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1 Rings and fields

1.1 Definitions

Definition 1.1.1. A ring is a set R with two binary operations + and · that satisfy for all a, b, c ∈ R the
following rules:

A1. a+ b ∈ R M1. a · b ∈ R
A2. (a+ b) + c = a+ (b+ c) M2. (a · b) · c = a · (b · c)
A3. a+ b = b+ a
A4. ∃ 0 such that a+ 0 = 0 + a = a
A5. ∀ a ∃ d such that a+ d = 0

AM. a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

Given an element a ∈ R, the d in A5 is also termed −a.

Remark 1.1.2. If a ring has the M3 property, then it is a commutative ring.
If a ring has the M4 property, then it is a ring with unity.
If a ring has the M5 property, then it is a division ring.

Example 1.1.3. These are some common examples of different types of rings.

Z commutative ring with unity, not a division ring
R,Q,C commutative division ring with unity

2Z Commutative ring, no unity, not a division ring
M(2,R) non-commutative ring with unity
R1 ×R2 commutative ring for R1, R2 commutative rings

Remark 1.1.4. Let n ∈ N and a ∈ R. Then let n · a := a+ a+ · · ·+ a︸ ︷︷ ︸
n times

and an := a · a · · · a︸ ︷︷ ︸
n times

1.2 Properties

Proposition 1.2.1. Let −a,−b be additive inverses of a, b ∈ R. Let 0 be the additive identity. Then
1. 0 · a = a · 0 = 0
2. (−a) · b = −(a · b) = a · (−b)
3. (−a) · (−b) = a · b

Proof:

1. 0 · a = 0 · a+ 0

= 0 · a+ 0 · a+ (−(0 · a))

= (0 + 0) · a+ (−(0 · a))

= 0 · a+ (−(0 · a))

= 0

2. (−a) · b = (−a) · b+ a · b+ (−(a · b))
= (−a+ a) · b+ (−(a · b))
= 0 · b+ (−(a · b))
= 0 + (−(a · b))
= −(a · b)
= 0 + (−(a · b))
= a · 0 + (−(a · b))
= a · (−b+ b) + (−(a · b))
= a · (−b) + a · b+ (−(a · b))
= a · (−b) + 0

= a · (−b)

3. (−a) · (−b) = (−a) · (−b) + 0

= (−a) · (−b) + (−(a · b)) + a · b
= (−a) · (−b) + (−a) · b+ a · b
= (−a) · (−b+ b) + a · b
= (−a) · 0 + a · b
= 0 + a · b
= a · b
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Definition 1.2.2. Let R1 be a ring. If R2 ⊂ R1 is also a ring under the same binary operations as R1, then
R2 is termed a subring of R1, and the relation is given by R2 � R1.

Example 1.2.3. These are some examples of subrings.

1.

{[
a 0
0 b

]a, b ∈ R
}

is a commutative subring of M(2,R)

2. Any subring of a commutative ring is commutative
3. 2Z� Z� Q� R� C︸ ︷︷ ︸

division rings︸ ︷︷ ︸
rings with unity

1.3 Integral domains

Example 1.3.1. Consider the multiplication tables for the rings Z4 and Z5.

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

We may observe the following:
· As both tables are symmetric along the diagonal, both Z4 and Z5 are commutative.
· By the second row/column of each, we see that both have unity.
· Since there is no 1 in the row/column of 2 in Z4, we see that Z4 is not a division ring.
· Since every row/column of Z5 has a 1, it means that Z5 is a division ring.
· Interestingly, 2 · 2 = 0 in Z4.

Definition 1.3.2. Let a, b ∈ R non-zero such that a · b = 0. Then a and b are termed zero divisors.

Theorem 1.3.3. Let a ∈ Zn be non-zero. Then a is a zero divisor if and only if gcd(a, n) > 1.

Proof: (⇐) Let gcd(a, n) = b > 1. Then there exist some a′, n′ such that a = b · a′ and n = b · n′, so n′ < n.
Then a · n′ = a′ · b · n′ = a′ · n = a′ · 0 = 0, proving that a is a zero divisor.

(⇒) Let gcd(a, n) = 1. Then by the EEA, there exist some c, d such that a · c + d · n = 1. This tells us
that a · c ≡ 1 (mod n). Now suppose there exists a zero divisor e such that a · e = 0, so then we have both

(c · a) · e = 1 · e = e

(c · a) · e = c · (a · e) = c · 0 = 0

Since e must be non-zero as it is a zero divisor, this is a contradiction. Therefore the assumption that there
exists a zero divisor e such that a · e = 0 was false, so there is no zero divisor. �

Theorem 1.3.4. Let a, b, c ∈ R and suppose that a · b = a · c with a not a zero divisor of R. Then b = c.

Proof: First note ab = ac =⇒ ab − ac = 0 =⇒ a(b − c) = 0. Since a is not a zero divisor, c − b = 0, so
c = b. �

Definition 1.3.5. A ring R is termed an integral domain if the following two conditions are satisfied:
1. R is a commutative ring with unity
2. R has no zero divisors
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Example 1.3.6. These are some examples of integral domains:
1. Zp for p prime
2. Z,Q,R
3. Z3[i] = {a+ bi | a, b ∈ Z3, i

2 = −1}

Note that R1 ×R2 for R1, R2 integral domains is not an integral domain.

Definition 1.3.7. Let R1 ⊂ R2 both be integral domains. Then R1 is termed a subdomain of R2.

For example, Z is a subdomain of Q is a subdomain of R is a subdomain of C.

Definition 1.3.8. Let R be a ring with unity. Then a is a unit if there exists b ∈ R such that a · b = 1.

Remark 1.3.9. If a, b ∈ R are units, then a · b is a unit.

Example 1.3.10. These are some examples of rings with unity and their respective units.
1. Z : 1,−1
2. Q : Q \ {0}
3. Z8 : 1, 3, 5, 7
4. M(2,R) : the set of invertible matrices
5. Any division ring: all non-zero elements

1.4 Fields

Definition 1.4.1. Let R be a commutative ring with unity such that every non-zero element is a unit. Then
R is termed a field.

Remark 1.4.2. The following relation exists among different ring types:

Fields ( Division rings ( Rings with unity ( Rings

Example 1.4.3. There exist non-commutative division rings, such as

H =

{[
u v
−ū v̄

]u, v ∈ C
}

It is straightforward to check that this is a ring, but as [ 0 i
i 0 ]

[
i 0
0 −i

]
6=
[
i 0
0 −i

]
[ 0 i
i 0 ], it is not commutative.

Lemma 1.4.4. If a ∈ R is a unit, then a is not a zero divisor.

Proof: Lat ac = ca = 1. Now suppose that a is a zero divisor, so there exists a non-zero b ∈ R with ab = 0.
Then we have cab = c(ab) = a · 0 = 0 but also cab = (ca)b = 1 · b = b 6= 0. This is a contradiction, hence a
is not a zero divisor. �

Proposition 1.4.5.

Fields ( Integral domains and Finite integral domain = Field

Proof: A field is a commutative ring where every non-zero element is a unit. As units are not zero divisors,
a field has no zero divisors, is commutative, and has unity.

For the second statement, let R be a finite integral domain, so R = {x0, x1, . . . , xn} with x0 = 0 and x1 = 1.
For some k ∈ {1, . . . , n}, we have that the set {xkx1, . . . , xkxn} ⊂ R does not contain the zero element, as R
has no zero divisors. And since xkxp = xkxq implies xp = xq, the list has all distinct elements, and is all of
R \ {0}. Hence there is ` ∈ {1, . . . , n} such that xkx` = 1, so x` is the inverse of xk. Since xk was arbitrary,
every element has an inverse. �
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Definition 1.4.6. A ring R has characteristic n if for all a ∈ R, n ∈ N is the smallest element such that
n · a = 0. This relation is expressed char(R) = n. If no such n exists, then char(R) = 0.

Example 1.4.7. These are some examples of characteristics.

1. char(Zn) =
n

gcd{1, 2, . . . , n− 1}
2. char(R) = 0

Theorem 1.4.8. If R is an integral domain or a field, then char(R) ∈ P ∪ {0} where P is the set of primes.

1.5 Homomorphisms

Definition 1.5.1. A function ϕ : R1 → R2 on rings is termed a ring homomorphism iff for all a, b ∈ R,
1. ϕ(a+ b) = ϕ(a) + ϕ(b)
2. ϕ(ab) = ϕ(a)ϕ(b)

A ring homomorphism is completely determined by ϕ(1).

Example 1.5.2. These are some examples of ring homomorphisms, for rings R1, R2.
1. ϕ : R1 → R2 given by ϕ(a) = a
2. ϕ : R1 → R2 given by ϕ(a) = 0

In the case where R1 = R2 = Z12, there are several unique ring homomorphisms. The choice of a in ϕ(1) = a
is limited by the fact that in Z12, a = ϕ(1) = ϕ(1)ϕ(1) = a2, and here only a = 0, 1, 4, 9 satisfies this property.

ϕ(1) = 0: Then ϕ(n) = 0 for all n ∈ Z12

ϕ(1) = 1: Then ϕ(n) = n for all n ∈ Z12. This is the trivial homomorphism.
ϕ(1) = 4: Then ϕ(Z12) = {0, 4, 8}
ϕ(1) = 9: Then ϕ(Z12) = {0, 3, 6, 9}

Definition 1.5.3. Given a ring homomorphism ϕ : R1 → R2, define the kernel of ϕ to be the set

ker(ϕ) = {a ∈ R1 | ϕ(a) = 0}

Theorem 1.5.4. Let ϕ : R1 → R2 be a ring homomorphism. Then for all a, b ∈ R1 and n ∈ N,
1. ϕ(0) = 0 and ϕ(−a) = −ϕ(a)
2. ϕ(na) = nϕ(a)
3. ϕ(an) = ϕ(a)n, for n ∈ N (n ∈ Z if a is a unit)
4. ϕ is 1-1 iff ker(ϕ) = {0}
5. If A� R1, then ϕ(A)� ϕ(R1)
6. If B � ϕ(R1), then ϕ−1(B)� R1

7. ϕ(1) is unity in ϕ(R1)
8. ker(ϕ)� R1

9. If R1 has unity / is commutative / is a division ring, so is ϕ(R1)

Proof: Exercise. �

Definition 1.5.5. If ϕ : R1 → R2 is an injective homomorphism, then ϕ is termed an isomorphism, and R1

and R2 are termed isomorphic. This relation is denoted by R1 ≈ R2. Moreover, ≈ is an equivalence relation.

Example 1.5.6. The set Q[i] = {a+ bi | a, b ∈ Q} is isomorphic to Q[i] by ϕ(a+ bi) = ϕ(a− bi).

Proposition 1.5.7. Let R2 ≈ R2. Then R1 has the following properties iff R2 does.
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1. commutativity
2. having unity
3. being an integral domain

4. being a division ring
5. being a field
6. having a specific characteristic

Example 1.5.8. The above proposition makes it easier to inspect a structure by finding an isomorphic
structure. For example, take

R =

{[
a b
−b a

]
| a, b ∈ R

}
⊂M(2,R)

We claim that R ≈ C by ϕ
([

a b
−b a

])
= a+ bi. The proof is left as an exercise.

2 Ideals and polynomial rings

2.1 Ideals

Definition 2.1.1. If I � R for R a ring, such that for all a ∈ I and b ∈ R we have that ab, ba ∈ I, then I
is termed an ideal of R.

Example 2.1.2. Consider some rings and their respective ideals.
1. The ring Z has ideals nZ = {n ·m | m ∈ Z} for all n ∈ N.
2. The ring Z12 has ideals

{0} {0, 4, 8} {0, 2, 4, 6, 8, 10}
{0, 6} {0, 3, 6, 9} {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

3. The ring Zn has ideals {Ia = {m · a | m ∈ N,m · a 6 n} | a divides n}
4. The ring Q has lots of subrings (such as Z and 2Z), but the only ideals are {0} and Q

Definition 2.1.3. Let R be a commutative ring. Then the ideal 〈a〉 = {ar | r ∈ R} is termed the ideal
generated by a ∈ R.

Theorem 2.1.4. Let R be a commutative ring with unity whose only ideals are R and {0}. Then R is a
field.

