Compact course notes PURE MATH 351, FALL 2012

Real Analysis

Professor: B. Forrest transcribed by: J. Lazovskis University of Waterloo December 10, 2012

Contents

_

1	\mathbf{Set}	Theory	2				
	1.1	Definitions	2				
	1.2	Problems arising	2				
	1.3	Relations	3				
	1.4	Equivalence relations and cardinaltiy	5				
	1.5	Cardinal arithmetic	9				
2	Met	Metric spaces					
	2.1	Normed linear spaces	10				
	2.2	The topology of metric spaces	12				
	2.3	Closures, interiors, and boundaries	13				
	2.4	Sequences in metric spaces	14				
3	Con	Completeness					
	3.1	Continuity	15				
	3.2	Complete metric spaces	16				
	3.3	Completeness of $C_b(X)$	17				
	3.4	Characterizations of completeness	19				
	3.5	The Banach contractive mapping theorem	21				
	3.6	The Baire category theorem	22				
4	Con	Compactness					
	4.1	Compact metric spaces	25				
	4.2	Finite dimensional normed linear spaces	30				
	4.3	The Weierstrass approximation theorem	31				
	4.4	The Stone-Weierstrass theorem	34				
	4.5	The Arzela-Ascoli theorem	36				
In	\mathbf{dex}		39				

1 Set Theory

1.1 Definitions

Definition 1.1.1. Given a set X, the power set of X is defined to be $\mathbf{P}(X) = \{A \mid A \subset X\}$.

Definition 1.1.2. Given sets A, B define the symmetric difference of them to be $A \triangle B = (A \cup B) \setminus (A \cap B) = (A \cap B^C) \cup (A^C \cap B)$

Proposition 1.1.3. [DE MORGAN'S LAWS] Let $\{A_{\alpha}\}_{\alpha \in I} \subset \mathbf{P}(X)$. Then

1.
$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{C} = \bigcap_{\alpha \in I} A_{\alpha}^{C}$$

2. $\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{C} = \bigcup_{\alpha \in I} A_{\alpha}^{C}$

Proof: 1.

$$x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{C} \iff x \notin \bigcup_{\alpha \in I} A_{\alpha}$$
$$\iff x \notin A_{\alpha} \ \forall \ \alpha \in I$$
$$\iff x \in A_{\alpha}^{C} \ \forall \alpha \in I$$
$$\iff x \in \bigcap_{\alpha \in I} A_{\alpha}^{C}$$

2. Similar to above, by replacing A with A^C .

Definition 1.1.4. Given $A_1, \ldots, A_n \subset X$, define their product to be

$$A_1 \times \dots \times A_n = \prod_{i=1}^n A_i = \{(a_1, \dots, a_n) \mid a_i \in A_i \ \forall \ i\}$$

Definition 1.1.5. The size of a set A, denoted by |A|, is the number elements A has.

If
$$|A_i| = m_i$$
, then $\left| \prod_{i=1}^n A_i \right| = \prod_{i=1}^n m_i$.

1.2 Problems arising

Proposition 1.2.1. Suppose that $I = \emptyset$. If the expression $\{A_{\alpha}\}_{\alpha \in I}$ is meaningful, then clearly $\bigcup_{\alpha \in I} A_{\alpha} = \emptyset$.

But then by de Morgan's laws, $\bigcap_{\alpha \in I} A_{\alpha} = X$.

Axiom 1.2.2. [AXIOM OF CHOICE] If $I \neq \emptyset$ and $A_{\alpha} \neq \emptyset$ for all $\alpha \in I$, then $\prod_{\alpha \in I} A_{\alpha} \neq \emptyset$.

Axiom 1.2.3. [EQUIVALENT TO AOC] If A is non-empty, there exists a function $f : \mathbf{P}(A) \setminus \{\emptyset\} \to A$ such that $f(A) \in A$.

1.3 Relations

Definition 1.3.1. A <u>relation</u> R on sets X, Y is a subset of $X \times Y$. In general, we write $xRy \iff (x, y) \in R$ for $x \in X$ and $y \in Y$. Interpreted as a set, R is termed the graph of the relation.

If X = Y, then R is termed a relation on X.

Definition 1.3.2. Let R be a relation on $X \ni x, y, z$. Then:

- **1.** R is <u>reflexive</u> iff for all $x \in X$, xRx
- **2.** R is symmetric iff $xRy \iff yRx$
- **3.** R is anti-symmetric iff xRy and yRx implies x = y
- 4. R is transitive iff xRy and yRz implies xRz

Example 1.3.3.

- **1.** Let R be a relation on \mathbb{R} and $xRy \iff x \leqslant y$. This is a poset.
- **2.** Let *R* be a relation on $\mathbf{P}(X)$ for *X* any set and $ARB \iff A \subset B$. This is a poset. In this case we say \subset orders $\mathbf{P}(X)$ by inclusion.
- **3.** Let R be a relation on $\mathbf{P}(X)$ for X any set, and $ARB \iff A \supset B$. This is a poset. In this case we say \supset orders $\mathbf{P}(X)$ by containment.

Definition 1.3.4. A partial order on a set X is a relation \preccurlyeq on X that is reflexive, anti-symmetric, and transitive. As an ordered pair, (X, \preccurlyeq) is termed a poset.

X is a poset off for all $x, y \in X$, either $x \preccurlyeq y$ ar $y \preccurlyeq x$.

Definition 1.3.5. A <u>chain</u> is a subset of (X, \preccurlyeq) that is totally ordered, i.e. that has $x \preccurlyeq y$ or $y \preccurlyeq x$ for all $x, y \in X$.

Definition 1.3.6. Let (X, \preccurlyeq) be a poset with $A \subset X$. Then:

1a. We say that $\alpha \in A$ is an upper bound of A iff $x \preccurlyeq \alpha$ for all $x \in A$

1b. We say that α is the least upper bound of A iff α is an upper bound of A and for all other upper bounds β of A, $\alpha \preccurlyeq \beta$.

2a. We say that $\alpha \in A$ is an <u>lower bound</u> of A iff $x \succeq \alpha$ for all $x \in A$

2b. We say that α is the greatest lower bound of A iff α is a lower bound of A and for all other lower bounds β of A, $\alpha \succeq \beta$.

3. We say that A is <u>bounded</u> if it has a lower bound and an upper bound.

Axiom 1.3.7. [LEAST UPPER BOUND PRINCIPLE]

If $A \subset \mathbb{R}$ is bounded above and is non-empty, then there exists a least upper bound for A.

Definition 1.3.8. Let (X, \leq) be a poset. Then $x \in X$ is termed <u>maximal</u> if whenever $x \leq y, x = y$.

Example 1.3.9.

- **1.** For \mathbb{R} , there is no maximal element
- **2.** For $(\mathbf{P}(X), \subset)$, X is the maximal element
- **3.** For $(\mathbf{P}(X), \supset)$, \emptyset is the maximal element

Remark 1.3.10. Note that finite posets may be represented by finite digraphs. As such, two elements are termed comparable if there is a dipath joining them. We assume that $x \leq y$ iff there is a path from y to x.

Example 1.3.11. Let $X = \{x, y, z\}$ have distinct elements. There are 5 basic posets.

There are 2^9 relations on X, and of them, 19 are posets.

Theorem 1.3.12. If (X, \leq) is a finite non-empty poset, then (X, \leq) has a maximal element.

Proof: Induction on the number of elements in X.

Axiom 1.3.13. [ZORN'S LEMMA]

Let (X, \leq) be a non-empty, partially ordered set. Assume that every chain $C \subset X$ has an upper bound. Then (X, \leq) has a maximal element.

Zorn's lemma is logically equivalent to the axiom of choice.

Example 1.3.14. Let (V, +) be a non-zero vector space. Let $\mathcal{L} = \{L \subset V \mid L \text{ is linearly independent}\}$. Then a basis for V is a maximal element of \mathcal{L} , given the ordering \subset .

Theorem 1.3.15. Every non-zero vector space has a basis.

