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1 Types of groups

1.1 Base definitions

Definition 1.1.1. A binary operation on a set S is a function S × S → S. Define the binary operation as
∗ so we have (a, b)→ a ∗ b ∈ S.

Definition 1.1.2. A group G = (S, ∗) is a set S along with a binary operation ∗ satisfying
1. Associativity: for all a, b ∈ S, a ∗ (b ∗ c) = (a ∗ b) ∗ c
2. Identity: for all a ∈ S there exists e ∈ S such that a ∗ e = e ∗ a = a

for every a ∈ S there exists b ∈ S such that a ∗ b = b ∗ a = e

Definition 1.1.3. If ∗ is commutative, that is, for all a, b ∈ S, a ∗ b = b ∗ a, then G = (S, ∗) is termed an
abelian group.

Definition 1.1.4. The size of a group G is given by |G|. It is also termed the order of the group. It describes
the number of elements in the group.

Example 1.1.5. These are some of the more common groups:
(Z,+) = C∞

(Zn,+) = (Z/nZ,+)
= Cn

(Z/nZ)∗ = Un
= ({[a] ∈ Zn

(a, n) = 1}, ·)
(Sn, ∗) = (the set of bijections on {1, . . . , n}, composition)

= (the set of permutations on {1, . . . , n}, ∗)
Dn = (rotations and reflections of an n-gon, ∗)

1.2 Properties of groups

Proposition 1.2.1. The groups satisfy the cancellation law, i.e. for any a, b, c ∈ G, ab = ac =⇒ b = c.

Corollary 1.2.2. The identity element and inverses are unique.

Proposition 1.2.3. Let G be a group. Then
1. for all a ∈ G, (a−1)−1 = a
2. for all n ∈ N, (a−1)n = (an)−1

Corollary 1.2.4. (ab)−1 = b−1a−1

Definition 1.2.5. Let G be a group. Then G is a finite group if |G| <∞. Otherwise, G is an infinite group.

Proposition 1.2.6. If G is a finite group of even order, then G has an element of order 2.

Example 1.2.7. These are orders for some of the more common groups:

|C∞| = |(Z,+)| =∞
|Cn| = |(Z/nZ)| = n
|Sn| = n!

|Un| = ϕ(n)
|Dn| = 2n

Remark 1.2.8. The dihedral group may be defined as Dn = {aibj
a2 = bn = 1, aba−1 = b−1, i, j ∈ Z}.

Definition 1.2.9. A group G is termed cyclic if there exists g ∈ G such that for every a ∈ G, there exists
n ∈ Z such that gn = a. Such a g is termed a generator.

Corollary 1.2.10. Generators need not be unique.

Theorem 1.2.11. A cyclic group is an abelian group.
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1.3 Subgroups

Definition 1.3.1. Let G be a group with g ∈ G. Define a subset 〈g〉 of G by 〈g〉 = {gn
n ∈ Z} ⊆ G. It is

clear that 〈g〉 is a group under the binary operator of G.
· Identity: g0 = 1
· Inverse: (gn)−1 = g−n

Then 〈g〉 is a group, and it is said to be generated by g.

Definition 1.3.2. If G is a group, a subset H is termed a subgroup of G if it is a group under the same
binary operation of G. That is, H is a group if

1. for all a, b ∈ H, ab ∈ H
2. 1 ∈ H
3. if a ∈ H, then a−1 ∈ H

Then this relationship is denoted H 6 G.

Definition 1.3.3. Let G be a group and g ∈ G. The order of g, denoted by o(g), is the smallest positive
integer n such that gn = 1. If such an integer does not exist, g is said to have infinite order.

Theorem 1.3.4. Let G be a group and g ∈ G. Then o(g) = | 〈g〉 |.

Theorem 1.3.5.∗ [Subgroup test]
Let G be a group and H a non-empty subset of G. Then

1. H is a subgroup of G ⇐⇒ for all a, b ∈ H, ab−1 ∈ H
2. If H is finite, H is a subgroup ⇐⇒ for all a, b ∈ H, ab ∈ H

Proposition 1.3.6.∗ Let G be a group and let a, b ∈ G of finite order. Then
1. If k ∈ N and ak = 1, then o(a)

k
2. If k ∈ N, then o(ak) =

o(a)

gcd(o(a), k)
3. If gcd(o(a), o(b)) = 1 and ab = ba, then o(ab) = o(a)o(b)

Theorem 1.3.7.∗ A subgroup of a cyclic group is always cyclic.

Theorem 1.3.8.∗ A finite cyclic group of order n has precisely one subgroup of order m for each m ∈ N
such that m

n. These are the only subgroups of the given group.

Definition 1.3.9. For a finite group G, define the exponent of G to be the smallest positive integer t such
that gt = 1 for all g ∈ G.

Note that the exponent of Sn is lcm(1, 2, . . . , n).

Definition 1.3.10. For G a group and g ∈ G, define the centralizer of g in G to be the set

C(g) = {x ∈ G
gx = xg} 6 G

Note that 〈g〉 ⊆ C(g) for all g ∈ G.

Definition 1.3.11. For G a group, define the center of G to be the set

Z(G) = {g ∈ G
gx = xg for all x ∈ G} C G

1.4 Cosets

Definition 1.4.1. In general, for any group G and H a subgroup of that group with a, b ∈ G, we say that
a ≡ b (mod H) ⇐⇒ a ≡H b ⇐⇒ ab−1 ∈ H.

Theorem 1.4.2. Let G be a group and H a subgroup of G. Then a ≡H b is an equivalence relation.
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Remark 1.4.3. Recall that for G = C∞ = (Z,+) and H = (nZ,+), the equivalence relation ≡H , or
multiplication modulo n, breaks Z into disjoint pieces, namely {[0]n, [1]n, . . . , [n− 1]n}.

Similarly, for G any group with H 6 G, the equivalence relation ≡H breaks up G into a partition of pieces
P for P = {a

a ≡H b, b ∈ P}. If we let a ∈ G and Pa be the piece that contains a, then b ∈ Pa ⇐⇒ b ∈ Ha,
so Pa = Ha.