Proof: It must be shown that every non-zero element is a unit. Take a 6= 0 in R and consider 〈a〉. Since the
only ideals of R are {0} and R, it must be that 〈a〉 = R. Since 1 ∈ R, we have that 1 ∈ 〈a〉, and so there
exists b ∈ R such that ab = 1, and so a is a unit. �

Theorem 2.1.5. Let ϕ : R1 → R2 be a homomorphism. Then ker(ϕ) is an ideal of R.

Proof: Let a ∈ ker(ϕ). We need to show for all b ∈ R that ab, ba ∈ ker(ϕ). Observe that ϕ(ab) = ϕ(a)ϕ(b) =
0 · ϕ(b) = 0. Similarly for ϕ(ba), it is clear that ab, ba ∈ ker(ϕ). �

Corollary 2.1.6. If F is a field, then all non-trivial homomorphisms of F into itself are injective.

Example 2.1.7. Consider ϕ : Z6 → Z2 given by ϕ(a) = a (mod 2) (this is termed the natural homomr-
phism). Then ker(ϕ) = {0, 2, 4}, which must be an ideal of Z6.

Definition 2.1.8. Let R be a ring with an ideal I. Then the set R/I = {a + I | a ∈ R} where a + I =
{a + b | b ∈ I} is termed a quotient ring of R. We define addition and multiplication in this ring, for all
a, b ∈ R/I, by:

(a+ I) + (b+ I) = (a+ b) + I
(a+ I)(b+ I) = ab+ I

a+ I = 0 + I ⇐⇒ a ∈ I

6



Example 2.1.9. Consider the ideal {0, 2, 4} in Z6 and the ring {a+{0, 2, 4} | a ∈ Z6} = {{0, 2, 4}, {1, 3, 5}},
for which

+ {0,2,4} {1,3,5}
{0,2,4} {0,4,2} {1,5,3}
{1,3,5} {1,5,3} {2,0,4}

· {0,2,4} {1,3,5}
{0,2,4} {0,2,4} {1,3,5}
{1,3,5} {1,3,5} {0,2,4}

Theorem 2.1.10. Let R be a ring with an ideal I. Then ϕ : R → R/I is a ring homomorphism, with
ker(ϕ) = I.

Proof: Since the map is clearly surjective, it remains to prove that ker(ϕ) = I. Recall that ϕ(0) = 0 + I is
the zero element in R/I. Now suppose that ϕ(a) = a+ I = 0 + I, so there exists a b ∈ I such that a+ b = 0.
Since b ∈ I, we also have that −b ∈ I, and hence a ∈ I. �

Definition 2.1.11. Let I be an ideal of a ring R. Then the ring R/I is termed the quotient ring of R with
respect to I.

Many properties of R (including commutativity and unity) carry over from R to R/I.

Theorem 2.1.12. [First isomorphism theorem for rings]
Let ϕ : R1 → R2 be a homomorphism. Then R1/ ker(ϕ) ≈ ϕ(R1).

Proof: We must find a bijective homomorphism χ : R1/ ker(ϕ) → ϕ(R1). We claim that χ given by χ(a +
ker(ϕ)) = ϕ(a) will work. First note that

χ((a+ ker(ϕ))(b+ ker(ϕ))) = χ(ab+ ker(ϕ)) = ϕ(a)ϕ(b) = χ(a+ ker(ϕ))χ(b+ ker(ϕ))

Addition is checked similarly. The map χ is clearly surjective, as for any element ϕ(a) ∈ ϕ(R1), we have
χ(a+ ker(ϕ)) = ϕ(a). Now suppose that χ(a+ ker(ϕ)) = χ(b+ ker(ϕ)), so then

ϕ(a) = ϕ(b)

ϕ(a)− ϕ(b) = 0

ϕ(a) + ϕ(−b) = 0

ϕ(a− b) = 0

a− b ∈ ker(ϕ)

a ∈ b+ ker(ϕ)

Similarly we find that b ∈ a+ ker(ϕ), so a+ ker(ϕ) = b+ ker(ϕ). Hence χ is injective, and hence a bijection,
and hence an isomorphism. �

Theorem 2.1.13. Let I, J be ideals of a ring R with I ( J ( R. Let ϕ : R→ R/I be given by ϕ(a) = a+I.
Then ϕ(J) is an ideal of R/I.

Proof: Let a = α + I ∈ ϕ(J) and b = β + I ∈ R/I. Then we have that α ∈ J . Then ab = αβ + I, and
αβ ∈ J , as J is an ideal of R and β ∈ R. Similarly, ba = βα + I, and βα ∈ J , again as J is an ideal of R
and β ∈ R. Hence ab, ba ∈ ϕ(J). �

Definition 2.1.14. Let I be a non-trivial ideal of R (i.e. I 6= R) with no ideal J of R with I ( J ( R.
Then I is termed a maximal ideal of R.

Definition 2.1.15. Let R be a commutative ring with an ideal I. If for all a, b ∈ R with ab ∈ I either a ∈ I
or b ∈ I, then I is termed a prime ideal of R.
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Example 2.1.16. Consider the following examples:
· R = Z - the ideal pZ is a maximal (and prime) ideal for all p prime
· R = Z× Z - the ideal {(a, 0) | a ∈ Z} is a prime ideal, but {(3a, 2b) | a, b ∈ Z} is maximal
· R = Z× Z - the ideal 2Z× 2Z is neither prime nor maximal, but (Z× Z)/(2Z× 2Z) ≈ Z2 × Z2

Note that {maximal ideal of R} ( {prime ideal of R} ( {ideal of R}.

Theorem 2.1.17. Let R be a commutative ring with unity. Then
1. I is a prime ideal iff R/I is an integral domain
2. I is a maximal ideal iff R/I is a field

Proof: 1. Let I be a prime ideal. Suppose that R/I is not an integral domain. As R/I is a commutative
ring with unity, we must have a zero divisor (a + I)(b + I) = I, but (a + I)(b + I) = ab + I = I, so then
ab ∈ I. Since I is a prime ideal, a ∈ I or b ∈ I, so a+ I = I or b+ I = I. This contradicts both being zero
divisors, as they are then 0 in R/I, and hence R/I is an integral domain.

Reverse direction is similar.

2. Suppose that R/I is a field but not a maximal ideal, so there exists an ideal J of R with I ( J ( R. Let
ϕ : R→ R/I be given by ϕ(a) = a+ I. We know that ϕ(J) is not a trivial ideal of R, but the only ideals of
fields are {0} and the field. This is a contradiction, hence I is maximal.

Reverse direction is similar. �

2.2 The field of quotients

Definition 2.2.1. Let R be an integral domain. The field FQ(R) = {ab | a, b ∈ R, b 6= 0}/ ∼ is termed the
field of quotients of R, for a

b ∼
c
d ⇐⇒ ad = bc .

Example 2.2.2. Here are some examples of rings and their fields of quotients.
1. R = Z, FQ(R) = Q
2. R = Z[i], FQ(R) = Q[i]
3. R = Zp, FQ(R) = Zp

The last example shows that if R is a field, then R ≈ FQ(R).

Theorem 2.2.3. Any field F that contains a nontrivial integral domain D as a subring (in particular
{n · 1 | n ∈ Z}) contains an isomorphic copy of FQ(D), or

D ⊂ FQ(D) ⊂ F

2.3 Polynomial rings

Definition 2.3.1. Let R be a ring. Define the ring of polynomials of R to be

R[x] =

{
n∑
i=0

aix
i | ai ∈ R, n ∈ N

}

Addition and multiplication are defined in R[x] in the obvious way.(
n∑
i=0

aix
i

) m∑
j=0

bjx
j

 =

n∑
i=0

m∑
j=0

aibjx
i+j =

n+m∑
k=0

 ∑
i+j=k

aibj

xk

The indeterminate x is assumed to commute with everything. Note that R[x] is not necessarily commutative.
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Remark 2.3.2. The ring R[x] inherits some properties from R:

· commutativity
· having unity
· having/not having zero divisors

Others it does not necessarily inherit:

· being a division ring
· being a field

Definition 2.3.3. The set of formal power series over a ring R is defined as

R[[x]] =

{ ∞∑
i=1

aix
i | ai ∈ R

}

The radius of convergence is not pertinent to the study of such structures. Note also that R[x]� R[[x]].

Definition 2.3.4. Let F be a field with f(x), g(x) ∈ F [x]. Then we write

f(x)
g(x) ⇐⇒ there exists h(x) ∈ F [x] with f(x)h(x) = g(x)

Definition 2.3.5. For f(x), g(x) ∈ F [x], an element d(x) ∈ F [x] is termed the gcd of f(x) and g(x) iff
1. d(x) | f(x) and d(x) | g(x)
2. if e(x) ∈ F [x] is such that e(x) | f(x) and e(x) | g(x), then d(x) | e(x)

Note that gcds are not unique.

Theorem 2.3.6. For f(x), g(x) ∈ F [x] with g nonzero, there exist unique q(x), r(x) ∈ F [x] such that
f(x) = q(x)g(x) + r(x), with deg(r) < deg(g), where deg(0) = −∞.

Proof: It is necessary to show that there exists a unique solution to f(x) = q(x)g(x) + r(x). Now suppose
that f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x). Then g(x)(q2(x)− q1(x)) = r2(x)− r1(x). But this is a
contradiction, as the degrees of both sides of the equality do not match. This proves uniqueness.

Now, let f(x) =
∑n
i=1 aix

i and g(x) =
∑k
i=1 bix

i and proceed by induction on n. If f(x) = 0, use q(x) =
r(x) = 0. If deg(f) < deg(g), let q(x) = 0 and r(x) = f(x). Otherwise, define f ′(x) = f(x)−anb−1

k xn−kg(x),
so deg(f ′) 6 n− 1. Applying induction, we may write

f ′(x) = g(x)q′(x) + r′(x)

f(x)− anb−1
k xn−kg(x) = g(x)q′(x) + r′(x)

f(x) = g(x) (anb
−1
k xn−k + q′(x))︸ ︷︷ ︸

q(x)

+ r′(x)︸ ︷︷ ︸
r(x)

This proves existence. �

Theorem 2.3.7. For f(x), g(x) ∈ F [x], there exist a(x), b(x) ∈ F [x] such that f(x)a(x) + g(x)b(x) =
gcd(f(x), g(x)).

Proof: Consider the ideal I = 〈f(x), g(x)〉 of F [x]. Let d(x) ∈ I nonzero be of minimal degree. We claim
that d(x) = gcd(f(x), g(x)).

To show that d(x) is a common divisor, first write f(x) = d(x)q(x) + r(x) with deg(r) < deg(f). Note
r(x) = f(x) − d(x)q(x), so r(x) ∈ I. Hence r(x) = 0, as d is of minimal degree. Therefore d(x) | f(x) and
similarly d(x) | g(x), so write d(x) = a(x)f(x) + b(x)g(x).
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To see that d(x) is the greatest common divisor, first suppose that c(x) | f(x) and c(x) | g(x), so

d(x) = a(x)f(x) + b(x)g(x)

= a(x)(c(x)a′(x)) + b(x)(c(x)b′(x))

= c(x)(a(x)a′(x) + b(x)b′(x))

=⇒ d(x) | c(x)

This proves the theorem. �

2.4 Polynomial irreducibility

Definition 2.4.1. Let F be a field with f(x) ∈ F [x]. Then f(a) = 0 iff (x− a)
f(x). Such an a is termed

a root of f(x).

Theorem 2.4.2. Let F be a field with f(x) ∈ F [x]. If f(x) has degree n, then it has at most n roots.

Proof: By induction. If a is a root, then f(x) = (x− a)q(x), and q(x) has at most n− 1 roots. �

Corollary 2.4.3. Let D be an integral domain. If f(x) ∈ D[x] has degree n, then it has at most n roots.

Proof: Let F = FQ(D), the field of quotients of D, so f(x) ∈ D[x] ⊂ F [x]. As f(x) has at most n roots in
F [x], it has at most n roots in D[x]. �

Definition 2.4.4. We say that f(x) ∈ D[x] is reducible if f(x) = g(x)h(x) for g, h non-constant. If no such
g, h exist, then f is termed irreducible.