 $\begin{array}{l} \underline{Proof:} \mbox{ Let } \mathcal{L} = \{L \subset V \mid L \mbox{ is linearly independent}\} \subset \mathbf{P}(V). \\ \hline \mbox{ Then } \mathcal{L} \neq \emptyset, \mbox{ as for } v \in V \mbox{ nonzero, } \{v\} \in \mathcal{L}. \\ \mbox{ Let } L^* = \bigcup_{\alpha \in I} L_{\alpha}. \\ \hline \mbox{ We claim that } L^* \mbox{ is linearly independent, so } L^* \in \mathcal{L} \mbox{ and } L^* \mbox{ is an upper bound.} \\ \mbox{ Let } \{v_1, \ldots, v_n\} \mbox{ be distinct elements of } L^* \mbox{ with } a_1v1 + \cdots + a_nv_n = 0. \\ \hline \mbox{ For each } i = 1, 2, \ldots, n, v_i \in L_{\alpha_i} \mbox{ for some } \alpha_i \in I, \mbox{ and we may assume that } L_{\alpha_1} \subset L_{\alpha_2} \subset \cdots \subset L_{\alpha_n}. \\ \hline \mbox{ Hence } \{v_1, \ldots, v_n\} \subset L_{\alpha_n} \mbox{ so that } a_1 = a_2 = \cdots = a_n = 0. \\ \hline \mbox{ Since every chain has an upper bound, Zorn's lemma gives us a maximal element.} \end{array}$

Definition 1.3.16. A poset (X, \leq) is termed <u>well-ordered</u> if every non-empty subset has a least element.

Well-ordered sets are totally ordered.

Example 1.3.17.

1. \mathbb{N} with the usual order is well-ordered

2. (\mathbb{Q}, \leq) is not well-ordered, as $\{r \in \mathbb{Q} \mid r > \sqrt{2}\}$ has no least element

Proposition 1.3.18. The set \mathbb{Q} can be injected into the set \mathbb{N} . Consider:

$$\varphi: \quad \mathbb{Q} = \left\{ \frac{n}{m} \mid n \in \mathbb{Z}, m \in \mathbb{N}, \gcd(n, m) = 1 \right\} \to \mathbb{N}$$

$$\varphi\left(\frac{n}{m}\right) = \begin{cases} 1 & \text{if } n = 0\\ 2^n 3^m & \text{if } \frac{n}{m} > 0\\ 2^{-n} 5^m & \text{if } \frac{n}{m} < 0 \end{cases}$$

The fundamental theorem of arithmetic gives us that φ is injective.

Proposition 1.3.19. The set \mathbb{Q} is well-ordered.

Proof: Using the above function and the relation $r \preccurlyeq q$ iff $\varphi(r) \leqslant \varphi(q)$ in the usual order on \mathbb{N} .

Axiom 1.3.20. [WELL-ORDERING PRINCIPLE] Every non-empty set can be well-ordered.

Theorem 1.3.21. The following axioms are logically equivalent:

- **1.** The axiom of choice
- 2. Zorn's lemma
- **3.** The well-ordering principle

1.4 Equivalence relations and cardinaltiy

Definition 1.4.1. A relation \sim on a set X is termed an equivalence relation iff it is:

- **1.** reflexive
- 2. symmetric
- **3.** transitive

Definition 1.4.2. Given an equivalence relation \sim on X, the equivalence class of an element $x \in X$ is defined as

$$[x] = \{ y \in X \mid x \sim y \}$$

The following properties hold for all $x, y \in X$:

1. $x \in [x]$

2. either [x] = [y] or $[x] \cap [y] = \emptyset$

Definition 1.4.3. Given a non-empty set X, a partition on X is a collection $\{A_{\alpha}\}_{\alpha \in I}$ of pairwise disjoint nonempty subsets of X such that

$$X = \bigcup_{\alpha \in I} A_{\alpha}$$

Remark 1.4.4.

- **1.** Any equivalence relation \sim partitions X
- **2.** Any partition $\{A_{\alpha}\}_{\alpha \in I}$ of X defines an equivalence relation on X.

Example 1.4.5. Given a set X, let ~ be an equivalence relation on $\mathbf{P}(X)$ by $A \sim B$ iff there exists a bijection $f: A \to B$. Then A is equivalent to B, or A = B iff |A| = |B|. Heuristically, A = B iff both have the same number of elements.

Definition 1.4.6. A set X is termed <u>finite</u> if either $X = \emptyset$ or $X \sim \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. If $X = \emptyset$, then X is said to have cardinality 0. If $X \sim \{1, 2, ..., n\}$, then X is said to have cardinality n. If X is not finite, then it is termed <u>infinite</u>.

Theorem 1.4.7. If X is finite, then X cannot be equivalent to a proper subset of itself.

 $\begin{array}{l} \underline{Proof:} \text{ This is clearly false for } X = \emptyset, \text{ so we will not consider that case.} \\ \hline \text{Assume that } X = \{1, 2, \ldots, n\} \text{ for some } n \in \mathbb{N}. \\ \text{Let } P_n \text{ be the statement "the set } \{1, 2, \ldots, n\} \text{ is not equivalent to a proper subset of itself".} \\ \hline \text{Base case: The case } P_1 \text{ clearly holds.} \\ \hline \text{Inductive step: Suppose that } P_k \text{ holds for } k \in \mathbb{N}. \\ \hline \text{Also suppose that there exists a bijective function } f : \{1, 2, \ldots, k, k+1\} \rightarrow S \text{ for } S \subsetneq \{1, 2, \ldots, k, k+1\}. \end{array}$

Case 1: $k + 1 \notin S$ Let $S' = S \setminus \{f(k+1)\} \subsetneq \{1, 2, \dots, k\}$. Then $f|_{\{1, 2, \dots, k\}}$ is bijective from $\{1, 2, \dots, k\}$ to $S' \subsetneq \{1, 2, \dots, k\}$. This contradicts P_k . Case 2: $k + 1 \in S$ and f(k + 1) = k + 1Then $f|_{\{1, 2, \dots, k\}}$ has range $S' = S \setminus \{k + 1\} \subsetneq \{1, 2, \dots, k\}$. Since f is bijective on $\{1, 2, \dots, k\}$, we have that $\{1, 2, \dots, k\} \nsim S$. Case 3: $k + 1 \in S$ and $f(k + 1) \neq k + 1$

Then $f(j_0) = k + 1$ for some $j_0 \in \{1, 2, ..., k\}$. Let $g: \{1, 2, ..., k + 1\} \to S$ be defined by

$$g(j) = \begin{cases} k+1 & \text{if } j = k+1 \\ f(k+1) & \text{if } j = j_0 \\ f(j) & \text{if } j \in \{1, 2, \dots, k\} \text{ with } j \neq j_0 \end{cases}$$

Then g is a bijection on S, which by the above case, is impossible.

Now suppose that $X \sim \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ and $X \sim S$ for S a proper subset of X. Then there exists a bijective function $f: X \to \{1, 2, ..., n\}$. Then $S \sim f(S) \subsetneq \{1, 2, ..., n\}$. But then $\{1, 2, ..., n\} \sim X \sim S \sim f(S)$.

Proposition 1.4.8. If X is infinite, then there exists a subset $X \subset X$ with $S \sim \mathbb{N}$.

<u>Proof:</u> Since X is non-empty, there is a choice function f on $\mathbf{P}(X) \setminus \{\emptyset\}$. Let $x_1 = f(X), X_2 = f(X \setminus \{x_1\})$, and proceed recursively with $x_{n+1} = f(X \setminus \{x_1, \dots, x_n\})$. This gives $S = \{x_1, \dots, x_n, \dots\}$.

Theorem 1.4.9. A set X is infinite if and only if it is equivalent to one of its proper subsets.

<u>Proof:</u> We know that if X is finite, then it is not equivalent to any one of its proper subsets. Then suppose that X is infinite.

Choose $S = \{x_1, x_2, \dots, x_n\}$ as in the previous proposition. Define $f: X \to X \setminus \{x_1\}$ by

$$f(x) = \begin{cases} x_{n+1} & \text{if } x = x_n \in S \\ x & \text{if } x \notin X \setminus S \end{cases}$$

This proves the theorem.

Definition 1.4.10. A set X is termed <u>countable</u> iff it is either finite or $X \sim \mathbb{N}$.

If $X \sim \mathbb{N}$, then $|X| = \aleph_0$.

Theorem 1.4.11. [CANTOR, SHROEDER, BERNSTEIN] Let $A_2 \subset A_1 \subset A_0$. If $A_2 \sim A_0$, then $A_1 \sim A_0$.

<u>Proof</u>: Note that there exists a bijection $f : A_0 \to A_2$, so $f(A_0) = A_2$. Let $A_3 = f(A_1), A_4 = f(A_2), \dots, A_n = f(A_{n-2}), \dots$ Then $A_{n+2} \sim A_n$ via f, as well as $A_{n+2} \setminus A_n \sim A_{n+2} \setminus A_{n+3}$ also via f. We may decompose A_0 and A_1 as follows:

$$A_{0} = (A_{0} \setminus A_{1}) \cup (A_{1} \setminus A_{2}) \cup (A_{2} \setminus A_{3}) \cup \cdots \cup \bigcap_{i=0}^{\infty} A_{i}$$
$$A_{1} = (A_{1} \setminus A_{2}) \cup (A_{2} \setminus A_{3}) \cup (A_{3} \setminus A_{4}) \cup \cdots \cup \bigcap_{i=1}^{\infty} A_{i}$$

Identification between sets is made if they are equal and otherwise through $g: A_0 \to A_1$:

$$g(x) = \begin{cases} f(x) & \text{if } x \in (A_{2k} \setminus A_{2k+1}) \\ x & \text{if } x \in (A_{2k+1} \setminus A_{2k+2}) \\ x & \text{if } x \in \bigcap_{i=0}^{\infty} A_i \end{cases}$$

Since g is a bijection, $A_1 \sim A_0$.