Further, there exists a bijection ϕ : H → Ha given by h 7→ ha.

Definition 1.4.4. For G a group and H 6 G, the right coset of H is defined to be Ha = {ha
h ∈ H} ⊆ G

for fixed a ∈ G.

Remark 1.4.5. Since ≡H is an equivalence relation, G can be expressed as a disjoint union of right cosets,

or G =
⊔
ai∈R

Hai where R is a subset of G and for all ai, aj ∈ R, ai 6= aj =⇒ ai 6≡H aj .

The same may be done with left cosets.

Definition 1.4.6. A set R with the properties described above is termed a set of representatives of cosets.

Remark 1.4.7. The sets of representatives of cosets are not unique.

· G
/
H denotes the set of left cosets · H

∖
G denotes the set of right cosets

Theorem 1.4.8. For G a group and H 6 G, there exists R ⊆ G such that G =
⊔
ai∈R

Hai =
⊔
ai∈R

aiH

Theorem 1.4.9.∗ [Lagrange]
If G is a group and H a subgroup of G, then |H|

|G|. We denote [G : H] = |G|/|H| to be the index of H.

Moreover, the index denotes the number of left cosets of H in G.

Corollary 1.4.10. Let G be a group and g ∈ G. then o(g)
|G|.

Corollary 1.4.11. Let G be a group with |G| = p for p prime. Then G is cyclic.

Remark 1.4.12. In general, left cosets are different from right cosets.

Example 1.4.13. Consider G = S3 = {1, a, a2, b, ab, a2b} with a3 = 1, b2 = 1, and ba = a2b.
Here, there are two nontrivial subgroups: H1 = {1, a, a2} and H2 = {1, b}.

Note that H1a
2 6= a2H2 and H1b 6= bH2.

Definition 1.4.14. Let G be group with a ∈ G. The map b 7→ aba−1 = c(a)b is termed the conjugation by
a, denoted c(a).

Thus for any a ∈ G, we have c(a)H ⊆ H.

1.5 Normal subgroups

Definition 1.5.1. A normal subgroup H of a group G is a subgroup such that ∀a ∈ G, ∀h ∈ H, aha−1 ∈ H.
This relationship is denoted by H C G.

Theorem 1.5.2. Let H be a subgroup of a group G. Then the following are equivalent:
1. H is normal
2. For all g ∈ G, gH = Hg.
3. Every right coset is a left coset.
4. Every left coset is a right coset.
5. For all a, b ∈ G, ab ∈ H =⇒ ba ∈ H.

Proposition 1.5.3. Let G be a group and p the smallest prime dividing |G|. If H 6 G and [G : H] = p,
then H C G.
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Definition 1.5.4. Let H,K be two subsets of a group G. Then HK = {hk
h ∈ H, k ∈ K}.

Remark 1.5.5. Let H be a subgroup of a group G. Then for a, b ∈ G, HaHb = Hab.

Theorem 1.5.6. Let G be a group and N be a normal subgroup of G. Let G
/
N be the set of cosets. Define

for all a, b ∈ G, Na ∗Nb = Nab. Then
(
G
/
N , ∗

)
is a group.

Definition 1.5.7. The above described group
(
G
/
N , ∗

)
is termed the quotient group of G modulo N .

Remark 1.5.8. Note that for any group G, Z(G) C G and |G
/
Z(G)| is never prime.

Theorem 1.5.9. Let G be a group with N,H 6 G. Then
1. N C G =⇒ HN 6 G
2. N,H C G =⇒ HN C G
3. N ∩H 6 G
4. N C G =⇒ N ∩H C H
5. N,H C G =⇒ N ∩H C G

2 Morphisms

2.1 Types of morphisms

Definition 2.1.1. A homomorphism f from a group G to a group H is a function f : G → H satisfying
f(a ∗G b) = f(a) ∗H f(b).

Remark 2.1.2. With respect to the above definition, it may be easily shown from that 1H = f(1G) and
f(a−1) = f(a)−1.

Definition 2.1.3. An isomorphism is a bijective homomorphism. An automorphism is an isomorphism from
a group to itself.

Remark 2.1.4. Given two groups G,H, there is a homomorphism 1 : G → H given by g 7→ 1H for all
g ∈ G. This is termed the trivial homomorphism.

Similarly, the map id : G→ G given by g 7→ g is an automorphism termed the identity map.

Proposition 2.1.5. Let f : G→ H and g : H → K be homomorphisms. Then
1. g ◦ f : G→ K is a homomorphism
2. If f : G→ H is an isomorphism, then f−1 : H → G is also an isomorphism.

Remark 2.1.6. If groups G and H are isomorphic, then there exists an isomorphism between them. This
equivalence relation is denoted G ∼= H. They also share the same group structure (in terms of subgroups).

Theorem 2.1.7. Any two cyclic groups of the same order are isomorphic.

Definition 2.1.8. Suppose that ϕ : G→ H is a homomorphism.
1. Define the image of ϕ to be Im(ϕ) = {h ∈ H

 there exists g ∈ G such that h = ϕ(g)}
2. Define the kernel of ϕ to be ker(ϕ) = {g ∈ G

ϕ(g) = 1H}

Theorem 2.1.9. Let G be a group and N 6 G. Then N C G ⇐⇒ N = ker(ϕ) for some homomorphism ϕ.

Remark 2.1.10. The symmetric group S3 has the following properties:
1. The smallest non-abelian group is S3

2. Any non-abelian group of order 6 is isomorphic to S3

3. The elements of S3 can be represented as {1, a, a2, b, ab, a2b} where a3 = 1, b2 = 1, and ba = a2b
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2.2 Morphism theorems

Theorem 2.2.1. Let ϕ : G→ H be a homomorphism for groups G,H. Then
1. Im(ϕ) 6 H
2. ker(ϕ) C G
3. ϕ is injective ⇐⇒ ker(ϕ) = {1G}

Theorem 2.2.2. Let G,H be finite groups with ϕ : G→ H a homomorphism. Then o(ϕ(g))
o(g) ∀ g ∈ G.

Remark 2.2.3. If a function between finite sets is injective (one-to-one), then it is also surjective (onto).