Theorem 2.4.5. Let F be a field. Then f(x) ∈ F [x] can be written uniquely as a constant multiplied by a
product of monic irreducible polynomials, f(x) = u · q1(x)q2(x) · · · qk(x).

Proof: We proceed by induction. To show such a reperesentation exists, we consider a number of cases.
Case 1: f(x) = 0. Then use u = 0 and k = 0.
Case 2: f(x) = c for c a constant. Then use u = c and k = 0.
Case 3: deg(f) = 1. If f(x) = ax+ b, use u = a and k = 1 with qa(x) = 1 + b

ax.

Case 4: deg(f) > 1 and f is irrdeucible. If f(x) =
∑n
i=1 aix

i, use u = an and k = 1 with q1(x) = f(x)
an

.
Case 5: deg(f) > 1 and f is reducible. If f(x) = g(x)h(x), use induction, as deg(g),deg(h) < deg(f).

To show uniqueness, suppose that f(x) = u · q1(x) · · · qk(x) = v · p1(x) · · · p`(x). Since all the factors are
monic, u = v. As q1 | f , we have that q1 | p1 · · · p`. Since q1 is irreducible and all pi are irreducible, q1

divides exactly one pi. Repeat this for all qi to show that k = `, and for each i ∈ {1, . . . , k}, there is a unique
ji ∈ {1, . . . , k} such that qi = pji iff i = j. �

Theorem 2.4.6. Let F be a field and f(x) ∈ F [x] of degree 2 or 3. Then f is irreducible iff it has no roots,
i.e. f(a) 6= 0 for all a ∈ F .

Theorem 2.4.7. [Rational root theorem]
Let F be a field with f(x) =

∑n
i=1 aix

i ∈ F [x]. If f(x) has a root r
s ∈ Q with gcd(r, s) = 1, then r | a0 and

s | an.

Proof: Observe that

0 = snf
(r
s

)
= a0s

n + a1s
n−1r + a2s

n−2r2 + · · ·+ anr
n ≡ a0s

n (mod r) =⇒ r | a0

In a symmetric way s | an. �
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Theorem 2.4.8. [Eisenstein]
Let f(x) =

∑n
i=0 aix

i ∈ Z[x] such that there exists p prime with:
· p - an
· p | ai for all i = 0, 1, . . . , n− 1
· p2 - a0

Then f(x) is irreducible.

Proof: Suppose the conditions are satisfied, but f is reducible. Then f(x) = g(x)h(x) for g(x) =
∑k
i=0 bix

i

and h(x) =
∑`
i=0 cix

i for k, ` 6= 0, with a0 = b0c0. The assumptions of the theorem imply that p | b0 xor
p | c0, and WLOG p | b0 and p - c0. Since p - an and an = bkc`, we have that p - bk and p - c`.

Consider ϕ(f) for ϕ : Z[x] → Zp[x] a homomorphism. Then ϕ(f(x)) = anx
n and ϕ(g(x)) =

∑k
i=1 bix

i

and ϕ(h(x)) =
∑`
i=0 cix

i with c0 6= 0. Let bt be the first term in {b0, . . . , bk} with bt 6= 0 (mod p). So

then ϕ(g(x)) =
∑k
i=t bix

i, and ϕ(g(x)h(x)) = btc0x
t + · · · + bkc`x

k+`. But t < n, as t 6 k 6 n − 1, so
ϕ(g(x)h(x)) 6= ϕ(g(x))ϕ(h(x)), contradicting that ϕ is a homomorphism. Therefore the original assumption
was false, and so f(x) is irreducible. �

Theorem 2.4.9. Let ϕ : Z[x] → Zp[x] be the natural homomorphism for p prime and f(x) ∈ Z[x]. If
deg(f) = deg(ϕ(f)) and ϕ(f) is irreducible in Zp[x], then f is irreducible in Z[x].

Proof: Suppose that the conditions of the theorem hold, but f(x) = g(x)h(x) for g, h nonconstant in Z[x].
Then ϕ(f(x)) = ϕ(g(x))ϕ(h(x)), and as deg(f(x)) = deg(ϕ(f(x))), the lead coefficient of f(x) is not divisible
by p. Therefore the lead coefficients of both g(x) and h(x) are not divisible by p. Hence ϕ(g(x)) and ϕ(h(x))
are non-trivial factors of ϕ(f(x)), leading to a contradiction. Hence f(x) is irreducible in Z[x]. �

3 PIDs, EUDs, and UFDs

3.1 Principal ideal domains

Definition 3.1.1. LetR be a commutative ring. Then define the ideal generated by A forA = {a1, . . . , an} ⊂
R to be the set

〈a1, . . . , an〉 =

{
n∑
i=1

aibi | bi ∈ R ∀ i

}
Example 3.1.2. For R = Z, we have that 〈a1, . . . , an〉 = 〈gcd(a1, . . . , an)〉.

Definition 3.1.3. Let D be an integral domain. If every ideal in D can be expressed as I = 〈a〉 for some
a ∈ D, then D is termed a principal ideal domain.

Example 3.1.4.
· Z is a PID, as nZ = 〈n〉
· Z[x] is not a PID, as 〈x+ 1, 2〉 can not be written as 〈f(x)〉

Theorem 3.1.5. Let F be a field. Then F [x] is a PID.

Proof: Since F [x] is a field, any ideal I of F [x] is either {0} or has a non-zero element. In the first case,
I = 〈0〉. In the second case, we claim that I = 〈g(x)〉 for g(x) a non-zero element of minimal degree in I.

For any f(x) ∈ I, the division algorithm gives us that there exist q(x), r(x) ∈ F [x] such that f(x) =
q(x)g(x) + r(x), with deg(r) < deg(g). Since f(x) and q(x)g(x) ∈ I, we have that r(x) ∈ I. Since g(x) had
minimal degree in I, r(x) = 0, so g(x) | f(x) and f(x) = q(x)g(x) ∈ 〈g(x)〉. Hence all elements in I are in
〈g(x)〉, and g(x) ∈ I, so I = 〈g(x)〉. Therefore F[x] is a PID. �

Theorem 3.1.6. Let F be a field with f(x) ∈ F [x]. Then 〈f(x)〉 is a prime ideal iff f(x) is irreducible.
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Proof: Suppose that 〈f(x)〉 is a prime ideal and f(x) = g(x)h(x) for g, h nonconstant. Since deg(g),deg(h) <
deg(f), by the proof above we have that g(x), h(x) /∈ 〈f(x)〉. But g(x)h(x) ∈ 〈f(x)〉, so either g(x) ∈ 〈f(x)〉
or h(x) ∈ 〈f(x)〉, contradicting the above. Therefore f(x) is irreducible.

Suppose that f(x) is irreducible, and g(x)h(x) ∈ 〈f(x)〉. It remains to show that either g(x) ∈ 〈f(x)〉 or
h(x) ∈ 〈f(x)〉. Since g(x)h(x) ∈ 〈f(x)〉, we have that g(x)h(x) = p(x)f(x) for some p(x) ∈ F[x], and so

f(x) | g(x)h(x) = u · g1(x) · · · gn(x) · v · h1(x) · · ·hm(x) =⇒ f(x) | k(x) for k ∈ {g1, . . . , gn, h1, . . . , hm}

If f(x) | gi(x), then g(x) ∈ 〈f(x)〉, and if f(x) | hi(x), then h(x) ∈ 〈f(x)〉, so 〈f(x)〉 is a prime ideal. �

Corollary 3.1.7. Let F be a field with F[x] 3 g(x). Then equivalently, in F[x]:
· 〈g(x)〉 is a maximal ideal
· 〈g(x)〉 is a prime ideal
· g(x) is irreducible

Proof: Over an integral domain, maximal ideals are prime and prime ideals are maximal. �

Example 3.1.8. In Q[x], x2+1 is irreducible, so 〈x2+1〉 is a maximal and prime ideal, so Q[x]/〈x2+1〉 ≈ C[x]
is a field.

Definition 3.1.9. Let R be a ring with an ideal I. Then we write a ≡ b (mod I) iff a− b ∈ I.

Theorem 3.1.10. For ideals I1, I2 of a ring R, if I1 ⊂ I2 ⊂ R and a ≡ b (mod I)1, then a ≡ b (mod I)2.

Proof: Simply observe that

a ≡ b (mod I1) =⇒ a− b ∈ I1
=⇒ a− b ∈ I2
=⇒ a ≡ b (mod I2)

�

Example 3.1.11. For Z2[x]/〈x2 + 2〉, we have 〈x2 + 2〉 ⊂ 〈x〉 and 〈x2 + 2〉 ⊂ 〈x+ 1〉. Then we have maps
· ϕ1 : Z2[x]/〈x2 + x〉 → Z2[x]/〈x〉 by ax+ b+ 〈x2 + 2〉 7→ ax+ b+ 〈x〉 = b+ 〈x〉
· ϕ2 : Z2[x]/〈x2 + x〉 → Z2[x]/〈x+ 1〉 by ax+ b+ 〈x2 + 2〉 7→ a+ b+ 〈x+ 1〉

Theorem 3.1.12. For ideals I1, I2 of a ring R, if I1 ⊂ I2 ⊂ R, then the map ϕ : R/I1 → R/I2 given by
ϕ(a+ I1) = a+ I2 is a ring homomrphism.

Theorem 3.1.13. Let F be a field and gcd(f(x), g(x)) = 1 for f(x), g(x) ∈ F [x]. Then

F [x]/〈f(x), g(x)〉 ≈ F [x]/〈f(x)〉 × F [x]/〈g(x)〉

Proof: Relabel the above A ≈ B ×C. The existence of a homomorphism ϕ from A to B ×C is given by the
previous theorem, so it remains to show that the homomorphism is bijective.

Suppose that ϕ(a) = (b, c) = ϕ(d), so we must show that a = d. Consider

a(x) ≡ d(x) (mod 〈f(x)〉) =⇒ a(x)− d(x) ∈ 〈f(x)〉
=⇒ f(x) | (a(x)− d(x))

=⇒ a(x)− d(x) = f(x)p(x)

Similarly a(x) ≡ d(x) (mod 〈g(x)〉) implies that a(x) − d(x) = g(x)q(x) for some q(x). Hence f(x)p(x) =
g(x)q(x) for some polynomials p, q, and as gcd(f(x), g(x)) = 1, f(x) | q(x), hence q(x) = f(x)k(x). So
a(x)− d(x) = g(x)q(x) = g(x)f(x)k(x) ∈ 〈f(x)g(x)〉. Hence

a(x) + 〈f(x)g(x)〉 = d(x) + 〈f(x)g(x)〉
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as required. It remains to show that ϕ is surjective. So we must show that for (a(x) + 〈f(x)〉, b(x) + 〈g(x)〉),
there exists c(x) + 〈f(x)g(x)〉 such that ϕ(c(x) + 〈f(x)g(x)〉) = (a(x) + 〈f(x)〉, b(x) + 〈g(x)〉).

So first recall that gcd(f(x), g(x)) = 1, so there exist h(x), k(x) ∈ F [x] such that f(x)h(x)+g(x)k(x) = 1.
Define c(x) to be the polynomial

c(x) = a(x)g(x)k(x) + b(x)f(x)h(x) + 〈f(x)g(x)〉 ∈ F [x]/〈f(x)g(x)〉

for which

c(x) ≡ a(x)g(x)k(x) (mod 〈f(x)〉) ≡ a(x)(1− f(x)h(x)) (mod 〈f(x)〉) ≡ a(x) (mod 〈f(x)〉)

Similarly c(x) ≡ b(x) (mod 〈g(x)〉), which gives surjectivity. �

Example 3.1.14. Consider the ring Q[x]/〈x4 − 3x2 + 2〉 for which

Q[x]/〈x4 − 3x2 + 2〉 = Q[x]/〈(x− 1)(x+ 1)(x2 − 2)〉
≈ Q[x]/〈x− 1〉 ×Q[x]/〈(x+ 1)(x2 − 2)〉
≈ Q[x]/〈x− 1〉 ×Q[x]/〈x+ 1〉 ×Q[x]/〈x2 − 2〉

≈ Q×Q×Q
[√

2
]

3.2 Euclidean domains

Definition 3.2.1. Let D be an integral domain. Suppose that there exists a function v : D \ {0} → N∪{0}
such that for all x, y ∈ D,
· v(x) 6 v(xy)
· there exist q, r ∈ D such that x = qy + r and v(r) < v(y) or r = 0

Then D is termed a Euclidean domain, and v is termed a Euclidean function.