Corollary 1.4.12. If $A_1 \subset A_0$ and $B_1 \subset B_0$ with $B_1 \sim A_0$ and $A_1 \sim B_0$, then $A_0 \sim B_0$.

<u>Proof</u>: Let $f : A_0 \to B_1$ and $g : B_0 \to A_1$ be bijective. Define $A_2 \subset A_1 \subset A_0$ by $A_2 = g \circ f(A_0) = g(B_1)$. Therefore $A_2 \sim A_0$. By CSB, we have that $A_1 \sim A_0$ and so $A_0 \sim B_0$.

Example 1.4.13. These are some examples of equivalent sets.

 $\cdot \mathbb{Q} \sim \mathbb{N}$

 $\cdot \ \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$

This is given by two injective functions, $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ and $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$\begin{array}{rcl} f(n) & = & (n,n) \\ g((n,m)) & = & 2^n 3^m \end{array}$$

Since both are injective, CSB says that the sets are equivalent.

 $\cdot \prod_{i=1}^{n} \mathbb{N} \sim \mathbb{N} \text{ for } n \in \mathbb{N}$

Theorem 1.4.14. The product of finitely many countable sets is countable.

Theorem 1.4.15. Let $\{X_n\}_{n=1}^{\infty}$ be a countable collection of countable sets. Then $X = \bigcup_{n=1}^{\infty} X_n$ is countable.

<u>Proof:</u> Recall that if S is countable with $T \subset S$, then T is also countable by CSB. Let

$$E_1 = X_1$$

$$E_2 = X_2 \setminus X_1$$

$$E_3 = X_3 \setminus (X_1 \cup X_2)$$

$$E_4 = X_4 \setminus (X_1 \cup X_2 \cup X_3)$$

$$\vdots$$

$$E_n = X_n \setminus \bigcup_{i=1}^{n-1} X_i$$

Then $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} X_n$ and $\{E_1, E_2, \dots, E_n\}$ is a pairwise disjoint sequence of countable sets. For each E_n , write $E_n = \{x_{n,1}, x_{n,2}, \dots\}$ possibly terminating. Let $f : \bigcup_{n=1}^{\infty} E_n \to \mathbb{N}$ by $f(x_{i,j}) = 2^i 3^j$. Since f is injective, the theorem is proven.

Definition 1.4.16. A set is termed <u>uncountable</u> if it is not countable.

Proposition 1.4.17. The set $(0,1) \subset \mathbb{R}$ is not countable.

Proof: Suppose that (0, 1) is countable.

Then
$$(0,1) = \{\alpha_1, \alpha_2, \dots\}$$
 for each $\alpha_j = 0.b_{j1}b_{j2}\dots = \sum_{i=1}^{\infty} \frac{b_{ji}}{10^i}$ for each $b_{ji} \in \{0, 1, 2, \dots, 9\}$.

Consider the following expansion:

$$\begin{array}{rcl} \alpha_1 &=& 0.b_{11}b_{12}b_{13}\dots \\ \alpha_2 &=& 0.b_{21}b_{22}b_{23}\dots \\ \alpha_3 &=& 0.b_{31}b_{32}b_{33}\dots \\ &\vdots \\ \alpha_n &=& 0.b_{n1}b_{n2}b_{n3}\dots \\ &\vdots \end{array}$$

Now define an element $\alpha = 0.b_1b_2b_3...$ by

$$b_n = \begin{cases} 1 & \text{if } b_{nn} \neq 0\\ 2 & \text{else} \end{cases}$$

Clearly $\alpha \in (0, 1)$, but there is also clearly no $i \in \mathbb{N}$ such that $\alpha = \alpha_i$. Therefore α is not in our enumeration, and so (0, 1) is not countable.

Remark 1.4.18.

- **1.** For any $a < b \in \mathbb{R}$, we have that $(0,1) \sim (a,b) \sim \mathbb{R}$, and $(0,1) \sim \mathbb{R}$ via $f(x) = \arctan\left(\pi x \frac{\pi}{2}\right)$.
- **2.** $|\mathbb{R}| = c$, which is the first uncountable ordinal.

Axiom 1.4.19. [CONTINUUM HYPOTHESIS] For X any set, if $\aleph_0 \preccurlyeq |X| \preccurlyeq c$, then either |X| = c or $|X| = \aleph_0$.

Definition 1.4.20. For sets W, V, let $h : W \to V$ be a function. Denote the <u>pullback</u> of h by $h^{-1} : \mathbf{P}(V) \to \mathbf{P}(W)$, with $h^{-1}(B) = \{w \in W \mid h(w) \in B\}$ for any $B \subset V$.

Proposition 1.4.21. Assume that there exists a surjective function $g: Y \to X$. Then there exists an injective function $f: X \to Y$.

Proof: Let $g: Y \to X$ be surjective.

For each $x_0 \in X$, $g^{-1}(\{x_0\}) \neq \emptyset$, as g is surjective. By the axiom of choice, there if a choice function h on $\mathbf{P}(Y) \setminus \{\emptyset\}$. Define $f(x_0) = h(g^{-1}(\{x_0\})) = y_0 \in Y$. Since g is a function, $f: X \to Y$ is injective.

Corollary 1.4.22. Given nonempty sets X, Y, the following are equivalent:

1. $|X| \preccurlyeq |Y|$

- **2.** There exists an injective function $f: X \to Y$
- **3.** There exists a surjective function $g: Y \to X$

Theorem 1.4.23. [COMPUTABILITY THEOREM] Given any sets X, Y, either $|X| \leq |Y|$ or $|Y| \leq |X|$.

 $\begin{array}{l} \underline{Proof:} \text{ We may assume that } X,Y \text{ are nonempty.} \\ \hline \text{Define } S = \{(A,B,f) \mid A \subset X, B \subset Y, f: A \to B \text{ is bijective}\}. \\ \text{We may order } S \text{ by } \preccurlyeq, \text{ with } (A_1,B_1,f_1) \preccurlyeq (A_2,B_2,f_2) \text{ iff } A_1 \subset A_2, B_1 \subset B_2, \text{ and } f_a|_{A_1} = f_1. \\ \text{Let } C = \{(A_\alpha,B_\alpha,f_\alpha)\}_{\alpha\in I} \text{ be a chain in } S. \\ \text{Let } A = \bigcup_{\alpha\in I} A_\alpha, B = \bigcup_{\alpha\in I}, \text{ and } f: A \to B \text{ given by } f(x) = f_\alpha(x) \text{ if } x \in A_\alpha. \\ \text{First it must be shown that } f \text{ is well defined.} \\ \text{Assume that } x \in A_\alpha, x \in A_\beta. \\ \text{WLOG we may assume } A_\alpha \subset A_\beta. \\ \text{Then } f(x) = f_\alpha(x) = f_\beta(x). \end{array}$

Thus f is well-defined.

Now we must show that f is injective. Let $x_1 \neq x_2 \in A_\alpha \subset A_\beta$ so $x_1, x_2 \in A_\beta$. Now $f_\alpha(x_1) = f_\beta(x_1) \neq f_\beta(x_2) = f(x_2)$. Finally it must be shown that f is surjective. Let $w \in B$. Then $w \in B_\alpha$ for some α . So here exists $x \in A_\alpha$ with $f_\alpha(x) = w$. Then $x \in A$ and f(x) = w. Therefore (A, B, f) is an upper bound of C. By Zorn's lemma, S has a maximal element (A_0, B_0, f_0) . If $A_0 = X$, then $|X| \preccurlyeq |Y|$. Assume $A_0 \neq X$. If $B_0 = Y$, then $|Y| \preccurlyeq |X|$. If $B_0 \neq Y$, then choose $x_0 \in X \setminus A_0$ with $y_0 \in Y \setminus B_0$. Define $f_1 : A_0 \cup \{x_0\} \rightarrow B_0 \cup \{y_0\}$ by

$$f_1(x) = \begin{cases} f_0(x) & \text{if } x \in A_0\\ f(x_0) = y_0 & \text{if } x = x_0 \end{cases}$$

Then $(A_0, B_0, f_0) \prec (A_1, B_1, f_1)$.