Proposition 2.2.4. If f : A→ B is a bijection for sets A,B, then there exists e ∈ A such that f(e) = e.

Definition 2.2.5. LetG,H be groups. Then the direct product ofG andH is a group, denoted by (G×H, ∗).
· G×H = {(g, h)

g ∈ G, h ∈ H} with (g, h) ∗ (g′, h′) = (gg′, hh′) for all g, g′ ∈ G and h, h′ ∈ H

Definition 2.2.6. Given a group G, a group H is termed a homomorphic image of G if there exists a
homomorphism from G to H.

Remark 2.2.7. Let N C G for a group G. Then G
/
N is a homomorphic image of G described by the

homomorphism ϕ : G→ G
/
N defined by g 7→ gN .

Theorem 2.2.8. [1st isomorphism theorem]
Let ϕ : G→ H be an isomorphism for groups G,H. Then Im(ϕ) ∼= G

/
ker(ϕ).

Theorem 2.2.9. [2nd isomorphism (or correspondence) theorem]
For G a group with N C G, every subgroup of G

/
N is of the form H

/
N with H 6 G and N ⊆ H.

Theorem 2.2.10. [3rd isomorphism theorem]
Suppose that G is a group with N C G. Then

1. H
/
N C G

/
N ⇐⇒ H C G

2. H
/
N C G

/
N =⇒

G
/
N

H
/
N

∼= G
/
H

2.3 Products of subgroups

Definition 2.3.1. Let G be a group and H,K 6 G. Then HK = {hk
h ∈ H, k ∈ K}.

Proposition 2.3.2.∗ Suppose G is a finite group with H,K 6 G. Then |HK| = |H||K|
|H ∩K|

= |KH|

Remark 2.3.3. If for a group G, we have H,K 6 G, then also H ∩K 6 G.

Remark 2.3.4. Let G be a group with H,K 6 G. If H ∩K = {1} and |H||K| = |G|, then HK = G.

Proposition 2.3.5. Let G be a group with H,K 6 G. Then the following are equivalent:
1. HK 6 G
2. KH 6 G
3. KH = HK

Lemma 2.3.6. Let G be a group with L,M C G. If L∩M = {1}, then for all ` ∈ L and m ∈M , `m = m`.

Theorem 2.3.7. [Internal characterization of the direct product]
Let G,H,K be groups. Then G ∼= H ×K if and only if there exist H∗ C G and K∗ C G such that

1. H ∼= H∗ and K ∼= K∗

2. H∗ ∩K∗ = {1G}
3. H∗K∗ = G

Lemma 2.3.8. Let G be a group and a, b ∈ G with prime orders. Then either 〈a〉 = 〈b〉 or 〈a〉∩ 〈b〉 = {1G}.
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3 The permutation group Sn

3.1 Construction

Definition 3.1.1. Elements α, β ∈ Sn are termed disjoint if α(i) 6= i =⇒ β(i) = i for all i ∈ {1, . . . , n}.

Remark 3.1.2. The above is a symmetric statement:
[
α(i) 6= i =⇒ β(i) = i

]
⇐⇒

[
α(i) = i =⇒ β(i) 6= i

]
Theorem 3.1.3. If α, β are disjoint, then αβ = βα.

Theorem 3.1.4. If α, β are disjoint, then o(αβ) = lcm(o(α), o(β)).

Definition 3.1.5. Given α ∈ Sn, define an equivalence relation ∼α on {1, . . . , n} by i ∼α j ⇐⇒ there
exists ` ∈ Z such that α`(i) = j.

Then ∼α breaks {1, . . . , n} into partitions: {1, . . . , n} =

m⊔
t=1

Ct where Cp ∩ C` = ∅ ⇐⇒ p 6= `.

Definition 3.1.6. Let α ∈ Sn. Then the cycle structure of α is
[
|C1|, |C2|, . . . , |Cm|

]
.

Remark 3.1.7. The cycle structure [n1, . . . , nm] has the property that
m∑
t=1

nt = n and n` > np ⇐⇒ ` > p.

Definition 3.1.8. The cycle notation of a group G is α = (a1 a2 . . . ak)(b1 b2 . . . b`) · · · if α(ai) = ai+1

and β(bj) = bj+1 for 1 6 i 6 k − 1 and 1 6 j 6 ` − 1 and α(ak) = a1 and β(b`) = b1. For simplicity,
singletons are omitted.

It should be noted that cycle notation is not unique.

Theorem 3.1.9. Every permutation α may be expressed as a product of disjoint cycles α1α2 . . . αm where

αi =

{
αt(i) i ∈ Ct

i i /∈ Ct
where all the Cj ’s come from ∼α.

Further, we have that α = α1α2 · · ·αm and αt is a |Ct|-cycle.

Also note that α−1 has the same cycle structure as α.

Theorem 3.1.10. The number of elements Np in Sn with the cycle structure [n1, . . . , nm] = p is given by

Np =
n!

n∏
t=1

t`t`t!

where 1 6 `t 6 n is the number of ni’s equal to t

Example 3.1.11. Let α = (1 2 5)(3 7)(4 8)(9 6)(10). Then Np = 10!
(31·1!)(23·3!)(11·1!) .

Theorem 3.1.12. If α ∈ Sn has the cycle structure [n1, . . . , nm], then o(α) = lcm(n1, . . . , nm).

Theorem 3.1.13. Suppose that α ∈ Sn has mj j-cycles for each j ∈ {1, 2, . . . , n}. Then

|C(α)| =
n∏
j=1

jmjmj !

3.2 The alternating group

Definition 3.2.1. Any element with the cycle structure [2, 1, 1, . . . , 1] is termed a transposition.

Definition 3.2.2. Let G be a group. Let S be a subset of G. The subgroup 〈S〉 generated by S is the
subset of G defined as:

〈S〉 = {s`11 s
`2
2 . . . s`kk

si ∈ S, `i ∈ Z, k ∈ N ∪ {0}}
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Remark 3.2.3. Let S be the set of all transpositions. Then Sn is generated by S.