Example 3.2.2. Consider the following examples of Euclidean domains.
· Z is a EUD using v(a) = |a|
· F [x] is a EUD using v(f(x)) = deg(f(x)) + 1
· Z[i] is a EUD using v(a+ bi) = a2 + b2 = |a+ bi|

Theorem 3.2.3. {EUD} ⊂ {PID}

Proof: Let D be a EUD and I an ideal in D. We will show that I = 〈x〉 for some x ∈ D. If I = {0}, take
x = 0. Otherwise, pick a nonzero x ∈ I such that v(x) is minimal. For y ∈ I, there exist q, r ∈ D such that
y = qx+ r and v(r) < v(x). Since y, qx ∈ I, we have that r ∈ I, but then v(r) = 0, as x was minimal in I.
So y = qx and y ∈ 〈x〉. Therefore I = 〈x〉. �

Theorem 3.2.4. Let D 3 a, b be a EUD with d = gcd(a, b). Then there exist u, v ∈ D with au+ bv = d.

Proof: Consider I = 〈a, b〉. As d | a and d | b, we have that d = au and d = bv for some u, v ∈ D. Then
d = au+ bv ∈ I. �

Definition 3.2.5. Let R be a commutative ring with u ∈ R a unit. Then if a = bu for a, b ∈ R, the elements
a, b are termed associates.

Theorem 3.2.6. Let D 3 a, b be an integral domain. For g, g′ gcds of a, b, we have that
· 〈g〉 = 〈g′〉
· g, g′ are associates
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Proof: 2. As both g, g′ are gcds of a, b, they are both common divisors of a, b. In particular, g | g′ and g′ | g,
so g = ug′ and g′ = vg. Hence g = uvg, so uv = 1, meaning u and v are units, in tun implying that g and
g′ are associates.

1. For g′′ a gcd of a, b, we know that 〈a, b〉 = 〈g′′〉. Hence g′′ = wg for w a unit, and g′′ = ac+ bd for some
c, d ∈ D. Hence w−1ca+ w−1db ∈ 〈a, b〉, so 〈g〉 = 〈a, b〉, and similarly 〈g′〉 = 〈a, b〉. �

Theorem 3.2.7. Let D be a EUD with Euclidean function v. Then
1. v(1) 6 v(a) for all nonzero a ∈ D
2. v(1) = v(a) iff a ∈ D is a unit

Proof: Recall that v(x) 6 v(xy) for x, y 6= 0, so let x = 1 and y = a. For the second one, note that

v(1) 6 v(a) 6 v(aa−1) = v(1). �

3.3 Unique factorization domains

Definition 3.3.1. An integral domain D is termed a unique factorization domain if every nonzero a ∈ D
may be expressed uniquely (up to permutation) as a product of irreducibles and a unit.

Definition 3.3.2. Recall the following definitions:
1. p ∈ D is irreducible iff:
· p 6= 0, p is not a unit, and
· p = ab =⇒ a or b is a unit

2. p ∈ D is prime iff:
· p 6= 0, p is not a unit, and
· p = ab =⇒ p | a or p | b

Example 3.3.3.
· Let F be a field. Then F has no irreducibles nor primes.
· In Z and F [x], all the primes are irreducible, and all the irreducibles are prime.
· Let R = {a0 + a2x

2 + a3x
3 + · · · | ai ∈ F} with x3 irreducible. But x3 | x4x2 with x3 - x4 and x3 - x2.

Theorem 3.3.4. Let D 3 p be a UFD. If p is prime, then p is irreducible.

Proof: Suppose that p is prime and reducible, i.e. that p = ab for a, b not units. As p is prime, WLOG p | a,
hence a = pb′ and p = ab = pb′b, so b is a unit, a contradiction. Hence p is irreducible. �

Example 3.3.5.
· Z,Z[x] are UFDs (but Z[x] is not a PID)
· Z[x, y, z] = ((Z[x])[y])[z] is a UFD
· Z[
√
−5] is not a UFD, as 21 = 7 · 3 = (1 + 2

√
−5)(1− 2

√
−5)

Theorem 3.3.6. Let D be a PID. Then p ∈ D is irreducible iff 〈p〉 is a maximal ideal.

Proof: Suppose that p is irreducible. Suppose there exists an ideal I with 〈p〉 ⊂ I ⊂ D, with I 6= D. Since
D is a PID, I = 〈a〉 for some a ∈ D, where a is not a unit. Then 〈p〉 ⊂ 〈a〉 ⊂ D, so there exists b ∈ D with
p = ab. Since p is irreducible, b is a unit. So a = pb−1, and hence a ∈ 〈p〉, so 〈a〉 = 〈p〉, and 〈p〉 is maximal.

Suppose that 〈p〉 is a maximal ideal in D, and p = ab for a not a unit. Then a | p and 〈p〉 ⊂ 〈a〉 ⊂ D,
and as a is not a unit, 〈a〉 6= D. Since 〈p〉 was maximal, 〈a〉 = 〈p〉, and a ∈ 〈p〉, meaning there is b′ ∈ D with
a = pb′ = abb′, so b is a unit. Hence p is irreducible. �

Corollary 3.3.7. Let D be a PID. Then p is prime iff p is irreducible.
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Proof: We know that p is irreducible iff 〈p〉 is maximal iff 〈p〉 is prime iff p is prime. �

Lemma 3.3.8. Let D be a PID with I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ D be a sequence of nested ideals. Then there
exists n ∈ N such that for all m > n, Im = In.

Proof: Let I =
⋃
j Ij = {a ∈ D | a ∈ Ij for some j}. Hence I = 〈x〉 for some x ∈ D, as D is a PID. Thus

x ∈ I implies x ∈ In0
. Hence 〈x〉 ⊂ In0

⊂ In ⊂ I = 〈x〉 for all n > n0. Hence Ii = 〈x〉 for all i. �

Theorem 3.3.9. {PID} ⊂ {UFD}

Proof: We need to show that, for D a PID,

1. For all a ∈ D, a can be factored into a finite number of irreducibles
2. The factorization into irreducibles is unique up to rearangement and multiplication by units

Assume that a is not irreducible, so a = b1 · b2 for b1, b2 not units. If b1 or b2 are not irreducible, express
them as b1 = c1 · c2 and b2 = c3 · c4, for all ci not units. Continue in this manner:

a

b1 b2

c1 c2 c3 c4
...

...
...

...

Claim 1: This factorization tree eventually stops.
To see this, first note that 〈a〉 ⊂ 〈b2〉 ⊂ 〈c4〉 ⊂ · · · . By the lemma, all branches are finite. Hence we have a
representation a = p1p2 · · · pk.

Claim 2: The representation a = p1p2 · · · pk is unique.
Suppose that a = p1p2 · · · pk = q1q2 · · · qr. As D is a PID, all irreducibles are prime, meaning that

p1 | a =⇒ p1 | q1q2 · · · qr =⇒ ∃ j ∈ {1, 2, . . . , r} such that p1 | qj

So qj = p1 · u, but as qj is irreducible, u is a unit. Repeat this argument for p2 · · · pk = q1 · · · qj−1qj+1 · · · qr
to get that p2 · v = q` for some unit v. Repeat this k times to get that k = r and and the primes pi match
up with the primes qi. Hence the factorization is unique, and D is a UFD. �

Definition 3.3.10. For D a UFD, an element p(x) = anx
n + · · · + a0 ∈ D[x] is termed primitive iff

gcd(an, . . . , a0) = 1.

Proposition 3.3.11. For D a UFD, if p(x), q(x) ∈ D[x] are primitive in D[x], then so is p(x)q(x).

Theorem 3.3.12. Let D be a UFD and Q its field of quotients. Let f(x) ∈ D[x] ⊂ Q[x] factor over Q[x].
Then f(x) factors over D[x].

Proof: WLOG assume that f(x) is primitive with f(x) =
(
an
bn
xn + · · ·+ a0

b0

)(
ck
dk
xk + · · ·+ c0

d0

)
, and let

a∗ = gcd(an, . . . , a0) c∗ = gcd(ck, . . . , c0)
b∗ = lcm(bn, . . . , b0) d∗ = lcm(dk, . . . , d0)
a′i = (ai · b∗)/(bi · a∗) c′i = (ci · d∗)/(di · c∗)

Then we have that ai/a
∗, b∗/bi ∈ D and a′nx

n + · · ·+ a′0 is primitive, and so

f(x) =
a∗c∗

b∗d∗
(a′nx

n + · · ·+ a′0)
(
c′kx

k + · · ·+ c′0
)

15



Then b∗d∗

a∗c∗ f(x) is primitive, and thus b∗d∗

a∗c∗ = u is a unit, and

f(x) = u−1 (a′nx
n + · · ·+ a′0)

(
c′kx

k + · · ·+ c′0
)

Where a′i, c
′
j ∈ D for all i, j, meaning that f(x) factors over D[x]. �

Theorem 3.3.13. If D is a UFD, then D[x] is a UFD.

Proof: Let Q be the field of quotients of D. Then Q is a field, hence Q[x] is a UFD. Hence if f(x) ∈ D[x] ⊂
Q[x], then it has a unique factorization in Q[x], and so a unique factorization in D[x]. �

4 Extension fields

4.1 The Gaussian integers

Recall that Z[i] is a UFD, so an element is irreducible if and only if it is prime.
· the units of Z[i] are ±1,±i
· if n is not prime in Z, then n is not prime in Z[i] (the converse does not hold)
· for vZ[i]→ N ∪ {0} given by v(a+ bi) = a2 + b2, we have that v(z) = 1 iff z is a unit

Proposition 4.1.1. If v(z) ∈ P, then z is irreducible.

Proposition 4.1.2. If p ∈ P and p ≡ 3 (mod 4), then p is prime in Z[i].

Theorem 4.1.3. If p ≡ 1 (mod 4) for p ∈ P, there exist a, b ∈ Z such that p = a2 + b2.

Proof: Consider xp−1 − 1 in Zp[x]. As Zp is a field, this function has at most p− 1 roots. By Fermat’s little
theorem, all of 1, 2, . . . , p− 1 are the distinct roots. Now write p = 4m+ 1 for some m ∈ N, so that

xp−1 − 1 = x4m − 1

= (x4 − 1)(x4m−4 + x4m−8 + · · ·+ x4 + 1)

= (x2 + 1)(x− 1)(x+ 1)(x4m−4 + x4m−8 + · · ·+ x4 + 1)

Therefore x2 + 1 has two unique roots, call them c, d. Hence c2 + 1 ≡ 0 (mod p), so write c2 + 1 = pk for
some k ∈ Z. As c ∈ {1, 2, . . . , p− 1}, we have that pk < p2. Note that p | c2 + 1, so if p was prime over Z[i],
then p | c+ i or p | c− i, but

v(p) = p2 > pk = v(c+ i) = v(c− i)

Hence p - c+ i and p - c− i, so p is not prime over Z[i]. As primes and irreducibles are equivalent in Z[i], we
see that p = (a+ bi)(c+ di), with v(a+ bi), v(c+ di) > 1. As v(p) = p2, this implies that v(a+ bi) = p, so
p = (a+ bi)(a− bi), and c = a, b = −d. �

Remark 4.1.4. This is a short summary of the properties of the Gaussian integers.
1. 1 + i is prime
2. ±1,±i are units
3. If p ≡ 3 (mod 4) is prime in Z, then p is prime in Z[i]
4. If p ≡ 1 (mod 4) is prime in Z, then a2 + b2 = p for a, b ∈ Z, and a+ bi, a− bi are prime in Z[i]
5. There are no other primes
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4.2 Algebraic extensions

Definition 4.2.1. Let F be a subfield of a field E. Then E is termed an extension (or extension field) of F .