This is a contradiction, and hence the last situation cannot hold.

1.5 Cardinal arithmetic

Definition 1.5.1. Given two sets X, Y with $X \cap Y = \emptyset$, define $|X| + |Y| := |X \cup Y|$.

Example 1.5.2. Consider $\mathbb{N} = \{1, 3, 5, ...\} \cup \{2, 4, 6, ...\}$, and so $|\mathbb{N}| = |\mathbb{N}| + |\mathbb{N}| = \aleph_0 + \aleph_0$.

Theorem 1.5.3. Given two sets X, Y with X infinite,

1. |X| + |X| = |X|

2. $|X| + |Y| = \max\{|X|, |Y|\}$

Definition 1.5.4. Given two nonempty sets X, Y, define $|X||Y| := |X \times Y|$.

This means that $\aleph_0 \cdot \aleph_0 = \aleph_0$ and $c \cdot c = c$.

Theorem 1.5.5. Given two nonempty sets X, Y with X infinite,

1. |X||X| = |X|**2.** |Y||V| = |Y|

2. $|X||Y| = \max\{|X|, |Y|\}$

Definition 1.5.6. Given two nonempty sets X, Y, define $|Y|^{|X|} := |Y^X| = |\prod_{x \in X} Y| = |\{f : X \to Y\}|$.

Proposition 1.5.7. For any set X, $|\mathbf{P}(X)| = 2^{|X|}$.

<u>Proof:</u> Given any $A \subset X$, define $\chi_A : X \to \{0,1\}$ by $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$. Then $\mathbf{P}(X) \sim \{f : X \to \{0,1\}\}$ via $A \iff \chi_A$.

Theorem 1.5.8. [RUSSELL] For any set X, $|X| \prec 2^{|X|}$.

<u>Proof:</u> Let $f : X \to \mathbf{P}(X)$ be injective. Suppose that f is onto. Let $A \subset X$ be defined by $A = \{x \in X \mid x \notin f(x)\}.$

Then there exists x_0 with $f(x_0) = A$. But if $x_0 \in A$, then $x_0 \notin f(x_0) = A$. And if $x_0 \in A$, then $x_0 \in f(x_0) = A$. This is a contradiction. Hence no such f injective exists.

Remark 1.5.9. Given a set A, the number of relations on A is equal to $|\mathbf{P}(A \times A)|$.

The number of equivalence relations on A is equal to the number of partitions of A.

$\mathbf{2}$ Metric spaces

Definition 2.0.1. Given a set X, a function $d: X \times X \to \mathbb{R}$ is termed a <u>metric</u> iff for all $x, y, z \in X$:

1. $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$

2. d(x,y) = d(y,x)

3. $d(x,y) + d(y,z) \ge d(x,z)$

Example 2.0.2. These are some examples of metrics.

1. $X = \mathbb{R}$ and d(x, y) = |x - y|**2.** $X = \text{any set and } d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{else} \end{cases}$, the discrete metric

Definition 2.0.3. Given a set X and a metric d on X, the pair (X, d) is termed a metric space.

Normed linear spaces 2.1

Definition 2.1.1. Let V be a vector space. A function $\|\cdot\|: V \to \mathbb{R}$ is termed a norm iff for all $v, w \in V$ and $\alpha \in \mathbb{R}$:

1. $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$

2. $|\alpha v|| = |\alpha|||v||$

3. $||v + w|| \leq ||v|| + ||w||$

Given a vector space V and a norm $\|\cdot\|$ on V, the pair $(V, \|\cdot\|)$ is termed a normed linear space.

Definition 2.1.2. Let $(V, \|\cdot\|)$ be a normed linear space. If $d(x, y) = \|x - y\|$, then d is a metric on V, and d is termed the metric induced by $\|\cdot\|$.

Example 2.1.3. These are some examples of norms.

1. the standard norm: $||(x_1, ..., x_n)||_1 = |x_1| + \dots + |x_n|$ 2. the Euclidean norm: $||(x_1, ..., x_n)||_2 = \sqrt{x_1^2 + \dots + x_n^2}$ 3. the *p*-norm: $||(x_1, ..., x_n)||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ for 1

4. the sup norm: $||(x_1, ..., x_n)||_{\infty} = \max\{|x_i|\}$

Then we have that $||x||_{\infty} \leq ||x||_p \leq ||x||_1 \leq n ||x||_{\infty}$ for $x \in \mathbb{R}^n$ and for 1 .

Lemma 2.1.4. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$ (or q(p-1) = p), where p, q is a conjugate pair. Then for any $\alpha, \beta > 0$,

$$\alpha\beta \leqslant \frac{\alpha^p}{p} + \frac{\beta^q}{q}$$

Theorem 2.1.5. [HOLDER'S INEQUALITY] Let $a, b \in \mathbb{R}^n$ with $\frac{1}{p} + \frac{1}{q} = 1$ for 1 . Then

 $||ab||_1 \leq ||a||_p ||b||_q$

Proof: We may assume that a, b are nonzero.

Note that the result holds iff it holds for αa and βb for nonzero scalars α, β . Then we may assume that $\left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} = 1$ and $\left(\sum_{i=1}^{n} |b_i|^q\right)^{1/q} = 1$. Now $|a_i b_i| \leq \frac{|a_i|^p}{p} + \frac{|b_i|^q}{q}$ for all $i = 1, \ldots, n$, so

$$\sum_{i=1}^{n} |a_i b_i| \leqslant \frac{\sum_{i=1}^{n} |a_i|^p}{p} + \frac{\sum_{i=1}^{n} |b_i|^q}{q} = 1$$

Replacing 1 with the norms gives the result.

Theorem 2.1.6. [MINKOWSKI'S INEQUALITY] Let $a, b \in \mathbb{R}^n$ with 1 . Then

$$||a+b||_p \le ||a||_p + ||b||_p$$

Proof: Let p, q be a conjugate pair.

Note that

$$\sum_{i=1}^{n} |a_i + b_i|^p = \sum_{i=1}^{n} |a_i| |a_i + b_i|^{p-1} + \sum_{i=1}^{n} |b_i| |a_i + b_i|^{p-1}$$

Then by Holder, we have that

$$\sum_{i=1}^{n} |a_i| |a_i + b_i|^{p-1} \leq \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |a_i + b_i|^{(p-1)q}\right)^{1/q}$$
$$= \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/q}$$
$$\sum_{i=1}^{n} |b_i| |a_i + b_i|^{p-1} \leq \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/q}$$

The original equation then becomes

$$||a+b||_p = \left(\sum_{i=1}^n |a_i+b_i|^p\right)^{1-1/p-1/q} \le ||a||_p + ||b||_q$$

This completes the proof.

Definition 2.1.7. The following are all spaces of infinite sequences.

1. $\ell_1(\mathbb{N}) = \ell_1 = \{\{x_n\} \mid x_n \in \mathbb{R}, \sum_{i=1}^{\infty} |x_n| < \infty\}$ **2.** $\ell_p(\mathbb{N}) = \ell_p = \{\{x_n\} \mid x_n \in \mathbb{R}, \sum_{i=1}^{\infty} |x_n|^p < \infty\}$ **3.** $\ell_{\infty}(\mathbb{N}) = \ell_{\infty} = \{\{x_n\} \mid x_n \in \mathbb{R}, \max_i\{|x_i|\} < \infty\}$

By checking that $\|\cdot\|_p$ for each respective p is a norm, it may be shown that $(\ell_p, \|\cdot\|_p)$ is a normed linear space, for $a \leq p \leq \infty$.

Remark 2.1.8. We have the following sequence of inclusions, for all $1 < p_2 < p_2 < \infty$:

$$\ell_1 \subsetneq \ell_{p_1} \subsetneq \ell_{p_2} \subsetneq \ell_{\infty}$$

Proposition 2.1.9. Let $\{x_n\} \in \ell_p$ and $\{y_n\} \in \ell_q$ with p, q a conjugate pair. Then $\sum_{n=1}^{\infty} x_n y_n$ converges absolutely with $\|\{x_n y_n\}\|_1 \leq \|\{x_n\}\|_p + \|\{y_n\}\|_q$.

_		

Example 2.1.10. Let $X = C[a, b] = \{f : [a, b] \to \mathbb{R} \mid f \text{ is continuous}\}$. Then for

$$||f||_{\infty} = \sup_{x \in [a,b]} \{|f(x)|\} = \max_{x \in [a,b]} \{|f(x)|\}$$
$$|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty}$$

the space $(C[a, b], \|\cdot\|_{\infty})$ is a normed linear space. We may define other norms on C[a, b] by:

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

so then $(C[a, b], \|\cdot\|_p)$ will be a norm for all $1 \leq p < \infty$.