Definition 3.2.4. Let α ∈ Sn. Then
1. α is even if it can be expressed as an even number of transpositions
2. α is odd if it can be expressed as an odd number of transpositions

Lemma 3.2.5. Suppose α ∈ Sn is a product of k transpositions. Then exactly one of the following hold for
all a ∈ {1, 2, . . . , n}:

1. α(a) 6= a
2. α may be expressed as a product of k − 2 transpositions

Definition 3.2.6. Let ϕ : Sn → C2 given by α 7→
{

[0] α even
[1] α odd

Then ϕ is a surjective homomorphism.

Further, define An = ker(ϕ) to be the alternating group.

Remark 3.2.7. Conjugation preserves cycle structure.
That is, if α = (1 3 5)(4 2), then c(β)α = βαβ−1 = (β(1) β(3) β(5))(β(4) β(2))

Theorem 3.2.8. Two permutation groups in Sn are conjugate ⇐⇒ they have the same cycle structure.

Corollary 3.2.9. The number of conjugacy classes of Sn is the same as the number of cycle structures is
the same as the number of partitions of n.

Definition 3.2.10. A group G is termed simple if it has exactly two normal subgroups, {1G} and G.

Proposition 3.2.11. For n > 3, An is generated by 3-cycles. Moreover, the only subgroup of Sn generated
by 3-cycles is An.

Note that an m-cycle is odd (even) if m is even (odd).

Lemma 3.2.12. If α ∈ Sn has cycle structure [n1, . . . , nm], then α is even (odd) ⇐⇒ n+m is even (odd).

Theorem 3.2.13. If the following hold:
· n > 4
· N C An with N 6= {1}
· N contains a 3-cycle

then N = An.

Proposition 3.2.14. A4 has no subgroup of order 6.

Theorem 3.2.15. [Burnside theorem]
Any non-cyclic group of odd order is not simple.

Theorem 3.2.16. If n > 5, then An is simple.

Theorem 3.2.17. The only subgroup of Sn of order n!
2 is An.

Remark 3.2.18. For p an odd prime, Ap has a subgroup of order 2p if and only if p ≡ 1 (mod 4).

4 Group actions

4.1 Mappings

Definition 4.1.1. An action of a group G (a group action) on a set X is a function ϕ : G×X → X given
by (g, x) 7→ ϕ(g, x) satisfying:

i. ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G, x ∈ X
ii. ϕ(1, x) = x for all x ∈ X

To simplify notation, we write ϕg(x) = ḡ := ϕ(g, x) for ϕg : X → X.
Also note that since ϕg ◦ ϕg−1 = ϕgg−1 = ϕ1 = 1, ϕg is a bijection.
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Remark 4.1.2. Let SX be the set of all permutations on the set X, i.e. all bijections between X and itself.
Then SX is a group and ψ : G→ SX given by g 7→ ϕg is a group homomorphism.

Thus, a group action is simply a homomorphism from G to SX .

Conversely, if ψ : G→ SX is a group homomorphism, then define ϕ : G×X → X by ϕ(g, x) 7→ ψ(g)(x).
Then ϕ is a group action.

Definition 4.1.3. Suppose that ϕ : G × X → X is a group action on the set X. Define an equivalence
relation on X by x ∼ϕ y ⇐⇒ there exists g ∈ G such that ϕ(g, x) = y or ϕg(x) = y.

Definition 4.1.4. Let x ∈ X. Define
i. the stabilizer by SG(x) := {g ∈ G

ḡ(x) = x} 6 G

ii. the orbit of x by O(x) := {y ∈ X
 there exists g ∈ G such that ḡ(x) = y} 6 X

Proposition 4.1.5. ∼ϕ is an equivalence relation (homomorphism).

Proposition 4.1.6. SG(x) is a subgroup of G for fixed x. Also, |O(x)| = |G|
|SG(x)|

4.2 Basic examples of group actions

Action 4.2.1.

G : a group
X : the group G
ϕ : given by ϕ(g, x) = gx
SG(x) = {1}

Action 4.2.2.

G : a group
X : the set of left cosets of a subgroup H of G,

or {gH
g ∈ G}

ϕ : given by ϕ(g, aH) = gaH
SG(aH) = {aha−1

h ∈ H}

Action 4.2.3.

G : a group
X : the group G
ϕ : given by ϕ(g, x) = gxg−1

SG(x) = CG(x)

Action 4.2.4.

G : a group
X : the set {gHg−1

g ∈ G} for H a subgroup of G.
This is the set of all conjugate subgroups of G.

ϕ : given by ϕ(g, aHa−1) = gaHa−1g−1

SG(x) = NG(H)

Theorem 4.2.5. [Cayley]
A finite group of order n is isomorphic to a subgroup of Sn.

Theorem 4.2.6. Let G be a finite group with a proper subgroup H. If |G| - [G : H]!, then G is not simple,
so there exists a non-trivial normal subgroup of G.

4.3 Class equations

Definition 4.3.1. Consider the action of G on X where both G and X are finite. Then X is a disjoint

union of orbits: X =
⊔

one x from
each orbit

O(x). This is termed the class equation.

Then we have |X| =
∑

one x from
each orbit

|O(x)| =
∑

one x from
each orbit

|G|
|SG(x)|

. This is the equivalence class equation.

Definition 4.3.2. Let G be a group and X a set on which G acts. Then define FixG(X) := {x ∈ X
 for

all g ∈ G, ḡ(x) = x}. These are elements in X whose orbit has size 1.

Then the equivalence class equation can be rewritten as |X| = |FixG(X)|+
∑

one x from
each orbit

with size>1

|G|
|SG(x)|

Equivalently, this may be expressed as |G| = |Z(G)|+
∑

one a from
each conjugacy

class with size>1

|G|
|CG(a)|
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Remark 4.3.3. A group of order 15 is cyclic.

Proposition 4.3.4. Given p1, p2, . . . , pn distinct primes, C
p
k1
1
× C

p
k2
2
× · · · × Cpknn

∼= C
p
k1
1 p

k2
2 ···p

kn
n

4.4 Cauchy’s theorem

Theorem 4.4.1. [Cauchy]
For G a finite group and p a prime divisor of |G|, there exists g ∈ G with o(g) = p.

