Compact course notes PHYSICS 334, FALL 2012 Quantum Physics 2

Professor: K. Resch transcribed by: J. Lazovskis University of Waterloo September 15, 2012

Contents

0.1	Introduction	2
	Schrödinger equation	2
1.1	Definitions	2
1.2	Ideas	2
1.3	Propositions	3

0.1 Introduction

In this course, all operators will be linear.

Proposition 0.1.1. Quantum physics has 6 basic postulates that describe it completely and accurately:

- **1.** The state of a quantum system is described by a wave function $|\psi(t)\rangle$
- **2.** Every measurable quantity, or observable, A, is described by an operator \hat{A}
- **3.** The only possible results of a measurement of A are eigenvalues of \hat{A}

4. The probability of measuring a specific eigenvalue a_i of an observable A is given by $|\langle A_i | \psi \rangle|^2$ for $|A_i\rangle$ the eigenvector of A with eigenvalue a_i

5. After measurement, the state is left in the eigenstate of A corresponding to the measured outcome, or $|\psi\rangle \rightarrow |A\rangle_i$

6. The time evolution of $|\psi\rangle$ is given by the Schrödinger equation

1 The Schrödinger equation

In Newtonian mechanics, given position x and velocity v at t = 0, all future positions can be predicted using Newton's law F = ma. This law in quantum mechanics is replaced by Schrödinger's equation, and initial conditions are replaced by the wave function ψ .

1.1 Definitions

- The <u>time-dependent Schrödinger equation</u> is given by $i\hbar \frac{\partial \psi}{\partial t} = \frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V\psi.$

- The operator $H = \underbrace{\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2}}_{\text{kinetic energy}} + \underbrace{V}_{\text{potential energy}}$ is termed the <u>Hamiltonian</u>. - The operator $\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$ is termed the <u>momentum operator</u>.

- Given an observable Q with n possible outcomes Q_i , each with probability p_i of occurring, the expectation value (or weighted average) of Q is given by $\langle Q \rangle = \sum_{i=1}^{n} Q_i p_i$. If Q is continuous, $\sum \to \int$.

- The expectation value of a quantum mechanical observable is $\langle O \rangle = \int_{-\infty}^{\infty} \psi^*(x,t) \hat{O} \psi(x,t) dx.$

The time-independent Schrödinger equation is given by $H\psi(x) = E\psi(x)$.

The <u>uncertainty</u> in \hat{O} is given by $\sigma_{\hat{O}} = \sqrt{\langle \hat{O}^2 \rangle - \langle \hat{O} \rangle^2}$.

1.2 Ideas

- The act of normalization is setting $\int_{-\infty}^{\infty} |\psi(x,t)|^2 dx = 1$, which is a real-world constraint.

- Operators Q that only depend on position (eg. x^2) are such that $\hat{Q} = Q$ (eg. $\hat{x}^2 = x^2$).

- If we suppose that a solution to the Schrödinger equation is separable, i.e. $\Psi(x,t) = \psi(x)T(t)$, then $T(t) = \exp\left(\frac{-iEt}{\hbar}\right)$ for $E = \frac{H\psi}{\psi}$, the energy of the system.

- Time dependence in the TISE is a result of interference.

1.3 Propositions

- Given $\psi(x,0)$ we can find $\psi(x,t)$ using the time-dependent Schrödinger equation.
- The probability of finding a particle between a and b is $P_{a,b} = \int_a^b \psi^* \psi dx = \int_a^b |\psi(x,t)|^2 dx$.
- A separable state has a fixed energy (has no energy uncertainty), as $\Delta E = \sqrt{\langle H^2 \rangle \langle H \rangle^2} = \sqrt{E^2 E^2} = 0.$
- The most general solution to the full Schrödinger equation is a linear combination of separable solutions:

$$\Psi(x,t) = \sum_{n} c_n \psi_n(x) \exp\left(-iEt/\hbar\right)$$

where $c_n \in \mathbb{C}$ for all n.