Example 2.1.11. Given normed linear spaces $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$, let

$$\mathcal{L}(X,Y) = \{T : X \to Y \mid T \text{ is linear}\}$$
$$\|T\|_{\infty} = \sup\{\|Tx\|_{Y} \mid \|x\|_{X} \leq 1 \ \forall \ x \in X\}$$
$$B(X,Y) = \{T \in \mathcal{L}(X,Y) \mid T \text{ is bounded}\}$$

Then the space $(B(X,Y), \|\cdot\|_{\infty})$ is a normed linear space.

The topology of metric spaces 2.2

Definition 2.2.1. Let (X, d) be a metric space with $x \in X$ and $\epsilon > 0$. Define

- the open ball of radius ϵ centered at x: $B(x, \epsilon) = \{y \in X \mid d(x, y) < \epsilon\}$
- <u>the closed ball</u> of radius ϵ centered at x: $B[x, \epsilon] = \{y \in X \mid d(x, y) \leq \epsilon\}$
- · an open set $U \subset X$ has for all $y \in U$ some $\epsilon_y > 0$ such that $B(y, \epsilon_y) \subset U$
- \cdot a <u>closed set</u> $V \subset X$ has $X \setminus V$ open

Theorem 2.2.2. Let (X, d) be a metric space. Then

1. X, \emptyset are open

- **2.** if $\{U_{\alpha}\}_{\alpha \in I}$ is a collection of open sets in X, then $\bigcup_{\alpha \in I} U_{\alpha}$ is open in X
- **3.** if $\{U_1, \ldots, U_n\}$ is a finite collection of open sets in X, then $\bigcap_{i=1}^n U_i$ is open in X

Proof: **1.** This is clear.

2. Let $x \in \bigcup_{\alpha \in I} U_{\alpha}$. Then there exists $\alpha_0 \in I$ with $x \in U_{\alpha_0}$, so there is $\epsilon > 0$ with $B(x, \epsilon) \subset U_{\alpha_0} \subset \bigcup_{\alpha \in I} U_{\alpha}$. **3.** Let $x_i n \bigcap_{i=1}^n U_i$. For each $i, x_0 \in U_i$, so there is $\epsilon = \min_i \{\epsilon_i\}$, for $B(x_0, \epsilon_i) \subset U_i$ for all i. Hence $B(x_0, \epsilon) \subset \bigcap_{i=1}^n U_i$.

Theorem 2.2.3. Let (X, d) be a metric space. Then

1. X, \emptyset are closed

2. if $\{F_{\alpha}\}_{\alpha \in I}$ is a collection of open sets in X, then $\bigcap_{\alpha \in I} F_{\alpha}$ is closed in X

3. if $\{F_1, \ldots, F_n\}$ is a finite collection of open sets in X, then $\bigcup_{i=1}^n F_i$ is closed in X

Definition 2.2.4. Given a set X, a topology on X is a set $\tau \subset \mathbf{P}(X)$ such that

1. $X, \emptyset \in \tau$

- **2.** if $\{U_{\alpha}\}_{\alpha \in I} \subset \tau$, then $\bigcup_{\alpha \in I} U_{\alpha} \in \tau$ **3.** if $\{U_1, \ldots, U_n\} \subset \tau$, then $\bigcap_{i=1}^n U_i \in \tau$

The pair (X, τ) is termed a topological space, with elements of τ termed τ -open, or simply open sets.

Proposition 2.2.5. Let $X \ni x$ be a space with $\epsilon > 0$. Then

- **1.** The open ball $B(x, \epsilon)$ is open.
- **2.** $U \subset X$ is open iff it is the union of open balls.
- **3.** The closed ball $B[x, \epsilon]$ is closed.
- 4. The set $\{x_0\}$ is closed.

Definition 2.2.6. Let $A \subset (X, d)$. Define a metric $d_A : A \times A \to \mathbb{R}$ by $d_A(x, y) = d(x, y)$ iff $x, y \in A$.

Definition 2.2.7. Given $A \subset (X, d)$, define a topology τ_A on A by $W \in \tau_A$ iff $W = A \cap U$ for some $U \in \tau_d$. Then τ_A is termed the relative topology on A induced by τ_d .

Proposition 2.2.8. $\tau_A = \tau_{d_A}$

<u>Proof:</u> Let $W \in \tau_{d_A}$, so for each $x \in W$ there exists $\epsilon_x > 0$ so that $W = \bigcup_{x \in W} B_{d_A}(x, \epsilon_x)$. Then for $U = \bigcup_{x \in W} B_d(x, \epsilon_x)$, we have that U is open in X and $W = U \cap A$. Hence $W \in \tau_A$.

Let $W \in \tau_A$ and $x \in W$. Then there exists $U \subset X$ so that $W = A \cap U$. Then as $x \in U$, there exists $\epsilon > 0$ with

$$B_d(x,\epsilon) = \{ y \in X \mid d(x,y) < \epsilon \} \subset U$$

Then we also have that

$$B_{d_A}(x,\epsilon) = \{ y \in A \mid d_A(x,y) < \epsilon \} \subset W$$

Therefore $W \in \tau_{d_A}$.

The result follows.

2.3 Closures, interiors, and boundaries

Definition 2.3.1. Let $A \subset (X, d)$. Define

- $\cdot \underline{\text{closure}} \text{ of } A \colon \overline{A} = \bigcap \{ F \subset X \mid A \subset F, F \text{ is closed} \}$
- \cdot <u>interior</u> of A: int(A) = A^o = $\bigcup \{ U \subset X \mid U \subset A, U \text{ is open} \}$
- · neighborhood of x: N with $x \in N^{\circ}$

Note that \overline{A} is the smallest closed set containing A and A° is the largest open set contained in A.

Remark 2.3.2.

- $\cdot A^{\circ} \subset A \subset \overline{A}$
- $\cdot A$ is closed iff $A = \overline{A}$
- $\cdot \ A$ is open iff $A = A^\circ$

Definition 2.3.3. Given $A \subset (X, d)$, a point $x \in A$ is termed a boundary point of A iff every neighborhood N of x is such that $N \cap A \neq \emptyset$ and $N \cap A^c \neq \emptyset$. Equivalently, $x \in A$ is a boundary point iff

$$B(x,\epsilon) \cap A \neq \emptyset, \ B(x,\epsilon) \cap A^c \neq \emptyset \ \forall \epsilon > 0$$

A point $x \in A$ is termed a limit point (or cluster point) of A iff for all $\epsilon > 0$ $B(x, \epsilon) \cap A$ contains a point different from x.

The set of all boundary points of A is denoted bdy(A). The set of all limit points of A is denoted Lim(A).

Proposition 2.3.4. Let (X, d) be a metric space and $A \subset X$. Then

1. $\overline{A} = A \cup \mathsf{bdy}(A)$

2. A is closed iff $bdy(A) \subset A$

Proposition 2.3.5. Let (X, d) be a metric space and $A \subset X$. Then

1. $\overline{A} = A \cup \text{Lim}(A)$

2. A is closed iff $\text{Lim}(A) \subset A$

Definition 2.3.6. Let (X, d) be a metric space and $A \subset X$. Then A is termed <u>dense in X</u> iff $\overline{A} = X$. In general, if $A \subset B \subset X$, then A is termed dense in B iff $B \subset \overline{A}$.

Another way to characterize denseness is to say $A \subset X$ is dense in X iff every open ball $B(z, \epsilon) \subset X$ intersects A.

Example 2.3.7. $\mathbb{Q} \subset \mathbb{R}$ and $\mathbb{R} \setminus \mathbb{Q} \subset \mathbb{R}$ are dense in \mathbb{R} .

Proposition 2.3.8.

1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$ 2. $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$

Proposition 2.3.9.

1. $(\overline{A})^c = int(A^c)$

2. $bdy(A) = \overline{A} \setminus int(A)$

Definition 2.3.10. Given a metric space (X, d), the space is termed <u>separable</u> iff X has a countable dense set. Otherwise the space is termed non-separable.

Example 2.3.11.

$\cdot \mathbb{R}$ is separable	$\cdot (\ell_1, \ \cdot \ _1)$ is separable
$\cdot \mathbb{R}^n$ is separable	

 $\cdot \ \mathbb{R}^\infty$ is not separable

 $\cdot (\ell_{\infty}, \|\cdot\|_{\infty})$ is not separable

It is a direct consequence of the definition of a separable metric space that any separable metric space has cardinality at most \mathfrak{c} .