Definition 4.4.2. For p prime, G is a p-group if p is the only prime divisor of |G|, i.e. |G| = pk, k ∈ N.

Theorem 4.4.3. A non-trivial p-group G has a non-trivial center, i.e. Z(G) 6= {1}.

Corollary 4.4.4. If |G| = p2 for p prime, then G is abelian.

Corollary 4.4.5. If |G| = p2 for p prime, then G ∼= Cp2 , or G ∼= Cp × Cp.

Theorem 4.4.6. If |G| = pq for p 6 q primes with p - (q−1), then G is abelian, i.e. G ∼= Cpq or G ∼= Cp×Cq.

Definition 4.4.7. The quaternion group Q is a group of order 8 with the following properties:

i. Q = 〈a〉 〈b〉 where a4 = b4 = 1, a2 = b2, and aba−1 = b3

ii. Q = {i, j, k, 1,−i,−j,−k,−1} with
ij = k ij = −ji
jk = i jk = −kj
ki = j ki = −ik
i2 = j2 = k2 = −1

Example 4.4.8. This is a realization of the quaternion group:

Q =

{
±
(

1 0
0 1

)
,±
(

0 1
−1 0

)
,±
(

0 i
i 0

)
,±
(
−i 0
0 i

)}
Theorem 4.4.9. If |G| = 2p for p an odd prime, then either G is abelian, or G is the p-dihedral group.
That is, either G ∼= C2p or G ∼= Dp.

5 Finite abelian group classification

5.1 Sylow’s theorem

Definition 5.1.1. Let G be a finite group and p prime. A Sylow p-subgroup of G is a maximal p-subgroup
of G. That is, if H is a Sylow p-subgroup of G, then

i. |H| = pk for some k ∈ N if pk
|G|

ii. If H 6 L 6 G, and |L| = pm for some m ∈ N, then H = L.

Definition 5.1.2. The normalizer of H in G is NG(H) = {g ∈ G
ghg−1 ∈ H ∀ h ∈ H}, where G is a

group and H 6 G. This is also the stabilizer of H under conjugation, that is, H C NG(H) 6 G.
NG(H) is the largest subgroup K such that H C K.

Lemma 5.1.3. Let G be a finite group and P a Sylow p-subgroup for p prime. If g ∈ G satisfies
i. o(g) = pk for some k ∈ Z
ii. gPg−1 = P , i.e. g ∈ NG(P )

then g ∈ P .

Corollary 5.1.4. Let G be a finite group and P a Sylow p-subgroup. Then p -
NG(P )

/
P

.
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Theorem 5.1.5. [Sylow]
Let G be a finite group and p prime. Suppose that |G| = pkm for some k ∈ N with gcd(p,m) = 1. Then

1. Every Sylow p-subgroup of G has order pk

2. The Sylow p-subgroups are all conjugate
3. The number of Sylow p-subgroups np satisfies

i. np ≡ 1 (mod p)
ii. np

m
Remark 5.1.6. Let P be a Sylow p-subgroup. Then for all g ∈ G, gPg−1 is also a Sylow p-subgroup.

Corollary 5.1.7. Let G be finite group and p prime. If pk
|G|, then there exists H 6 G with |H| = pk.

Corollary 5.1.8. A Sylow p-subgroup is normal ⇐⇒ np = 1.

Remark 5.1.9. For p an odd prime, Sp has (p− 2)! Sylow p-subgroups.

5.2 Classification theory

Proposition 5.2.1. Let A be abelian with a, b ∈ A. Then
1. o(a+ b)

lcm(o(a), o(b))
2. If gcd(o(a), o(b)) = 1, then o(a+ b) = o(a)o(b)

3. o(ka) =
o(a)

gcd(o(a), k)

Definition 5.2.2. Let A be abelian. Then A is termed a torsion group if every element in A is of finite
order. Similarly, A is termed torsion-free if every element of A \ {0} is of infinite order. Note that {0} is the
only group that has both properties.

Definition 5.2.3. Define the torsion part of an abelian group A to be T (A) = {a ∈ A
o(a) <∞}.

Theorem 5.2.4.∗ If A is abelian, then
1. T (A) 6 A
2. A

/
T (A) is torsion-free

Theorem 5.2.5. [Primary decomposition]
Let A be a finite abelian group and |A| = pα1

1 · · · p
αk
k be the prime decomposition of |A|. Let Pi be a Sylow

pi-subgroup of A. Then A ∼= P1 × · · · × Pk.
In other words, a finite abelian group is isomorphic to the direct product of its Sylow subgroups.

Lemma 5.2.6. Let A be abelian and finite with at most p− 1 elements of order p. Then A is cyclic.

Theorem 5.2.7. Let A be a finite abelian p-group and a ∈ A with maximum order. Then
1. There exists a surjective homomorphism α : A→ 〈a〉
2. A ∼= ker(α)× 〈a〉

Corollary 5.2.8. Any finite abelian group is a direct product of cyclic groups.

Remark 5.2.9. Let A = Cpk . The number of elements of order at most pn in A is pmin(k,n).

5.3 Structure theorems

Theorem 5.3.1. [Structure theorem for finite abelian groups]
A finite abelian group is isomorphic to a finite direct product of cyclic groups of prime power order. The
decomposition is unique up to the order of the cycles. In other words,

|A| = pα1
1 · · · p

αk
k =⇒ A ∼=

k∏
i=1

 m∏
j=1

Cpiαj

 with αj > αj−1 ∀ j

11



Remark 5.3.2. If |G| = pk for G an abelian group, the number of possible groups G is the number of
partitions of k.

Example 5.3.3. For k = 4, the 5 unique partitions are 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Definition 5.3.4. Let G be a group and S ⊆ G. Then G is said to be generated by S if G can be expressed

as G = {am1
1 , am2

2 , . . . , amkk
ai ∈ S,mi ∈ Z}. The ai’s need not be unique.

Definition 5.3.5. If there exists a finite subset S ⊆ G for G a group such that G is generated by S, then
G is said to be finitely generated.