Example 4.2.2.
· C,R are extensions of Q
· Q〈〈x〉〉 is an extension of Q
· Z2[x]/〈x2 + x+ 1〉 is an extension of Z

Definition 4.2.3. Let E 3 α be an extension of F . Then

F [α] = {p(α) | p(x) ∈ F [x]}

F [α1, . . . , αn] = {p(α1, . . . , αn) | p(x1, . . . , xn) ∈ F [x1, . . . , xn]}

F (α) =
{
f(α)
g(α) | f(x), g(x) ∈ F [x], g(α) 6= 0

}
F (α1, . . . , αn) =

{
f(α1,...,αn)
g(α1,...,αn) | f(x1, . . . , xn), g(x1, . . . , xn) ∈ F [x1, . . . , xn], g(α1, . . . , αn) 6= 0

}
Remark 4.2.4. C is an extension of Q, with Q[i] = Q(i), but Q[π] 6= Q(π), as 1

π /∈ Q.

Definition 4.2.5. Let F, F ′ be fields. Then α ∈ F ′ is termed algebraic over F iff there exists a non-zero
polynomial f(x) ∈ F [x] with f(α) = 0.

Then f(x) is termed the minimal polynomial of α over F iff f(x) is monic and g(α) = 0 for some g(x) ∈ F [x]
implies deg(g) > deg(f). It follows immediately that the minimal polynomial is always irreducible.

Theorem 4.2.6. Let E be an extension of F with α ∈ E. Let p(x) be the minimal polynomial of α. Then:
1. F (α) = F [α] ≈ F [x]/〈p(x)〉
2. F (α) is an n-dimensional vector space over F , with basis {1, α, . . . , αn−1}

Proof: 1. Consider ϕ : F [x]→ E given by ϕ(f(x)) = f(α), which is a homomorphism. Then ϕ(F [x]) = F [α],
and by the 1st isomorphism theorem,

ϕ(F [x]) ≈ F [x]/ ker(ϕ) = F [x]/〈p(x)〉

Hence F [α] ≈ F [x]/〈p(x)〉, and as p(x) is irreducible, F [x]/〈p(x)〉 is a field. Further, F [α] ⊂ F (α), for F (α)
the smallest field containing α and F . As F [α] is a field containing α and F , we have F [α] = F (α). The
result follows.

2. Let V = {a0 + a1α+ · · ·+ an−1α
n−1 | ai ∈ F}, and we want to show that V = F [α]. Let

p(x) = xn − bn−1x
n−1 − · · · − b1x− b0

=⇒ αn = bn−1α
n−1 + · · ·+ b1α+ b0 ∈ V

Similarly, αn+1 = α ·αn = bn−1α
n+ · · ·+b0α ∈ V , and so αm ∈ V for all m ∈ Z>0. Hence for all f(x) ∈ F [x],

we have that f(α) ∈ V , and so V = F [α] as desired. �

Definition 4.2.7. Let E be an extension of F . Then E is termed a finite extension of F iff E can be
expressed as a finite-dimensional vector space over F . If this dimension is n, then we write [E : F ] = n. And
E is termed an algebraic extension of F iff all α ∈ E are algebraic over F .

Example 4.2.8.
· [Q(

√
2) : Q] = 2

· [C : R] = 2, as C = R[i], for i2 + 1 = 0
· R,C are extensions, but are neither algebraic nor finite extensions of Q
· Q(
√

2,
√

3,
√

5,
√

7,
√

11, . . . ) is an algebraic, but not a finite extension of Q
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Theorem 4.2.9. If E is a finite extension of F , then E is an algebraic extension of F .

Proof: Let E be a finite extension of F , say [E : F ] = n, and let β ∈ E. Consider the set {1, β, β2, . . . , βn},
which must be linearly dependent in E. Hence there exists some f(x) ∈ F [x] with f(β) = 0, and so β is
algebraic. Since β was arbitrary, every element in E is algebraic. �

Corollary 4.2.10. Let E be an extension of F . If [E : F ] = n and β ∈ E, then deg(β) 6 n. Equivalently,
[F (β) : F ] 6 [E : F ].

Theorem 4.2.11. Let K be a finite extension of E and E a finite extension of F . Then

[K : F ] = [K : E][E : F ]

Proof: As E is a finite extension of F , say of dimension n, there exist α1, . . . , αn ∈ E with E = {
∑n
i=1 aiαi | ai ∈

F}. Similarly, K = {
∑m
i=1 biβi | bi ∈ E} and βi ∈ K. Hence we have that α1β1, α1β2, . . . , αnβm ∈ K. We

claim that

K =


n∑
i=1

m∑
j=1

cijαiβj | cij ∈ F


It remains to be shown that if γ ∈ K, then γ can be represented as an element in the set above, and that
the set is minimal. So for γ ∈ K, we may express it as γ =

∑m
j=1 bjβj for some bj ∈ E. And as each bj ∈ E,

there exist cji ∈ F such that bj =
∑n
i=1 cjiαi for all bj . Hence γ has the required form.

Now suppose that

0 =

n∑
i=1

m∑
j=1

cijαiβj =

m∑
j=1

(
n∑
i=1

cijαi

)
︸ ︷︷ ︸

= bj∈E

βj

Then
∑m
j=1 bjβj = 0, and as β1, . . . , βm is a minimal set of vectors, it is linearly independent aver E. Hence

bj = 0 for all j. Then
∑n
i=1 cijαi = 0, and by a similar argument, cij = 0 for all i. Hence all the coefficients

in the expression above are null, and the spanning set is minimal. �

Corollary 4.2.12. Let E be a finite extension of F , and α ∈ E. Then deg(α) = [F (α) : F ]
[E : F ].

Proof: [E : F ] = [E : F (α)][F (α) : F ] �

Example 4.2.13. For example, 3
√

7 /∈ Q( 4
√

5).

Corollary 4.2.14. For α, β ∈ F algebraic, the elements α± β, α · β±1 for β 6= 0 are all algebraic.

Proof: As α ± β, α · β±1 ∈ F (α, β), WLOG assume that [F (α, β) : F (α)] 6 [F (α) : F ]. If p(β) = 0 for
p(x) ∈ F [x], then as F [x] ⊂ F (α)[x], p(x) ∈ F (α)[x]. Hence [F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ]. �

Definition 4.2.15. Let Q be the set of algebraic numbers over Q.

Theorem 4.2.16. Let K be an algebraic extension of E, and E an algebraic extension of F . Then K is an
algebraic extension of F .

Proof: Let γ ∈ K, so γ is the root of p(x) =
∑n
i=1 aix

i, for ai ∈ E. As all ai ∈ E are algebraic, we have that
[F (ai) : F ] 6 deg(ai) = mi <∞. Let L = F (a1, . . . , an), and note that γ ∈ L(γ) ⊂ K. Further,

[L(γ) : F ] = [L(γ) : L]︸ ︷︷ ︸
6 n

[L : F ]︸ ︷︷ ︸
=

∏
mi

Hence L(γ) is a finite extension of F , and so it is an algebraic extension, so γ is algebraic in L(γ). Then γ
is algebraic in K, and K is an algebraic extension of F . �
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4.3 Splitting fields

Definition 4.3.1. Given a field E, a polynomial p(x) is said to split over E if

p(x) = a

n∏
i=1

(x− αi), αi ∈ E

Definition 4.3.2. Given a polynomial p(x) ∈ F [x], an extension field K of F is termed a splitting field of
p(x) iff p(x) splits over K, and K is the smallest such field (smallest by inclusion).

Example 4.3.3. Find the splitting field for p(x) = x4 − 4 ∈ Q[x].
Note that

p(x) = (x2 − 2)(x2 + 2) = (x+
√

2)(x−
√

2)(x2 + 2) ∈ Q(
√

2)

= (x2 − 2)(x+
√

2i)(x−
√

2i) ∈ Q(
√

2i) = Q(
√
−2)

So we choose p(x) = (x+
√

2)(x−
√

2)(x+
√

2i)(x−
√

2i) ∈ Q(
√

2, i).

Theorem 4.3.4. Let f(x) ∈ F [x] split over E as f(x) = a(x− α1) · · · (x− αn). Then the splitting field of
f(x) is F (α1, . . . , αn).

Theorem 4.3.5. Let f(x) ∈ F [x] be of degree n. Then the splitting field of f(x), say E, satisfies [E : F ] 6 n!

Proof: Let α1 be a root of f(x). Then there exists fn−1 ∈ F (α1) of degree n− 1 such that [F (α1) : F ] 6 n
with f(x) = (x− α1)fn−1(x).

Pick a root α2 of fn−1(x) and repeat the process with fn−2 ∈ F (α1, α2) of degree n − 2 such that
[F (α1, α2) : F (α1)] 6 n− 1 with fn−1(x) = (x− α2)fn−2(x).

Repeat this process as necessary, to get ultimately that

[F (α1, . . . , αn) : F ] = [F (α1, . . . , αn) : F (α1, . . . , αn−1][F (α1, . . . , αn−1) : F (α1, . . . , αn−2)] · · · [F (α1) : F ]

6 1 · 2 · · ·n
= n!

�

Example 4.3.6. Find the splitting field for x3 − 2 over Q.
Pick the first root α1 = 21/3, so in Q(21/3), f(x) = (x− 21/3)(x2 + 21/3x+ 22/3), and [Q(21/3) : Q] = 3.

Let ω = −1+
√

3
2 be the non-trivial cube root of unity. Then

f(x) = (x− 21/3)(x− 21/3ω)(x− 21/3ω2)

Moreover, [F (21/3, 21/3ω) : F (21/3)] = 2, and so [F (21/3, 21/3ω) : F ] = 2 · 3 = 6, and F (21/3, 21/3ω) is the
splitting field.

Remark 4.3.7. If α1, . . . , αk are all algebraic over Q, then there exists β algebraic over Q with Q(β) =
Q(α1, . . . , αk), however it is very difficult to calculate β explicitly. This holds in general for any field F , not
just Q.

4.4 Finite fields

Example 4.4.1. These are some examples of finite fields:
· Zp for p prime
· Zp[x]/〈f(x)〉 for f irreducible
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Theorem 4.4.2. Let F be a finite field. Then there exists a prime p and an integer n > 1 such that:
· F has characteristic p
· F has pn elements

Proof: As F is a field, it is an integral domain. As F is a finite integral domain, we know from the midterm
that char(F ) = p for some prime p. For ‘1‘ the unit of F , define

E = {n · ‘1‘ | n ∈ Z} ⊂ F

Note that E ≈ Zp, which is a field. So F is an extension field of E.

If F = E, then we are done. Else pick α2 ∈ F \ E and write

E2 = {a1 + a2α2 | ai ∈ E}

Note that E2 is not necessarily a field, it is just a vector space over E.

If F = E2, then we are done. Else repeat the above with some α3 ∈ F \ E2 and

E3 = {a1 + a2α2 + a3α3 | ai ∈ E}

At some point this process must stop, as F is finite. So say this process stops at F = En. Note that En has
pn elements, so F does too. �

Theorem 4.4.3. If F is a field with pn elements, then F is isomorphic to the splitting field of xp
n−x ∈ Zp[x].

Furthermore, the splitting field of xp
n − x ∈ Zp[x] has pn elements.

Proof: Let F be the field with pn elements, and k = pn − 1. Let a1, . . . , ak be the non-zero elements in F ,
and write u = a1a2 · · · ak. Note that the map x 7→ cx for any nonzero c is an automorphism of {a1, . . . , ak},
so it is a bijection. This implies that

u = (ca1)(ca2) · · · (cak) = cka1a2 · · · ak = cku

Hence cp
n−1 = 1 for nonzero c, so cp

n

= c for all c. Hence for every c ∈ F , cp
n − c = 0. As there are pn

elements in F ,

xp
n

− x =
∏
c∈F

(x− c)

To complete the proof, it must be shown that if a, b satisfy ap
n − a = bp

n − b = 0, then so do a+ b, ab and
a−1. This follows from simple calculations.

(ab)p
n

= ap
n

bp
n

= ab

(a+ p)p
n

= ap
n

+ bp
n

= a+ b

(a−1)p
n

= (ap
n−2)p

n

= (ap
n

)p
n−2 = ap

n−2 = a−1

Hence F is the splitting field of xp
n − x and has pn elements. �

Note that the set of roots of xp
n − x forms a field.

Corollary 4.4.4. Let f(x) ∈ Zp[x] be irreducible for p prime. Then Zp[x]/〈f(x)〉 ≈ (splitting field of
xp

n − x).

For instance, we have that Z3[x]/〈x2 + 1〉 ≈ Z3[x]/〈x2 + x+ 2〉.