2.4 Sequences in metric spaces

Definition 2.4.1. For (X, d) a metric space, $\{x_n\} \subset X$ converges to $x_0 \in X$ iff for every $\epsilon > 0$ there exists $N_0 \in \mathbb{N}$ such that for all $n \ge N_0$, $d(x_0, x) < \epsilon$. This relationship is expressed as $\lim_{n \to \infty} [x_n] = x_0$ or $x_n \to x_0$. If such an x_0 does not exist, then $\{x_n\}$ is said to diverge.

Proposition 2.4.2. Given a sequence $\{x_n\}$ in a metric space (X, d),

$$\lim_{n \to \infty} [x_n] = x_0 \text{ and } \lim_{n \to \infty} [x_n] = y_0 \implies x_0 = y_0$$

Proof: Suppose that $x_0 \neq y_0$, or equivalently, that $d(x_0, y_0) = \epsilon > 0$.

Then we can find $N_0 \in \mathbb{N}$ such that if $n \ge N_0$, then $d(x_n, x_0) < \frac{\epsilon}{2}$ and $d(x_n, y_0) < \frac{\epsilon}{2}$. This implies that

$$d(x_0, y_0) \leqslant d(x_0, x_n) + d(y_0, x_n) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

As ϵ was arbitrary, $x_0 = y_0$.

Remark 2.4.3. A sequence $x_n \to x_0$ iff $y_n \to x_0$ for all subsequences $\{y_n\}$ of $\{x_n\}$.

Definition 2.4.4. Given a sequence $\{x_n\}$, a point x_0 is termed a <u>limit point</u> of $\{x_n\}$ iff there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ with $x_{n_k} \xrightarrow{k \to \infty} x_0$.

Thes set of all limit points of a sequence x_n is denoted by $\lim^* (\{x_n\})$.

Remark 2.4.5. Note that $\lim^{*}(\{x_n\}) \neq \operatorname{Lim}(\{x_n\})$. For example, for $x_n = (-1)^{n-1}$, we have $\lim^{*}(\{x_n\}) = \{-1, 1\}$ and $\operatorname{Lim}(\{x_n\}) = \emptyset$.

Theorem 2.4.6. Let (X, d) be a metric space and $A \subset X$. Then

1. $x_0 \in bdy(A)$ iff there exists $\{x_n\} \subset A$ and $\{y_n\} \subset A^c$ with $x_n, y_n \to x_0$

2. $x_0 \in \text{Lim}(A)$ iff there exists $\{x_n\} \subset A \setminus \{x_0\}$ with $x_n \to x_0$

3. A is closed iff $\{x_n\} \subset A$ and $x_n \to x_0$ implies $x_0 \in A$

Proof: **1.** Suppose that $x_0 \in bdy(A)$.

For each $n \in \mathbb{N}$, we can choose $x_n \in B(x_0, \frac{1}{n}) \cap A$ and $y_n \in B(x_0, \frac{1}{n}) \cap A^c$. This gives us $\{x_n\} \subset A$ and $\{y_n\} \subset A^c$ with $x_n, y_n \to x_0$.

Suppose that there exist $\{x_n\} \subset A$ and $\{y_n\} \subset A^c$ with $x_n, y_n \to x_0$. Let $\epsilon > 0$ so we can find $N_0 \in \mathbb{N}$ so that $x_{N_0}, y_{N_0} \in B(x_0, \epsilon)$. Hence $x_0 \in \mathsf{bdy}(A)$.

2. Suppose that $x_0 \in \text{Lim}(A)$. For any $n \in \mathbb{N}$, there exists $x_n \in B(x_0, \frac{1}{n}) \cap (A \setminus \{x_0\})$. Hence $\{x_n\}$ is such that $x_n \neq x_0$, but $x_n \to x_0$.

Suppose there exists $\{x_n\} \subset (A \setminus \{x_0\})$ with $x_n \to x_0$. Let $\epsilon > 0$ so for some $n \in \mathbb{N}$, $x_n \in B(x_0, \epsilon)$, and as $x_n \neq x_0$, x_0 is a limit point.

3. Suppose that A is closed, and let $\{x_n\} \subset A$ with $x_n \to x_0$. If $x_0 \in A^c$, then there exists $\epsilon_0 > 0$ with $B(x_0, \epsilon_0) \cap A \neq \emptyset$. This is impossible, as $\{x_n\} \subset A$ and $x_n \to x_0$, and so $x_n \in B(x_0, \epsilon_0)$ for all n large enough.

Suppose that A is not closed.

Then there exists $x_0 \in \text{Lim}(A)$ with $x_0 \notin A$. Then there exists (by **2.**) a sequence $\{x_n\} \subset A$ with $x_n \to x_0$, contradicting the assumption.

3 Completeness

3.1 Continuity

Definition 3.1.1. Given metric spaces $(X, d_X), (Y, d_Y)$ with $f: X \to Y$, the function f is termed <u>continuous</u> at $x_0 \in X$ iff for every $\epsilon > 0$ there exists $\delta > 0$ such that if $d_X(x, x_0) < \delta$, then $d_Y(f(x), f(x_0)) < \epsilon$. Otherwise, x_0 is termed a point of discontinuity of f.

The function f is termed <u>continuous on X</u> iff it is continuous at every $x_0 \in X$.

Theorem 3.1.2. Let $(X, d_X), (Y, d_Y)$ be metric spaces with $x_0 \in X$ and $f : X \to Y$. Then the following are equivalent:

1. f(x) is continuous at x_0

2. If $W \subset Y$ is a neighborhood of $y_0 = f(x_0)$, then $f^{-1}(W)$ is a neighborhood of x_0

3. If $\{x_n\} \subset X$ with $x_n \to x_0$, then $f(x_n) \to f(x_0)$

 $\frac{Proof:}{\text{Then there exists } \epsilon_0 > 0 \text{ such that } B(y_0, \epsilon_0) \subset W.}$ Then there exists $\delta > 0$ such that if $x \in B(x_0, \delta)$, then $d_Y(f(x), f(x_0)) < \epsilon$, so $f(x) \in B(y_0, \epsilon_0) \subset W.$ Hence $B(x_0, \delta) \subset f^{-1}(W)$, and so $x_0 \in \text{int}(f^{-1}(W)).$

(2. \implies 3.) Let $\{x_n\} \subset X$ with $x_n \to x_0$ and $y_0 \in f(x_0)$. For any $\epsilon > 0$ we have that $B(y_0, \epsilon)$ is a neighborhood of y_0 . Hence $V = f^{-1}(B(y_0, \epsilon))$ is a neighborhood of x_0 . Hence there exists $\delta > 0$ with $B(x_0, \delta) \subset V$. Then as $x_n \to x_0$, we can find $N_0 \in \mathbb{N}$ such that if $n \ge N_0$, then $x_n \in B(x_0, \delta)$. Then $f(x_n) \in B(f(x_0) = y_0, \epsilon)$, and so $f(x_n) \to f(x_0)$. (3. \Longrightarrow 1.) Suppose that f(x) is not continuous at x_0 . Then there is $\epsilon_0 > 0$ such that for $\delta > 0$, we can find x_δ with $d_X(x_\delta, x_0) < \delta$, but $d_Y(f(x_\delta), f(x_0)) \ge \epsilon_0$. Let $\delta = \frac{1}{n}$ and $x_\delta = x_n$. Then $x_n \to x_0$, but $f(x_n) \notin B(f(x_0), \epsilon_0)$ for any n. Hence $f(x_n) \not\to f(x_0)$.

Theorem 3.1.3. Let $(X, d_X), (Y, d_Y)$ be metric spaces with $f : X \to Y$. Then the following are equivalent: **1.** f is continuous on X

2. $f^{-1}(W)$ is open for every open $W \subset Y$

3. If $x_n \to x_0$, then $f(x_n) \to f(x_0)$

Definition 3.1.4. Given a metric space (X, d) with $A \subset X$, a function $f : X \to Y$ is termed <u>continuous on A</u> iff $f|_A$ is continuous on (A, d_A) , where d_A is the metric on A induced by d.

3.2 Complete metric spaces

Definition 3.2.1. A metric space (X, d) is termed complete iff every Cauchy sequence in (X, d) converges.

Definition 3.2.2. Given a metric space (X, d) with $A \subset X$, the set A is termed <u>bounded</u> iff there exists $x_0 \in X$ and M > 0 such that $A \subset B[x_0, M]$.

Proposition 3.2.3. Given a metric space (X, d), if a sequence $\{x_n\} \subset X$ is Cauchy, then it is bounded.

Proposition 3.2.4. Given a metric space (X, d), if a sequence $\{x_n\} \subset X$ is Cauchy and a subsequence $\{x_{n_k}\}$ converges to x_0 , then $x_n \to x_0$.

Theorem 3.2.5. [BOLZANO, WEIERSTRASS] Every bounded sequence in \mathbb{R} has a convergent subsequence.