Remark 5.3.6. Let G = (C∞)
k ∼= C∞ × C∞ × · · · × C∞︸ ︷︷ ︸

k times

∼= Z× Z× · · · × Z︸ ︷︷ ︸
k times

. Then G can not be generated

by a subset S of size less that k.

Lemma 5.3.7. Let A be a non-trivial torsion-free abelian group. Suppose there exists a ∈ A such thatA/〈a〉 is finite. Then A ∼= C∞.

Theorem 5.3.8. Let A be finitely generated and of infinite order. Then
1. There exists a surjective homomorphism α : A→ C∞
2. A ∼= ker(α)× C∞

Theorem 5.3.9. [Structure theorem for finitely generated abelian groups]
Let A be a finitely generated abelian group with ` generators. Then A is isomorphic to a finite direct product
of cyclic groups, each with either infinite or prime power order. This decomposition is unique up to order.

Definition 5.3.10. Let A be a finitely generated abelian group and A ∼= T (A)× (C∞)k. The number k is
termed the rank of A.

Lemma 5.3.11. Let G be a group and k ∈ G. Then ck is an automorphism on G.

Remark 5.3.12. For G a group and N,K 6 G, if
i. NK = G
ii. N ∩K = {1}
iii. N C G

Then for all k ∈ K, ck can act on N since N is normal. Thus there exists a mapping ϕ : K → Aut(N) given
by k 7→ ck on N , with n 7→ knk−1.

Remark 5.3.13. For ease of notation, write ϕ(k) = ϕk for k ∈ K.

Proposition 5.3.14. With respect to the above description, ϕ is an isomorphism.

Remark 5.3.15. Aut(G) is a group under the composition binary operation.

5.4 Semi-direct products

Definition 5.4.1. Let N,K be groups and ϕ : K → Aut(N) a homomorphism. Define N o K, the
semi-direct product of N by K, to be the set N ×K = {(n, k)

n ∈ N, k ∈ K} with binary operation ∗ given
by (n1, k1) ∗ (n2, k2) = (n1ϕk1(n2), k1k2).

Theorem 5.4.2. Let N,K be groups with ϕ : K → Aut(N). Then the semi-direct product N o K =
(N ×K, ∗) is a group, for ϕ and ∗ as above.

Theorem 5.4.3. [Internal characterization of the semi-direct product]
Let G,N,K be groups with ϕ : K → Aut(N) a homomorphism. If N∗,K∗ 6 G with

i. α : N ∼= N∗, β : K ∼= K∗ homomorphisms
ii. N C G, K 6 G and ϕ∗ : K∗ → Aut(N∗) such that for all n ∈ N, k ∈ K, we have ϕ∗(β(k))(n∗) = ϕ(k)
iii. N∗ ∩K∗ = {1}
iv. N∗K∗ = G

Then G ∼= N oK.

12



Remark 5.4.4. The above may be represented in diagram form:

This demonstrates commutativity, in that α̃ ◦ ϕ = ϕ∗ ◦ β, for α̃ : Aut(N)→ Aut(N∗).

Remark 5.4.5. Let G be a group with N C G and K 6 G with N ∩ K = {1} and NK = G. Then to
understand G, we only need to know the mapping ϕ : K → Aut(N).

Definition 5.4.6. An inner automorphism is an automorphism induced by conjugation.

Inn(N) = the set of all inner automorphisms
= {ck

k ∈ N}
If N is abelian, then Inn(N) = {IdN}.

Theorem 5.4.7. Let G be a group. Then
1. Inn(G) C Aut(G)
2. There exists a homomorphism α : G→ Inn(G) given by g 7→ cg for g ∈ G with ker(α) = Z(G). Thus

Inn(G) ∼= G
/
Z(G).

Remark 5.4.8. If ϕ : K → Aut(N) is trivial, i.e. ϕk = IdN , then (n1, k1) ∗ (n2, k2) = (nϕk1(n2), k1k2) =
(n1n2, k1k2). That is, N oK ∼= N ×K, and o is just the direct product.

Remark 5.4.9. Aut(Cn) ∼= U(n) = (Z/nZ)∗

That is, every ϕ ∈ Aut(Cn) can be associated with an integer in U(n). Also, note that Aut(C∞) ∼= C2.

Theorem 5.4.10. U(p) ∼= (Z/pZ)∗ is cyclic for p prime.

Theorem 5.4.11. Given a group G ∼= Cm o Cn,

G = {xiyj
xn = ym = 1, x−1yx = y−1}

Definition 5.4.12. Let p be prime and n ∈ N. Then n is a primitive root if [n]p is a generator of (Z/pZ)∗,
i.e. o([n]p) = p− 1.

Theorem 5.4.13. [Primitive Root theorem]
For any prime p there exists a primitive root.

Theorem 5.4.14. Let |G| = pq with primes p < q and q ≡ 1 (mod p). Then there exists a unique (up to
isomorphism) non-abelian group of order pq.

Remark 5.4.15. Let N,K 6 G with N C G and NoK ∼= G. Then N×K ∼= G ⇐⇒ any ϕ : K → Aut(N)
is trivial. In particular, if N,K are abelian, then G is abelian ⇐⇒ ϕ is trivial.

5.5 Solvability

Definition 5.5.1. For G a group, c ∈ G is termed a commutator, denoted c := [a, b], if there exist a, b ∈ G
such that c = aba−1b−1.

Proposition 5.5.2.
i. [a, b] = 1 ⇐⇒ ab = ba
ii. [a, b]−1 = [b, a]
iii. For all ϕ ∈ Aut(G), ϕ([a, b]) = [ϕ(a), ϕ(b)]
iv. A product of 2 commutators is not necessarily a commutator.
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Definition 5.5.3. For G a group, the commutator group G′ of G is the subgroup of G generated by
commutators of G.

Proposition 5.5.4. G
/
G′ is abelian.

Remark 5.5.5. If G is abelian, then G′ = {1}.

Theorem 5.5.6. [Universal property of G′]
For G a group and ϕ : G → A a homomorphism for A abelian, there exists a unique homomorphism
β : G

/
G′ → A such that the following diagram commutes:

Thus β ◦ γ = α.