Corollary 4.4.5. If f(x) ∈ Zp[x] has an irreducible factor of degree n, then gcd(f(x), xp
n − x) 6= 1.

Definition 4.4.6. The Galois field of pn elements is defined as GF (pn) =(splitting field of xp
n −x over Zp).
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Remark 4.4.7. All finite fields are GF (pn) for some p and n.

Example 4.4.8. Explicitly calculate GF (26) and all its subfields.
We first claim that f(x) = x6 + x3 + 1 is irreducible.

To see it has no linear factors, note f(0) = f(1) = 1 6= 0
To see it has no quadratic factors, note

gcd(x6 + x3 + 1, x22

− x) = gcd(x6 + x3 + 1, x4 − x)

= gcd(x6 + x3 + 1− x2(x4 + x), x4 + x)

= gcd(1, x4 − x)

= 1

To see it has no cubic factors, note

gcd(x6 + x3 + 1, x23

− x) = gcd(x6 + x3 + 1, x8 − x)

= gcd(x6 + x3 + 1, x5 + x2 + x)

= gcd(x2 + 1, x5 + x2 + x)

= gcd(x2 + 1, x3 + x2 + x)

= gcd(x2 + 1, x2)

= gcd(1, x2)

= 1

Hence it is irreducible, and GF (26) ≈ Z2[x]/〈x6 + x3 + 1〉. Now to find the subfields, first note that as
[GF (26) : Z2] = 6, for F a subfield with [GF (26) : F ][F : Z2], we can have [F : Z2] ∈ {1, 2, 3, 6}.

If [F : Z2] = 1, then F = Z2

If [F : Z2] = 2, then F = GF (22)
If [F : Z2] = 3, then F = GF (23)
If [F : Z2] = 6, then F = GF (26)

To see that the above holds for 2, 3, note that for α ∈ GF (22) and β ∈ GF (23), we have

α64 = (α4)16 = α16 = (α4)4 = α4 = α

β64 = (β8)8 = β8 = β

Hence α, β ∈ GF (26), giving a construction as follows:

Z2

Z2[x]/〈x2 + x+ 2〉 ≈ GF (22) GF (23) ≈ Z2[x]/〈x3 + x+ 1〉

GF (26) ≈ Z2[x]/〈x6 + x3 + 1〉

2 3

6

3 2

Note that x6 + x3 + 1 is not irreducible in GF (23) or GF (22), as if it was, then the degree of the extension
would be 6, instead of 3 and 2 as shown above.
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Definition 4.4.9. Let R be a ring. A map σ : R→ R is termed an automorphism from R to itself iff it is a
bijective ring homomorphism. The group (it wil be shown below to be a group) of automorphisms on R is
denoted by Aut(R).

For exapmle, the map σ(a) = a is termed the trivial automorphism.

Definition 4.4.10. Let F be a finite field of characteristic p. Then the map ϕ : F → F given by a 7→ ap is
termed the Frobenius map.

Proposition 4.4.11. The Frobenius map is an automorphism.

Proof: First check that it is a ring homomorphism.

ϕ(a+ b) = (a+ b)p = ap + bp = ϕ(a) + ϕ(b)

ϕ(ab) = (ab)p = apbp = ϕ(a)ϕ(b)

To see that it is injective, if ϕ(a) = ϕ(b), then

ap = bp =⇒ ap − bp = 0 =⇒ (a− b)p = 0 =⇒ a− b = 0 =⇒ a = b

As F is finite and ϕ in injective, surjectivity follows. �

Example 4.4.12. Factor x6 + x3 + 1 over GF (23).
Suppose that for some α, β, x2 + αx+ β|x6 + x3 + 1 in GF (8)[x]. Now apply the Frobenius map:

(1)2x2 + α2x+ β2|x6 + x3 + 1

(1)4x2 + α4x+ β4|x6 + x3 + 1

If one of the factors above splits, then all of them do, hence they would all be irreducible. Assuming
α2 6= α and β2 6= β, they are all distinct factors. Therefore

x6 + x3 + 1 = (x2 + αx+ β)(x2 + α2x+ β2)(x2 + α4x+ β4)

in GF (8)[x]. As GF (23) ≈ Z2[x]/〈x3 + x + 1〉 from above, consider γ as the root of x3 + x + 1, where
GF (8) = {a+ bγ + cγ2 | a, b, c ∈ Z2, γ

3 = γ + 1}. Then consider the action of the Frobeinus map ϕ on the
elements of GF (8).

0 1

γ γ2

γ4 = γ + γ2

1 + γ 1 + γ2

1 + γ + γ2

ϕ

ϕϕ

ϕ

ϕϕ

ϕ ϕ

So let α = aγ2 + bγ+ c and β = dγ2 + eγ+ f , and rewrite x6 + x3 + 1 in terms of γ. By simplifying, we find

a = 1 d = 0
b = 0 e = 0
c = 0 f = 1

Hence the expression x6 + x3 + 1 may be expressed as

x6 + x3 + 1 = (x2 + γ2x+ 1)(x2 + (γ2 + γ)x+ 1)(x2 + γx+ 1)
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5 Galois theory

5.1 Introduction

Definition 5.1.1. A group is a set G with a binary operation (usually + or ·, but ∗ in general) such that
for a, b, c ∈ G,

1. ab ∈ G
2. there exists e ∈ G such that ae = ea = a
3. there exists a−1 ∈ G such that aa−1 = a−1a = e
4. a(bc) = (ab)c

Frequently the group is denoted (G, ∗).

Example 5.1.2.
· A ring with the binary operation + is a group, with e = 0
· The non-zero elements in a division ring under · form a group, with e = 1
· The set of permutations under composition form a group, called S3 (this generalizes to Sn)

Example 5.1.3. Find the set of all automorphisms of Q(
√

2).
Let ϕ be an automorphism, so ϕ(1) = 1, and ϕ(a) = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

a times

= a for all a ∈ Q. Moreover, then

ϕ(a+ b
√

2) = a+ bϕ(
√

2), hence ϕ is determined completely by what it does to
√

2.

Note that ϕ(
√

2)ϕ(
√

2) = ϕ(2) = 2, so ϕ(
√

2) = ±
√

2. Let ϕ+(
√

2) =
√

2 and ϕ−(
√

2) = −
√

2. Then
the group table is given by

◦ ϕ+ ϕ−

ϕ+ ϕ+ ϕ−

ϕ− ϕ− ϕ+

+ 0 1
0 0 1
1 1 0

Therefore the set of all automorphisms of Q(
√

2) is isomorphic to Z2.

Definition 5.1.4. Let E be an extension field of F . Then γ ∈ Aut(E) is termed an F -automorphism iff
γ(a) = a for all a ∈ F .

Example 5.1.5. The automorphisms of Q(
√

5) are σ±(a+ b
√

5) = a± b
√

5.
Here we have that σ+ is both a Q(

√
5)- and Q-automorphism, whereas σ− is only a Q-automorphism.

Definition 5.1.6. Let G be a group. A set H ⊂ G is termed a subgroup of G iff H is a group under the
same binary operation as G. This relationship is denoted H 6 G.

5.2 The group Gal(E/F )

Definition 5.2.1. Let E be an extension field of F . Then the Galois group Gal(E/F ) is the group of
F -automorphisms of E.

Theorem 5.2.2. Let E be an extension of F . Then
1. (Aut(E), ◦) is a group
2. The set of F -automorphisms as a subset of Aut(E) is a subgroup of Aut(E)

Proof: 1. Let σ, τ ∈ Aut(E). We need to show that σ ◦ τ ∈ Aut(E). Note

σ ◦ τ(a+ b) = σ(τ(a+ b)) σ ◦ τ(ab) = σ(τ(ab))

= σ(τ(a) + τ(b)) = σ(τ(a)τ(b))

= σ(τ(a)) + σ(τ(b)) σ(τ(a))σ(τ(b))

= σ ◦ τ(a) + σ ◦ τ(b) = σ ◦ τ(a) · σ ◦ τ(b)
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Hence it is a homomrphism. As both σ, τ are bijections, their composition is a bijection, and so σ◦τ ∈ Aut(E).
For Id(a) = a the identity automorphism, clearly Id ∈ Aut(E) is the identity element.
As σ ∈ Aut(E) is bijective, also σ−1 ∈ Aut(E) and σ−1 ◦ σ = Id.
Standard composition of functions gives that σ ◦ (τ ◦ θ) = (σ ◦ τ) ◦ θ.

Hence Aut(E) is a group.

The fact that Gal(E/F ) is a subgroup is done identicaly. �

Theorem 5.2.3. Let α be algebraic over F and σ ∈ Gal(E/F ). For p(x) the minimal polynomial of α, σ(α)
is a root of p.

Proof:

p(α) = anα
n + · · ·+ a0 = 0

σ(p(α)) = σ(anα
n + · · ·+ a0)

= σ(anα
n) + · · ·+ σ(a0)

= anσ(αn) + · · ·+ a0

= anσ(α)n + · · ·+ a0

= p(σ(α))

Therefore σ(p(α)) = p(σ(α)) = 0. �

Example 5.2.4. Find Gal(Q( 3
√

2)/Q).

Note that as 3
√

2 ∈ Q( 3
√

2) and for σ ∈ Gal(Q( 3
√

2)/Q), we have σ( 3
√

2) ∈ { 3
√

2, 3
√

2ω, 3
√

2ω2} for ω2+ω+1 =
0, or ω the third root of unity.

However, note that 3
√

2ω, 3
√

2ω2 /∈ Q( 3
√

2), hence σ( 3
√

2) = 3
√

2. Hence Gal(Q( 3
√

2)/Q) ≈ Z1, the trivial
group of size 1.

Theorem 5.2.5. Let α be algebraic over F . Then σ ∈ Gal(F (α)/F ) is completely determined by σ(α).

Corollary 5.2.6. |Gal(F (α)/F )| 6 degF (α)

Example 5.2.7. Find |Gal(Q( 4
√

2)/Q)|.
The minimal polynomial of 4

√
2 is x4− 2, which factors as (x− 4

√
2)(x+ 4

√
2)(x+

√
2) over Q( 4

√
2). Hence

for σ ∈ Aut(Q( 4
√

2)/Q), we have that σ( 4
√

2) = ± 4
√

2, and so |Gal(Q( 4
√

2)/Q)| = 2 6 4.

Corollary 5.2.8.

|Gal(F (α1, . . . , αn)/F )| 6
n∏
i=1

degF (αi)

Example 5.2.9. Let E be the splitting field of x3 − 2. Find Gal(E/Q).

Here, E = Q( 3
√

2, 3
√

2ω, 3
√

2ω2) = Q( 3
√

2, ω), for ω2 + ω + 1 = 0. If ϕ ∈ Gal(E/Q), then

ϕ( 3
√

2) ∈ { 3
√

2, 3
√

2ω, 3
√

2ω2}
ϕ(ω) = ϕ

(
3√2ω
3√2

)
∈ {ω, ω2}

The second statement follows as 1
ω = ω2 and 1

ω2 = ω. Therefore specifying these two actions will completely
determine the automorphism. Hence Gal(E/Q) is a group with 6 elements.

As any one of 3
√

2, 3
√

2ω, 3
√

2ω2 can be mapped to any other one in that list, it follows that the group is
isomorphic to S3.
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Theorem 5.2.10. Let F ≈ F ′ via ϕ : F → F ′. Let p(x) ∈ F [x] be irreducible. Then p′(x) = ϕ(p(x)) ∈ F ′[x]
is irreducible. Further, F [x]/〈p(x)〉 ≈ F ′[x]/〈p′(x)〉 by ϕ(q(x) + 〈p(x)〉) = ϕ(q(x)) + 〈p′(x)〉.

Example 5.2.11. Consider the sequence of splitting fields for the splitting field of x4 − 2.
First, use F = F ′ = Q, and p(x) = p′(x) = x4 − 2. This gives a homomorphism ϕ( 4

√
2) = 4

√
2i.

Next, use F = Q( 4
√

2) and F ′ = Q( 4
√

2i), with p(x) = x2 +
√

2 and p′(x) = x2 −
√

2.

