) = \sum_{i} p_{i} |i\rangle\langle i| \quad \text{with} \quad \sum_{i} p_{i} = 1 \quad \text{and} \quad \vec{s} = \begin{pmatrix} \langle \sigma_{x} \rangle \\ \langle \sigma_{y} \rangle \\ \langle \sigma_{z} \rangle \end{pmatrix}$$

The above described vector \vec{s} is termed the Bloch vector, and has the property that $||\vec{s}|| \leq 1$.

In the generalized version, if given a state characterized by ρ and a Stern-Gerlach experiment in the direction \vec{e} , represented by $\vec{e} \cdot \vec{\sigma}$, the expectation value is then given by

$$\langle \vec{e} \cdot \vec{\sigma} \rangle = Tr\{\vec{e} \cdot \vec{\sigma}\rho\} = \vec{e} \cdot \vec{s}$$

With respect to the above situation, $\vec{e} = \frac{\vec{s}}{|\vec{s}|}$

3 Linear algebra

3.1 Fundamentals

Definition 3.1.1. A vector space over \mathbb{C} consists of vectors $|\alpha\rangle, |\beta\rangle, |\gamma\rangle, \dots$ and scalars $a, b, c, \dots, \in \mathbb{C}$.

Definition 3.1.2. The <u>dual vector</u> to $c|\alpha\rangle$ is $c^*|\alpha\rangle$, where c^* represents the complex conjugate of c. Note that $c^*c = |c|^2$

Definition 3.1.3. The inner product of $|\alpha\rangle$ and $|\beta\rangle$ is $\langle\alpha|\beta\rangle\in\mathbb{C}$.

Theorem 3.1.4. [Properties of the Inner Product]

- 1. $\langle \alpha | \beta \rangle = \langle \alpha | \beta \rangle^*$
- **2.** $\langle \alpha | \alpha \rangle \geqslant$ with equality $\iff \langle \alpha | = | \alpha \rangle = 0$
- 3. $\langle \alpha | (b|\beta) + c|\gamma \rangle = b \langle \alpha | \beta \rangle + c \langle \alpha | \gamma \rangle$

3.2 Orthogonality

$$+z \text{ atoms: } \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $+x \text{ atoms: } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $+y \text{ atoms: } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$ $-z \text{ atoms: } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $-y \text{ atoms: } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$

· Note that +e and -e atoms for any e are mutually exclusive. Therefore orthogonality exists between +e and -e atoms. However, there is not orthogonality between $+e_i$ and $+e_j$ atoms for $i \neq j$.

3.3 Notation

$$\begin{array}{ll} \cdot \text{ The } \textit{transpose:} & \overbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^T = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^T \\ \cdot \text{ The } \textit{(complex) conjugate:} & \left(\begin{matrix} \alpha \\ \beta \end{matrix} \right)^* = \begin{pmatrix} \alpha^* \\ \beta^* \end{matrix} \\ \cdot \text{ The } \textit{adjoint or } \textit{(complex) conjugate transpose:} & \left(\begin{matrix} \alpha \\ \beta \end{matrix} \right)^\dagger = \begin{pmatrix} \alpha^* \\ \beta^* \end{matrix} \\ \cdot \text{ The } \textit{commutator:} & [A, B] = AB - BA \\ \cdot \text{ The } \textit{anticommutator:} & \{A, B\} = AB + BA \end{array}$$

3.4 Identities

$$\begin{array}{lcl} e^{ix} + e^{ix} & = & 2\cos(x) + 2i\sin(x) \\ e^{ix} + e^{-ix} & = & 2\cos(x) \\ e^{ix} - e^{ix} & = & 0 \\ e^{ix} - e^{-ix} & = & 2i\sin(x) \end{array}$$

4