Definition 5.5.7. For G a group, define the nth derived group as:

1. G(1) = G′

2. G(n+1) = (G(n))′

Clearly, G
(n)/

G(n+1) is abelian for all n ∈ N.

Definition 5.5.8. A group G is termed solvable if there exists n ∈ N such that G(n) = {1} and G(n−1) 6= {1}.

Remark 5.5.9.
i. If H 6 G, then H ′ 6 G′ ∩H.
ii. If there exists a homomorphism α : G→ H, then α(G′) = H ′.

Theorem 5.5.10.
1. If G is solvable, then so is every subgroup and homomorphic image of G.
2. For G a group and N C G, N and G

/
N are solvable ⇐⇒ G is solvable.

6 Detailed classification

6.1 Construction of select groups

Group 6.1. |G| = 4
1. If there exists g ∈ G with o(g) = 4, then G ∼= C4.
2. If there does not exist g ∈ G with o(g) = 4, then G ∼= C2 × C2.

Group 6.2. |G| = 6
1. If there exists g ∈ G with o(g) = 6, then G ∼= C6.
2. If there exist a, b ∈ G with o(a) = 3, o(b) = 2, then ai = bab. Then

a. If i = 0, a = 1, and contradiction.
b. If i = 1, there exists g ∈ G with o(g) = 6 and case 1. holds.
c. If i = 2, then G ∼= S3.

3. For all a ∈ G except for 1G, o(a) = 2 or 3.
a. For all g ∈ G with g 6= 1G, o(g) = 3. This leads to a contradiction.
b. For all g ∈ G with g 6= 1G, o(g) = 2. This also leads to a contradiction.

Group 6.3. |G| = 8
1. If there exists g ∈ G with o(g) = 8, then G ∼= C8.
2. If there does not exist g ∈ G with o(g) = 4, then G ∼= C2 × C2 × C2.
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3. There exists b ∈ G with o(b) = 4.
a. There exists a ∈ G \ 〈b〉 with o(a) = 2, and aba−1 ∈ 〈b〉, so aba−1 = bk.

i. If k = 1, then G ∼= C2 × C4.
ii. If k = 1, then aba−1 = b4, and contradiction.
iii. If k = 3, then G ∼= D4.

b. There does not exist a ∈ G \ 〈b〉 with o(a) = 2, so let a ∈ G \ b with o(a) = 4. Then aba−1 = bk.
i. If k = 1, then o(ab) = 4, and contradiction.
ii. If k = 2, then b = 1, and contradiction.
iii. If k = 3, then G ∼= Q.

Group 6.4. |G| = 12
For |G| = 12, there exist H,K 6 G with |H| = 4 and |K| = 3.

1. If H,K C G, then G ∼= C4 × C3
∼= C12 or G ∼= C2 × C2 × C3

∼= C6 × C2.
2. If H C G and H ∼= C4, then all homomorphisms ϕ : K → Aut(H) are trivial, and case 1. holds.
3. If H C G and H ∼= C2×C2, Aut(H) = S3, then H oϕ1

K ∼= H oϕ2
K ∼= G ∼= A4 ∀ ϕ1, ϕ2 ∈ Aut(H).

4. If K C G and H v C2 × C2, then H oϕ1
K ∼= H oϕ2

K ∼= G ∼= D6 ∀ ϕ1, ϕ2 ∈ Aut(H).
5. If K C G and H v C4, then G ∼= C3 o C4.

6.2 Summary of groups up to order 23

Order
Number of
isomorphism classes

Abelian groups Non-abelian groups

1 1 C1 −
2 1 C2 −
3 1 C3 −
4 2 C4, C2 × C2 −
5 1 C5 −
6 2 C6 S3

7 1 C7 −
8 5 C8, C4 × C2, C2 × C2 × C2 D4, Q
9 2 C9, C3 × C3 −
10 2 C10 D5

11 1 C11 −
12 5 C12, C6 × C2 A4, D6, C3 o C4

13 1 C13 −
14 2 C14 D7

15 1 C15 −
16 14 Difficult to classify Difficult to classify
17 1 C17 −
18 3 C18, C6 × C3 D9, S3 × C3, (C3 × C3) o C2

19 1 C19 −
20 5 C20, C10 × C2 D10, C5 o C4, F20

21 2 C21 C7 o C3

22 2 C22 D11

23 1 C23 −

The Frobenius group of order 20 F20 has been included only as a reference.
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7 Selected proofs

Theorem 1.3.5. [Subgroup test]
Let G be a group and H a non-empty subset of G. Then

1. H is a subgroup of G if and only if for all a, b ∈ H, ab−1 ∈ H
2. If H is finite, H is a subgroup if and only if for all a, b ∈ H, ab ∈ H

Proof: 1. Since H is nonempty, there exists a ∈ H.
Therefore aa−1 ∈ H
So 1 ∈ H.
Therefore 1a−1 = a−1 ∈ H
For all a, b ∈ H, b−1 ∈ H and a(b−1)−1 = ab ∈ H
Therefore H is closed under multiplication.
So H is a group.

2. It is enough to show that for all a, b ∈ H, a−1 ∈ H.
For all a, b ∈ H, by the assumption {a, a2, . . . } = {am

m ∈ N} ⊆ H
Since H is finite, there are repeats.
So there exist m1 < m2 ∈ N such that am1 = am2

So am2−m1 = 1 and am2−m1−1 = a−1

Thus a−1 ∈ H.
Note if m2 = m1 + 1, then it follows that a = 1, so a−1 ∈ H consequently. ”

Proposition 1.3.6. Let G be a group and let a, b ∈ G of finite order. Then
1. If k ∈ N and ak = 1, then o(a)

k
2. If k ∈ N, then o(ak) =

o(a)

(o(a), k)
3. If (o(a), o(b)) = 1 and ab = ba, then o(ab) = o(a)o(b)

Proof: 1. Let k = o(a)q + r for 0 6 r < o(a).
Then 1 = ak = ao(a)q)ar = ar

By definition of r and minimality of o(a), r = 0.
Therefore o(a)

k.

2. Let n = o(ak), m = o(a)
(k,o(a)) .

Consider (ak)
o(a)

(k,o(a)) = (ao(a))
o(a)

(k,o(a)) = 1

Therefore o(ak) = n 6 o(a)
(k,o(a)) = m.