Q

Q( 4
√

2) ≈ Q[x]/〈x4 − 2〉 Q[x]/〈x4 − 2〉 ≈ Q( 4
√

2i)

Q( 4
√

2, 4
√

2i) ≈ Q( 4
√

2)[x]/〈x2 +
√

2〉 Q( 4
√

2i)[x]/〈x2 −
√

2〉 ≈ Q( 4
√

2i, 4
√

2)

Now we have that Q( 4
√

2, 4
√

2i) is isomorphic to itself, but the isomorphism constructed here gives 4
√

2 7→ 4
√

2i.

Proposition 5.2.12. Let E be the splitting field of an irreducible polynomial p(x) over F . Then for all
pairs of roots α, β of p(x), there exists σ ∈ Gal(E/F ) with σ(α) = β.

Remark 5.2.13. We do not need for E to be the splitting field of p(x). We only need p(x) to split in E.

In particular, recall from a previous example that there were σ, θ ∈ Gal(Q( 3
√

2, ω)/Q) such that σ( 3
√

2) =
any root of x3 − 2, and θ(ω) = ω or ω2. Now consider the following:

σ(
3
√

2) =
3
√

2ω

σ(
3
√

2ω) =
3
√

2ω2

σ(
3
√

2ω2) =
3
√

2

Further, observe that

σ

(
1

ω

)
= σ

(
3
√

2
3
√

2ω

)
=

3
√

2ω
3
√

2ω2
=

1

ω

Hence σ(ω) = ω and σ(ω2) = ω2. Hence we have the transformations of σ, σ2, and σ3 represented by

σ σ2 σ3

Note not all possible maps are represented above, as there is θ with θ(ω) = ω2, but σn(ω) = ω for all n. For
θ(ω) = ω, we have that θ ◦ σn = σn for n = 1, 2, 3. The other three maps are given by applying θ to each of
the maps above, for θ(ω) = ω2.

θ ◦ σ θ ◦ σ2 θ ◦ σ3
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Definition 5.2.14. A polynomial f(x) ∈ F [x] is termed separable over F iff the roots of f(x) over its
splitting field have multiplicity 1.

Remark 5.2.15. Let F be a field of characteristic 0. Then any irreducible polynomial in F [x] is separable.

Theorem 5.2.16. Let F be a field with non-zero characteristic with p(x) ∈ F [x] irreducible. If gcd(p(x), p′(x)) =
1, then p(x) is separable.

If p(x) is irreducible and not separable, then p′(x) = 0, or equivalently, f(x) = g(xp) for some g(x) ∈ F [x].

Definition 5.2.17. Let E be an extension field of F . Then α ∈ F is termed separable iff the minimal
polynomial of α in F [x] is separable.

Then E is termed a separable extension of F iff all α ∈ E are separable.

Then F is termed perfect iff all algebraic extensions of F are separable extensions.

Example 5.2.18. The fields Q,R,C,Zp, GF (pn) are all perfect, for p prime and n ∈ N.

Theorem 5.2.19. Let f(x) ∈ F [x] be separable, and E be the splitting field of f(x). Then |Gal(E/F )| =
[E : F ].

Proof: This proof will proceed by induction. Clearly the theorem holds for [E : F ] = 1, so suppose that it
holds for [E : F ] = m, for all m < n.

Let p(x) ∈ F [x] be an irreducible factor of f(x) with roots α1, . . . , αk, where k 6 n. By a previous
theorem, there exist maps θ1, . . . , θk ∈ Gal(E/F ) with θi(α1) = αi.

As E is a splitting field over F , it is a splitting field over F (α1). Note that [E : F (α1)] < n, as [E : F ] =
[E : F (α1)] [F (α1) : F ]︸ ︷︷ ︸

k>2

, and so [E : F (α1)] = m = n/k, and by induction, [E : F (α1)] = |Gal(E/F (α1))|.

Let ψ1, . . . , ψm ∈ Gal(E/F (α1)) be an exhaustive, distinct list. Now we claim that the desired set of
automorphisms is {θ1 ◦ ψ1, θ1 ◦ ψ2, . . . , θk ◦ ψm} = Gal(E/F ). It must be shown that they are distinct and
exhaustive.

To see that they are all distinct, note that θi ◦ ψj(α1) = θi(α1) = αi, and that θi ◦ ψj = θw ◦ ψz implies
i = w. Then ψj = ψz, so j = z, and hence they are all distinct.

Now suppose that σ ∈ Gal(E/F ), hence σ(α1) = αs for some s ∈ [1,m]. Note that θ−1
s ◦ σ(α1) =

θ−1
s (αs) = α1, so σ(α1) = θs(α1). Therefore θ−1

s ◦ σ fixes F (α1) and θ−1
s ◦ σ ∈ Gal(E/F (α1)), and so

θ−1
s ◦ σ = ψj =⇒ σ = θs ◦ ψj

Hence σ is one of the described forms, and |Gal(E/F )| = [E : F ] = mk. �

Example 5.2.20. Let E be the splitting field of x3 − 2, so then

Q

Q( 3
√

2, ω)

Q( 3
√

2)6

3

2

Hence Gal(E/Q) has size 6.

Theorem 5.2.21. Let E be a splitting field of a separable polynomial of degree n over F . Then

Gal(E/F ) 6 Sn and so |Gal(E/F )| 6 n!
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Proof: The set of permutations of all roots of f(x) contains Gal(E/F ) as a subgroup, and the set of permu-
tations of n elements is isomorphic to Sn. The size follows from a theorem of Lagrange. �

Definition 5.2.22. Let E be a finite extension of F . Then E is termed primitive, or a simple extension iff
there exists γ ∈ E with E = F (γ).

Example 5.2.23.
· The field Q(

√
p,
√
q) for distinct primes p, q is a simple extension, as Q(

√
p,
√
q) = Q(

√
p+
√
q)

· The field GF (22) is a simple extension of Z2

Theorem 5.2.24. Let E be a finite separable extension of F . Then E is a simple extension of F .

Proof: Case 1: F is finite.
As F is a finite field, F ≈ GF (pn) for some p, n. As E is a finite extension, E ≈ GF (pm) for m > n. We
know that E ≈ Zp[x]/〈f(x)〉 for f(x) ∈ Zp[x] an irreducible polynomial of degree m. Let α be a root of f ,
so E = F (α).

Case 2: F is infinite.
As E is a finite extension, E = F (α1, . . . , αn), and we wish to show that there exists a γ with E = F (γ). It
suffices to show that E = F (α1, α2) and there is a γ with E = F (γ), as

F (α1, . . . , αn) = F (γ1, α3, . . . , αn) = F (γ2, α4, . . . , αn)

for appropriate γi. Now assume that E = F (α, β). Let f, g be the minimal polynomials of α, β over F [x].
Let E2 be the splitting field of f, g, so both factor completely over E2[x]. Let a1, . . . , an be the roots of f ,
and b1, . . . , bk be the roots of g, where

∏
ai = α and

∏
bi = β. Also note that all bi are distinct. Pick

u ∈ F, u 6= a1 − ai
b1 − bj

∀ i = 1, . . . , n ∀ j = 1, . . . , k

As F is infinite, there are lots of choices for u. Define

γ = a1 + ub1 = α+ uβ

We claim that F (γ) = F (α, β). As γ ∈ F (α, β), we have that F (γ) ⊂ F (α, β). If we can show that β ∈ F (γ),
then as α = γ − uβ, we will be done.

Let h(x) be the minimal polynomial of β in F (γ). If deg(h) = 1, then we are done. Note that

g(x) = (x− b1)(x− b2) . . . (x− bk) ∈ F [x] ⊂ F (γ)

Hence h(x) | g(x). Let k(x) = f(γ − ux) ∈ F (γ)[x]. Further,

k(b1) = f(γ − ub1) = f(α+ uβ − uβ) = p(α) = 0

Hence β is a root of k(x).

So h(x) | k(x) and h(x) | gcd(g(x), k(x)). Note that the roots of g(x) are b1, . . . , bk. If we can show that
k(bj) 6= 0 for all j = 2, . . . , k, then the only factor in common is x− β, so h(x) = x− β, and β ∈ F (γ). Now
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obsorve that

k(bj) = p(γ − ubj)

=
∏
i

((γ − ubj)− ai)

=
∏
i

(a1 + ub1 − ubj − ai)

=
∏
i

(a1 − ai − u(b1 − bj))

=
∏
i

((
a1 − ai
b1 − bj

− u
)

︸ ︷︷ ︸
6=0

(b1 − bj)
)

Therefore gcd(k(x), g(x)) = x− β, so β ∈ F (γ) and F (γ) = F (α, β). �

Example 5.2.25. Construct Q(
√

2,
√

3,
√

5) as a simple extension of Q.

Now, we already know that Q(
√

2,
√

3,
√

5) = Q(
√

2 +
√

3,
√

5). Further, let

u = 1 6=
√

2±
√

2√
3− (−

√
3)

The minimal polynomial of
√

2 +
√

3 is

p(x) = (x− (
√

2 +
√

3))(x− (
√

2−
√

3))(x− (−
√

2 +
√

3))(x− (−
√

2−
√

3))

Again we can take

u = 1 6=
√

2 +
√

3±
√

2±
√

3√
5− (−

√
5)

Hence Q(
√

2,
√

3,
√

5) = Q(
√

2 +
√

3 +
√

5).

5.3 The fundamental theorem of Galois theory

Theorem 5.3.1. Let F ⊂ K ⊂ E be a sequence of extensions. Then Gal(E/K) 6 Gal(E/F ).

Proof: If σ ∈ Gal(E/K), then σ is an automorphism of E that fixes K (and hence F ). So σ ∈ Gal(E/F ).
Further, Gal(E/K) is a group, and as it is contained in another group, it must be a subgroup. �

Example 5.3.2. Recall that Q(
√

3 +
√

5) = Q(
√

3,
√

5). Then we have that

Q ⊂ Q(
√

3) ⊂ Q(
√

3,
√

5)

Q ⊂ Q(
√

5) ⊂ Q(
√

3,
√

5)

It is natural to ask what Gal(Q(
√

3,
√

5)/Q) looks like. This Galois group has four elements, namely

σ++(
√

3 +
√

5) =
√

3 +
√

5

σ+−(
√

3 +
√

5) =
√

3−
√

5

σ−+(
√

3 +
√

5) = −
√

3 +
√

5

σ−−(
√

3 +
√

5) = −
√

3−
√

5

The decomposition of this group looks like:
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Q

Q(
√

3) Q(
√

5)

Q(
√

3,
√

5)

{σ++, σ+−} {σ++, σ−+}{ σ++,σ+−,
σ−+,σ−−

}

In other words, Gal(Q(
√

3,
√

5)/Q(
√

5)) = {σ++, σ−+} 6 {σ++, σ+−, σ−+, σ−−} = Gal(Q(
√

3,
√

5)/Q).

Theorem 5.3.3. Let F ⊂ K ⊂ E be a sequence of extensions, where K is the splitting field of some
polynomial p(x) ∈ F [x]. Then for σ ∈ Gal(E/F ), we have σ|K : K → K is an automorphism from K to K
that fixes F . Hence σ|K ∈ Gal(K/F ).

Proof: Let α ∈ K, and q(x) ∈ F [x] a minimal polynomial for α. Recall that all σ ∈ Gal(E/F ) will send α
to a root of q(x). As all roots of q(x) are in K, we have that σ takes elements of K to elements of K. This
proves the result. �

Remark 5.3.4. It is necessary for K to be a splitting field for the above theorem to hold. For example, let
σ ∈ Gal(Q( 3

√
2, ω)/Q) that takes 3

√
2 to 3

√
2ω. But if K = Q( 3

√
2), we have that σ : Q( 3

√
2) → Q( 3

√
2, ω) 6⊂

Q( 3
√

2).

Definition 5.3.5. Let G be a group. Then H 6 G is termed a normal subgroup iff for all g ∈ G and h ∈ H,

ghg−1 ∈ H. This relationship is denoted H C G.

Note that all subgroups of abelian groups are normal.

Remark 5.3.6. Normal subgroups play the same role in group theory as ideals in ring theory.

Example 5.3.7. Consider the ring Z over addition, and its subgroup 2Z. Then Z/2Z = {{odd numbers}, {even
numbers}} ≈ Z2.