Corollary 3.2.6. The metric space $(\mathbb{R}, |\cdot|)$ is complete.

Theorem 3.2.7. $(\mathbb{R}^n, \|\cdot\|_2)$ is complete.

<u>Proof:</u> Let $\{\vec{x}_k\} \subset \mathbb{R}^n$ be Cauchy. Then for all i = 1, 2, ..., n, we have $|x_{k,i} - x_{m,i}| \leq \|\vec{x}_k - \vec{x}_m\|_2$, hence $\{x_{k_n}\}$ is Cauchy and thus convergent. Therefore $\vec{x}_n \to \vec{x}_0$, where $x_{0,i} = \lim_{n \to \infty} [x_{k,i}]$.

Theorem 3.2.8. Let $1 \leq p \leq \infty$. Then $(\ell_p, \|\cdot\|_p)$ is complete.

Proof: The cases done here are only for $p \in \{1, \infty\}$. For other p, the proof follows similarly.

 $\begin{array}{l} \underline{\text{Case 1:}} p = \infty \\ \text{Let } \{\vec{x}_k\}_{k=1}^{\infty} \in \ell_{\infty} \text{ be Cauchy, with } \vec{x}_k = \{x_{k,i}\}_{i=1}^{\infty}. \\ \text{Note that for any } i \in \mathbb{N}, \ |x_{n,i} - x_{m,i}| \leqslant \|\vec{x}_n - \vec{x}_w\|_{\infty} \text{ for all } m, n \in \mathbb{N}. \\ \text{Hence } \{x_{k,i}\} \text{ is Cauchy in } \mathbb{R} \text{ for all } i, \text{ and so it is convergent, as } \mathbb{R} \text{ is complete.} \\ \text{Let } x_{0,i} = \lim_{k \to \infty} [x_{k,i}] \text{ for each } i \in \mathbb{N}, \text{ and } \vec{x}_0 = \{x_{k,i}\}_{i=1}^{\infty}. \\ \text{We claim that } \vec{x}_0 \in \ell_{\infty} \text{ and } \vec{x}_k \to \vec{x}_0 \text{ in } \| \cdot \|_{\infty}. \\ \text{Let } \epsilon > 0 \text{ .} \\ \text{Since } \{\vec{x}_i\} \text{ is Cauchy, there exists } N \in \mathbb{N} \text{ such that if } k, m \geqslant N, \text{ then } \|\vec{x}_k - \vec{x}_m\|_{\infty} < \frac{\epsilon}{2}. \end{array}$

Let $n \ge N$, so if $m \ge N$, then $|x_{n,i} - x_{m,i}| < \frac{\epsilon}{2}$ for all *i*, so we have that

$$|x_{n,i} - x_{0,i}| = \lim_{m \to \infty} \left[|x_{n,i} - x_{m,i}| \right] \leqslant \frac{\epsilon}{2} < \epsilon$$

Therefore $\{x_{n,i} - x_{0,i}\}_{i=1}^{\infty} \in \ell_{\infty}$, and so $\{x_{0,i}\}_{i=1}^{\infty} \in \ell_{\infty}$, and to prove the claim, note that

$$\|\vec{x}_n - \vec{x}_0\|_{\infty} = \sup_i \{|x_{n,i} - x_{0,i}|\} \leqslant \frac{\epsilon}{2} < \epsilon$$

<u>Case 2</u>: p = 1Let $\{\vec{x}_k\}_{k=1}^{\infty} \in \ell_1$, with \vec{x}_k Cauchy. Then $|x_{k,i} - x_{m,i}| \leq \|\vec{x}_k - \vec{x}_m\|_1$, implying $\{x_{k,i}\}_{i=1}^{\infty}$ is Cauchy for all $k \in \mathbb{N}$. Let $x_{0,i} = \lim_{n \to \infty} [x_{k,i}]$ for all $i \in \mathbb{N}$. Let $\epsilon > 0$. Then we can find $N \in \mathbb{N}$ such that if $k, m \geq N$, then $\|\vec{x}_k - \vec{x}_m\|_1 < \frac{\epsilon}{2}$.

Let $n \ge N$, and so if $m \ge N$, then for all $j \in \mathbb{N}$,

$$\sum_{i=1}^{j} |x_{n,i} - x_{m,i}| \leq \|\vec{x}_n - \vec{x}_m\|_1 \leq \frac{\epsilon}{2}$$

This directly implies that, for all $i \in \mathbb{N}$,

$$\sum_{i=1}^{j} |x_{n,i} - x_{0,i}| = \lim_{m \to \infty} \left[\sum_{i=1}^{j} |x_{n,i} - x_{m,i}| \right] \leqslant \frac{\epsilon}{2} < \epsilon$$

Letting $j \to \infty$, we find that

$$\sum_{i=1}^{i} nfty |x_{n,i} - x_{0,i}| = \lim_{j \to \infty} \left[\sum_{i=1}^{j} |x_{n,i} - x_{0,i}| \right] \leqslant \frac{\epsilon}{2} < \epsilon$$

Therefore $\{x_{n,i} - x_{0,i}\}_{i=1}^{\infty} \in \ell_1$, and $\{x_{0,i}\} \in \ell_1$. Hence $\|\vec{x}_n - \vec{x}_0\| \leq \frac{\epsilon}{2} < \epsilon$.

3.3 Completeness of $C_b(X)$

The space $C_b(X)$ is the space of all continuous bounded functions on x.

Definition 3.3.1. Let $f_n : X \to \mathbb{R}$ be a sequence of functions. Then we say that $\{f_n\}$ <u>converges pointwise</u> on X to some $f_0 : X \to \mathbb{R}$ iff for all $x_0 \in X$, $f_n(x_0) \xrightarrow{n \to \infty} f_0(x_0)$

Example 3.3.2. Let X = [0,1] and $f_n = x^n$, with $f_0(x) = \begin{cases} 0 & \text{if } x \in [0,1) \\ 1 & \text{if } x = 1 \end{cases}$

Then $f_n \to f_0$ pointwise, and every f_n is continuous, but f_0 is not.

Definition 3.3.3. Let $(X, d_X), (Y, d_Y)$ be metric spaces and $\{f_n : X \to Y\}$ a sequence of functions with $f_0 : X \to Y$ fixed. Then $\{f_n\}$ converges uniformly to f_0 on X iff for every $\epsilon > 0$ there exists $N_0 \in \mathbb{N}$ such that if $n \ge N_0$, then $d_Y(f_n(x), \overline{f_0(x)}) < \epsilon$ for all $x \in X$.

Theorem 3.3.4. If $\{f_n : X \to Y\}$ is such that $\{f_n\}$ converges uniformly on X and if each f_n is continuous at each $x_0 \in X$, then f_0 is continuous at $x_0 \in X$. In particular, if each f_n is continuous, then so is f_0 .

Proof: Let $\epsilon > 0$ and choose $N_0 \in \mathbb{N}$ such that if $n \ge N_0$, then $d_Y(f_n(x), f_0(x)) < \frac{\epsilon}{3}$.

As f_{N_0} is continuous at x_0 , there exists $\delta > 0$ such that if $d_X(x, x_0) < \delta$, then $d_Y(f_{N_0}(x), f_{N_0}(x_0)) < \frac{\epsilon}{3}$. Now let $d_X(x, x_0) < \delta$, so then

$$d_Y(f_0(x), f_0(x_0)) \leqslant d_Y(f_0(x), f_{N_0}(x)) + d_Y(f_{N_0}(x), f_{N_0}(x_0)) + d_Y(f_{N_0}(x_0), f_0(x_0))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

Therefore f_0 is continuous at x_0 .

Theorem 3.3.5. Let (X, d) be a metric space. Let $C_b(X) = \{f : X \to \mathbb{R} \mid f(x) \text{ is bounded and continuous on } \mathbb{R}\}$. Let $\|\cdot\|_{\infty} = \sup\{|f(x)| \mid x \in X\}$. Then $(C_b(X), \|\cdot\|_{\infty})$ is a normed linear space.

Theorem 3.3.6. $C_b(X)$ is complete.

Proof: Let $\{f_n\} \subset C_b(X)$ be Cauchy.

If $x \in X$, then $|f_n(x) - f_m(x)| \leq ||f_n - f_m||_{\infty}$, so $\{f_n(x)\}_{n=1}^{\infty}$ is Cauchy for all $x \in X$. Let $f_0(x) = \lim_{n \to \infty} [f_n(x)]$ for all $x \in X$.

<u>Claim</u>: $f_0 \in C_b(X)$ and $f_n \xrightarrow{n \to \infty} f_0$ Let $\epsilon > 0$.