Note 1 = (ak)o(a
k) = ako(a

k)

By 1., o(a)
ko(ak).

This implies o(a)
(k,o(a))

 ko(ak)
(k,o(a))

Since
(

o(a)
(k,o(a)) ,

k
(k,o(a))

)
= 1, by Math 135 proposition, o(a)

(k,o(a))

o(ak).

Therefore m 6 n.
Therefore m = n.

3. Let n′ = o(ab), m = o(a)o(b).
Then (ab)o(a)o(b) = abab . . . ab = ao(a)o(b)bo(a)o(b) = 1
By minimality of o(a), o(b), n′ 6 m′.
Now consider 1 = (ab)o(ab) = ao(ab)bo(ab) = ao(a)o(ab)bo(a)o(ab) = bo(a)o(ab).
By 1., o(b)

o(a)o(ab).

By a Math 135 proposition, since (o(a), o(b)) = 1, o(b)
o(ab).

Similarly o(a)
o(ab).
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Since (o(a), o(b)) = 1, o(a)o(b)
o(ab).

So m′ 6 n′.
Therefore m′ = n′. ”

Theorem 1.3.7. A subgroup of a cyclic group is always cyclic.

Proof: Let H 6 G.
Let ` = min{n

gn ∈ H,n ∈ N} for H 6= {1G}.
Since H 6= {1G}, there exists n > 0 such that gn = 1G ∈ H.
If n > 0, the set is well defined.
If n < 0, then since H is a subgroup, (gn)−1 = g−n ∈ H and −n ∈ {n

gn ∈ H,n ∈ N}.
Hence the set is non-empty and well-defined.
Claim: H =

〈
g`
〉

is cyclic and generated by g`.
Let h ∈ H with h = gm for some m ∈ Z.
By the division algorithm, m = q`+ r for 0 6 r < `.
Thus gm = gq`+r = (g`)qgr and gr = gm−q` = gm((g`)q)−1 ∈ H.
And since 0 6 r < `, it must be that r = 0.
So h = (g`)q ∈

〈
g`
〉
.

Therefore H =
〈
g`
〉
. ”

Theorem 1.3.8. A finite cyclic group of order n has precisely one subgroup of order m for each n ∈ N such
that m

n. These are the only subgroups of the given group.

Proof: Suppose |G| = n <∞ and let m ∈ N such that m
n.

Let ` = n
m and G = 〈g〉.

Then H =
〈
g`
〉

= o(g)
(`,o(g)) = n

(`,n) = n
` = m.

So |
〈
g`
〉
| = o(g`) = m, and a subgroup of order m exists.

Let H 6 G and |H| = m > 1 as above.
So H = 〈gell〉 for ` = min{k

gk ∈ H, k ∈ N}.
Consider n = q`+ r for 0 6 r < `.
As in the above proof, by the minimality of `, r = 0.
Thus n = g` =⇒ `

n.

So |H| = |
〈
g`
〉
| = o(g`) = o(g)

(`,o(g)) = n
` .

Therefore m
n.

Now suppose that H ′ 6 G and |H ′| = |H| = m.

Repeat the above argument with H ′ =
〈
g`
′
〉

for `′ = min{k
gk ∈ H ′, k ∈ N}.

Then `′
n and |H ′| = n

`′ , which implies that ` = `′.
Therefore H = H ′. ”

Theorem 1.4.9. [Lagrange]

If G is a group and H a subgroup of G, then |H|
|G|. We denote [G,H] = |G|/|H| to be the index of H.

Proof: For R a set of representatives of cosets of G, G =
⊔
ai∈R

Hai.

Since ϕ : H → Ha, defined by h 7→ ha, is a bijection, |H| = |Hai | for any ai ∈ R.

So |G| =
∑
ai∈R

|Hai| =
∑
ai∈R

|H| = |R||H|.

Therefore |H|
|G| and |R| is the index of H in G. ”
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Proposition 2.3.2. Suppose G is a finite group with H,K 6 G. Then |HK| = |H||K|
|H ∩K|

= |KH|

Proof: Define an equivalence relation ∼ on H ×K = {(h, k)
h ∈ H, k ∈ K}.

This relation is given by by (h1, k1) ∼ (h2, k2) ⇐⇒ h1k1 = h2k2.
Let P be the partition containing (h, k) and let (h′, k′) ∈ P .
Then hk = h′k′ ⇐⇒ h′−1h = k′k−1.
Let ` = h′−1h = k′k−1.
Then ` = h′−1h ∈ H and ` = k′k−1 ∈ K, so ` ∈ H ∩K.
Conversely, let ` ∈ H ∩K with h′ = h`−1 and k′ = `k.
Thus h′k′ = hk so (h′, k′) ∼ (h, k).
So P = {(h′, k′)

` ∈ H ∩K,h′ = h`−1, k′ = `k}.
By the law of cancellation, all pairs in P are distinct.
Therefore |P | = |H ∩K|.

Finally, |HK| = the number of equivalence classes =
|H||K|
|H ∩K|

.
”

Theorem 5.2.4. If A is abelian, then
1. T (A) = {a ∈ A

o(a) <∞} is termed the torsion part of A, and T (A) 6 A

2. A
/
T (A) is torsion-free

Proof: 1. Note that 0 ∈ T (A), so T (A) 6= ∅.
Let a, b ∈ T (A), and observe that o(b) = o(−b).
So o(a)o(b)(a− b) = o(a)o(b)a− o(a)o(b)b = 0 =⇒ o(a− b) 6 o(a)o(b) =⇒ a− b ∈ T (A).
Thus by the subgroup test, T (A) 6 A.

2. Let b ∈ A
/
T (A) such that there exists n ∈ Z with nb̄ = 0̄ in A

/
T (A).

Here recall b̄ means the image of b under the natural homomorphism from A to T (A).
Since nb̄ = 0̄, nb ∈ T (A).
Thus o(nb) <∞ and o(nb)nb = 0.
So there exists b ∈ T (A) with b̄ = 0̄. ”
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