Theorem 5.3.8. Let F ⊂ K ⊂ E be a sequence of extensions with K a splitting field. Then
1. Gal(E/K) C Gal(E/F )
2. Gal(K/F ) ≈ Gal(E/F )/Gal(E/K)

Proof: 1. From a previous result, we have that Gal(E/K) 6 Gal(E/F ). Let θ ∈ Gal(E/K) and σ ∈ Gal(E/F ),

and α ∈ K. Consider σ−1 ◦ θ ◦ σ ∈ Gal(E/F ), and note that σ(α) ∈ K, as α goes to a root of its minimal
polynomial. Hence

σ−1(θ(σ(α)︸︷︷︸
∈K

)) = σ−1(σ(α)) = α

Therefore σ−1 ◦ θ ◦ σ ∈ Gal(E/K), and hence Gal(E/K) C Gal(E/F ).

2. Take Ψ : Gal(E/F ) → Gal(K/F ) by σ ∈ Gal(E/F ) with Ψ(σ) = σK , i.e. σ only acting on K. As K
is a splitting field, if α ∈ K, then σK(α) ∈ K, so the map is well-defined, and clearly a homeomorphism.
Recall that

ker(Ψ) = {σ ∈ Gal(E/F ) | Ψ(σ) = IdGal(K/F )}

So σ ∈ Gal(E/K), hence ker(Ψ) ⊂ Gal(E/K). Every σ ∈ Gal(K/F ) may be extended to a σ ∈ Gal(E/F ).
Therefore Ψ(Gal(E/F )) = Gal(K/F ). As for any σ ∈ Gal(E/K), it follows that σ ∈ ker(Ψ), and

Ψ(Gal(E/F )) ≈ Gal(E/F )/ ker(Ψ) =⇒ Gal(K/F ) ≈ Gal(E/F )/Gal(E/K)

�
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Example 5.3.9. Consider again Q( 3
√

2, ω). We have that Gal(Q( 3
√

2, ω)/Q) ≈ S3. The decomposition is
given by:

Q

Q( 3
√

2) Q( 3
√

2ω) Q( 3
√

2ω2) Q(ω)

Q( 3
√

2, ω)

3

3 3

2

2

2 2
3

The extension degrees are as given. Further, Q(ω) is the splitting field of x3 + x + 1. We can make the
folowing relations:

Gal(Q(ω)/Q) ≈ Z2

Gal(Q(
3
√

2ω)/Q(ω)) ≈ A3 ≈ Z3

Gal(Q(
3
√

2ω)/Q(ω)) C S3

Definition 5.3.10. Let H 6 Gal(E/F ). The field H ′ = EH = {α ∈ E | σ(α) = α ∀ σ ∈ H} is termed the
fixed field of H.

Remark 5.3.11. Let E = Q( 3
√

2, ω), the splitting field of x3 − 2, and F = Q. Then Gal(E/F ) ≈ S3. The
actions of Gal(E/F ) may be represented by the following diagrams, viewed as superimposed on the complex
plane, with the origin at the center, and points a distance 3

√
2 away from the origin:

a b c d e f

Then the subgroups of Gal(E/F ) and their respective fixed fields are given by:

{a} → Q( 3
√

2, ω)

{a, d} → Q( 3
√

2ω2)

{a, e} → Q( 3
√

2)

{a, f} → Q( 3
√

2ω)
{a, b, c} → Q(ω)

{a, b, c, d, e, f} → Q

Note that the extensions of Q are given by what element each group fixes.

Theorem 5.3.12. Let E be an extension field of F , with [E : F ] = n. Then the following are equivalent:

1. EGal(E/F ) = F
2. If p(x) ∈ F [x] is irreducible with a root α ∈ E, then p(x) splits and is separable in E
3. E is the splitting field of a separable polynomial
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Proof: (1.⇒ 2.) Let EGal(E/F ) = F . Assume that E 6= F , so let p(x) ∈ F [x] be irreducible in F [x] with a root
α ∈ E. Let α1, . . . , αn be all the possible images of α under σ ∈ Gal(E/F ). Let h(x) = (x−α1) · · · (x−αn),
and as σ is a permutation of the set {α1, . . . , αn}, it follows that

σ(h(x)) = (x− α1) · · · (x− αn)︸ ︷︷ ︸
possibly in different order

= h(x)

So for h(x) =
∑n
i=0 aix

i, the ai are fixed by σ for all σ ∈ Gal(E/F ) (equivalently EGal(E/F ) = F ), so
h(x) ∈ F [x]. Since h splits and is separable in E, and as p(x) | h(x), it follows that p(x) splits and is
separable in E.

(2. ⇒ 3.) Assume that if p(x) is irreducible with a root α1 ∈ E, then p(x) splits and is separable. Let
E be a finite extension of F , and α1 ∈ E \ F (if E = F , then the proof is trivial). For p1(x) the minimal
polynomial of α1, let E1 be the splitting field of p1(x), for which F ⊂ E1 ⊂ E. Now take α2 ∈ E \ E1, and
let p2(x) be the minimal polynomial of α2 over F . Then p2(x) splits over E1, and gcd(p1(x), p2(x)) = 1. For
E2 the splitting field of p1(x)p2(x), it follows that F ⊂ E1 ⊂ E2 ⊂ E.

Repeat this process finitely many times, guaranteed to be finite, as E is a finite extension of F . Then we
will have E = En for some n ∈ N, the splitting field of some polynomial p1(x)p2(x) · · · pn(x).

(3.⇒ 1.) Assume that E is the splitting field of a separable polynomial. Note that F ⊂ EGal(E/F ) ⊂ E,
hence Gal(E/EGal(E/F )) 6 Gal(E/F ). Note that if σ ∈ Gal(E/F ), then σ will fix EGal(E/F ) by definition,
hence Gal(E/EGal(E/F )) = Gal(E/F ). Further,

|Gal(E/F )| = [E : F ] =
[
E : EGal(E/F )

] [
EGal(E/F ) : F

]
=
Gal(E/EGal(E/F )

)[EGal(E/F ) : F
]

Since Gal(E/F ) = Gal(E/EGal(E/F )), it follows that [EGal(E/F ) : F ] = 1. Hence EGal(E/F ) = F . �

Definition 5.3.13. If E satisfies the statements above, then E is termed a Galois extension of F .

Example 5.3.14. The field Q( 3
√

2, ω) is the splitting field of x3 − 2, which is a separable polynomial, so

Q( 3
√

2, ω)Gal(Q( 3√2,ω)/Q) = Q.

Theorem 5.3.15. [Fundamental theorem of Galois theory]
Let E be a Galois extension of F , and let χ be a map from the set of subfields of E to the set of subgroups
of Gal(E/F ), such that χ(K) = Gal(E/K) 6 Gal(E/F ). Then:

1. χ is injective
2. K = EGal(E/K) = Eχ(K)

3. χ(EH) = H for H 6 G = Gal(E/F )
4. [E : K] = |Gal(E/K)| = |χ(K)|
5. [K : F ] = |Gal(E/F )|/|Gal(E/K)|
6. K is a galois extension of F iff Gal(E/K) = χ(K) C Gal(E/F )
7. K1 ⊂ K2 iff χ(K2) 6 χ(K1)

Before we prove this, we look to an application of the theorem. The restatement and proof will follow
afterward.

Example 5.3.16. Let E be the splitting field of x4− 2 over Q. Find all subfields of E and all subgroups of
Gal(E/Q), exhibiting the correspondence.

First, the splitting field is

E = Q(
4
√

2,− 4
√

2,
4
√

2i,− 4
√

2i)

= Q(
4
√

2,
4
√

2i)

= Q(
4
√

2, i)
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Note that if σ ∈ Gal(E/Q), then σ( 4
√

2) = ± 4
√

2 or ± 4
√

2i. Hence there are four distinct actions, given by:

a b c d

Above we have only considered the possible destinations of ± 4
√

2, and we stil have to account for ± 4
√

2i. For
each of the maps above, this gives two new maps.

aa

ab

ba

bb

ca

cb

da

db

Hence Gal(E/F ) is a group with 8 elements. Its subgroups and corresponding subgroups are:

{aa} → Q( 4
√

2, i) {aa, db} → Q(
√
−
√

2i)

{aa, ba} → Q( 4
√

2i) {aa, bb, ca, da} → Q(i)

{aa, ab} → Q( 4
√

2) {aa, ab, ba, bb} → Q(
√

2)

{aa, bb} → Q(
√

2, i) {aa, bb, cb, db} → Q(
√

2i)

{aa, cb} → Q(
√√

2i) {aa, ab, ba, bb, ca, cb, da, da} → Q

This may be represented diagrammatically as:

Q

Q(
√

2) Q(i) Q(
√

2i)

Q( 4
√

2i)

Q( 4
√

2) Q(
√

2, i) Q(
√√

2i)

Q(
√
−
√

2i)

Q( 4
√

2, i)

{aa, ab, ba, bb, ca, cb, da, db}

{aa, ab, ba, bb} {aa, bb, ca, da} {aa, bb, cb, db}

{aa, ba} {aa, ab} {aa, bb} {aa, cb} {aa, db}

{aa}

32



All the extensions have degree 2.

Theorem 5.3.15. [Fundamental theorem of Galois theory]
Let E be a Galois extension of F , and let χ be a map from the set of subfields of E to the set of subgroups
of Gal(E/F ), such that χ(K) = Gal(E/K) 6 Gal(E/F ). Then:

1. χ is injective
2. K = EGal(E/K) = Eχ(K)

3. χ(EH) = H for H 6 G = Gal(E/F )
4. [E : K] = |Gal(E/K)| = |χ(K)|
5. [K : F ] = |Gal(E/F )|/|Gal(E/K)|
6. K is a galois extension of F iff Gal(E/K) = χ(K) C Gal(E/F )
7. K1 ⊂ K2 iff χ(K2) 6 χ(K1)

Proof: 1. Implied by 2. and 3.

2. So E is a Galois extension of F , i.e. the splitting field of a separable polynomial p(x) over F . Hence E
is a Galois extension over K, as it is the splitting field of p(x). And by the definition of a Galois extension,
K = EGal(E/K).

3. We wish to show that Gal(E/EH) = H. First notice that if σ ∈ H, then for all α ∈ EH , we have
σ(α) = α, hence H 6 Gal(E/EH). Describe H by

H = {σ1, . . . , σ`} where |Gal(E/EH)| = n > `

As E is Galois, it is the splitting field of a separable polynomial, so it is simple. Hence there exists α ∈ E such
that E = EH(α), with the degree of the minimal polynomial in EH [x] of α being n. Define the polynomial
p(x) by

p(x) = (x− σ1(α))(x− σ2(α)) · · · (x− σ`(α)) =
∑̀
i=0

aix
i

Then p(x) ∈ EH [x], and as ` 6 n and the minimal polynomial of α of degree n divides p(x), it follows that
` = n. Hence H = Gal(E/EH).

4. This has been proven earlier, in (5.3.12).

5. Consider the following identities:

[E : K] = |Gal(E/K)|
[E : F ] = |Gal(E/F )|
[E : F ] = [E : K][K : F ]

Solving for [K : F ] gives the result.

6. It has already been shown that if K is Galois, then Gal(E/K) C Gal(E/F ), hence we start with
the assumption that Gal(E/K) C Gal(E/F ). As E is Galois over F , E is Galois over K. Let p(x) be an
irreducible polynomial in F [x] with a root α ∈ K. The field K being Galois is equivalent to p(x) splitting
and being separable, and as p(x) splits and is separable in E, it remains to show that all roots of p(x) are
in K.

Let σ ∈ Gal(E/F ) with σ(α) = β, another root of p(x). For θ ∈ Gal(E/K), we have that σ−1 ◦ θ ◦ σ ∈
Gal(E/K), as Gal(E/K) is normal, meaning that (σ−1 ◦ θ ◦ σ)(α) = α. Hence

(θ ◦ σ)(α) = σ(α) =⇒ θ(β) = β
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Hence β is fixed by Gal(E/K), and β ∈ EGal(E/K) = K. So all roots of p(x) are in K, hence p(x) splits over
K, so K is Galois over F .

7. Given the sequence of extensions F ⊂ K1 ⊂ K2 ⊂ E, it follows that Gal(E/K2) 6 Gal(E/K1) 6
Gal(E/K). �
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