Then there exists $N_0 \in \mathbb{N}$ such that if $n, m \ge N_0$, then $|f_n(x) - f_m(x)| < \frac{\epsilon}{2}$ for all $x \in X$. Let $n \ge N_0$, so

$$|f_n(x) - f_0(x)| = \lim_{m \to \infty} \left[|f_n(x) - f_m(x)| \right] \leqslant \frac{\epsilon}{2} < \epsilon$$

This proves that $f_n \to f_0$ uniformly on X, which implies that f_0 is continuous on X. Since $f_n(x) \in C_b(X)$ is bounded, there exists $M \ge 0$ such that $||f_n||_{\infty} < M$ for all $n \in \mathbb{N}$. Then for any $x \in X$,

$$|f_0(x)| \le |f_0(x) - f_{N_0}(x)| + |f_{N_0}(x)|$$

This proves that f_0 is bounded on X. Applying the previous result, for all $n \ge N_0$

$$|f_n(x) - f_0(x)| < \frac{\epsilon}{2} \text{ for all } x \in X$$
$$\implies ||f_n - f_0||_{\infty} \leqslant \frac{\epsilon}{2} < \epsilon$$
$$\implies f_n \to f_0 \text{ in } || \cdot ||_{\infty}$$

This proves the claim and completes the proof.

Example 3.3.7.

- **1.** Convergence in $C_b(X)$ is exactly uniform convergence.
- **2.** For $X = \mathbb{N}$, $C_b(X) = \ell_{\infty}$

Proposition 3.3.8. Let (X, d) be a complete metric space with $A \subset X$. Then (A, d_A) is complete iff A is closed in (X, d).

Proof: (\Leftarrow) Suppose that A is closed in (X, d).

Let $\{x_n\} \subset A$ be Cauchy, so $\{x_n\}$ is Cauchy in X. Therefore $x_n \to x_0 \in X$, but as A is closed, $x_0 \in A$, so A is complete.

(⇒) Suppose that (A, d_A) is complete. Let $\{x_n\} \subset A$ with $x_n \to x_0 \in X$. Then $\{x_n\}$ is Cauchy in X and Cauchy in A. By completeness, $x_n \to y_0 \in A$, implying $x_0 = y_0$. Hence A is closed.

Definition 3.3.9. Given a metric space (X, d_X) , a completion of (X, d_X) is a pair $((Y, d_y), \varphi)$, where (Y, d_Y) is complete and $\varphi : X \to Y$ is an isometry, i.e. $\overline{d_Y(\varphi(x_1), \varphi(x_2))} = d_X(x_1, x_2)$ for all $x_1, x_2 \in X$, with $\overline{\varphi(X)} = Y$.

Theorem 3.3.10. Every metric space (X, d) has a completion.

<u>Proof:</u> Observe that the function $\Gamma_{x_0}(x) = d(x, x_0)$ is continuous on X for all $x_0 \in X$. Choose $a \in X$, and for every $v \in X$, define

$$\begin{array}{rccc} f_v: & X & \to & \mathbb{R} \\ & x & \mapsto & d(v,x) - d(x,a) \end{array}$$

Note that f_v is continuous, and

$$|f_v(x)| = |d(v,x) - d(v,a)| \leq d(v,a) \implies f_v \in C_b(X)$$

Define a function $\varphi : X \to C_b(X)$ by $\varphi(v) = f_v$. Then for $v, w \in X$, we have that

$$|f_v(x) - f_w(x)| = |(d(v, x) - d(v, a)) - (d(w, x) - d(w, a))| = |d(v, x) - d(v, w)| \le d(v, w)$$

As the above holds for each $x \in X$, we have that $||f_v - f_w||_{\infty} \leq d(v, w)$, and letting x = v, we find that

$$|f_v(v) - f_w(v)| = |d(v, v) - d(v, w)| = d(v, w) \implies ||f_v - f_w|| = d(v, w)$$

Let $Y = \overline{\varphi(X)} \subset C_b(X)$, completing the completion.

Remark 3.3.11. Using the same notation as in the theorem above, note that once one isometric function for a completion is found, they are all found. Consider two isometries φ_1, φ_2 :

The function φ_1^{-1} exists as φ_1 is an isometry, necessitating an inverse. Then $\varphi_2 \circ \varphi_1^{-1} : Y_1 \to Y_2$ is an isometry itself, and an isomorphism.

3.4 Characterizations of completeness

Recall the nested interval theorem for \mathbb{R} :

Theorem 3.4.1. If $\{[a_n, b_n]\}$ is a sequence with $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ for all $n \in \mathbb{N}$, then

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

Is there a generalization of this for complete spaces?

Definition 3.4.2. Given a non-empty set $A \subset (X, d)$, denote the <u>diameter</u> of A to be

$$diam(A) = \sup\{d(x, y) \mid x, y \in A\}$$

Proposition 3.4.3. Given a non-empty set $A \subset (X, d)$, diam $(A) = \text{diam}(\overline{A})$.

Proof: If diam $(A) = \infty$, the proposition holds, so assume that diam $(A) < \infty$.

Clearly diam $(A) \leq \text{diam}(\overline{A})$, as $A \subset \overline{A}$.

Let $\epsilon > 0$ and $x, y \in A$.

Then there exist $w, v \in A$ with $d(x, w) < \frac{\epsilon}{2}$ and $d(v, y) < \frac{\epsilon}{2}$, so

$$\begin{split} d(x,y) &\leqslant d(x,w) + d(w,v) + d(v,y) \\ &< \frac{\epsilon}{2} + \operatorname{diam}(A) + \frac{\epsilon}{2} \\ &= \operatorname{diam}(A) + \epsilon \end{split}$$

As ϵ was arbitrary, $d(x, y) \leq \text{diam}(A)$, so $\sup\{d(x, y) \mid x, y \in A\} \leq \text{diam}(A)$.

Theorem 3.4.4. [CANTOR'S INTERSECTION THEOREM]

Let (X, d) be a metric space. Then the following are equivalent:

1. (X, d) is complete

2. If $\{F_n\}_{n=1}^{\infty}$ is a sequence of non-empty closed subsets of X with $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$ and $\lim [\operatorname{diam}(F_n)] = 0$, then

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset$$

Proof: $(1. \Rightarrow 2.)$ Assume that $\{F_n\}$ is as in the assumption of 2.

For each $n \in \mathbb{N}$, choose any $x_n \in F_n$.

Let $\epsilon > 0$.

Then there exists $N_0 \in \mathbb{N}$ such that $\operatorname{diam}(F_{N_0}) < \epsilon$. Further, for all $m, n \ge N_0$, we have that $d(x_n, x_m) < \epsilon$, hence $\{x_n\}$ is Cauchy. Since X is complete, $x_n \to x_0$ for some $x_0 \in X$. However, note that $\{x_i\}_{i=n}^{\infty} \subset F_n$, and $\{x_i\}_{i=n}^{\infty} \to x_0$. As F_n is closed, $x_0 \in F_n$ for all $n \in \mathbb{N}$, thus

$$x_0 \in \bigcap_{n=1}^{\infty} F_n$$
 $\left(\{x_0\} = \bigcap_{n=1}^{\infty} F_n \right)$

 $(\mathbf{2}. \Rightarrow \mathbf{1}.)$ Assume **2.** and let $\{x_n\} \subset X$ be Cauchy. For each $n \in \mathbb{N}$, let $A_n = \{x_i\}_{i=n}^{\infty}$ and let $F_n = \overline{A}_n$. As $\{x_n\}$ is Cauchy, diam $(A_n) \to 0$, implying that diam $(F_n) \to 0$. Clearly $F_n \neq \emptyset$ and $F_{n+1} \subset F_n$, hence there exists $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Let $\epsilon > 0$ and choose $N_0 \in \mathbb{N}$ so that diam $(F_{N_0}) < \epsilon$. Then $A_{N_0} = \{x_i\}_{i=N_0}^{\infty} \subset F_{N_0} \subset B(x_0, \epsilon)$. Hence for all $n \geq N_0$, $d(x_n, x_0) < \epsilon$, implying $x_n \to x_0$.

Remark 3.4.5. There are some counterexamples to why the limit of diam (F_n) must go to 0 rather than something else. In the first we use the 1-norm on \mathbb{R} , and in the second example we apply the discrete metric. **1.** $F_n = [n, \infty) \subset \mathbb{R}$, so diam $(F_n) = \infty$ for all $n \in \mathbb{N}$, and $\bigcap_{n=1}^{\infty} F_n = \emptyset$

1.
$$F_n = [n, \infty) \subset \mathbb{R}$$
, so diam $(F_n) = \infty$ for all $n \in \mathbb{N}$, and $||_{n=1}$.
2. $F_n = \{i\}_{i=n}^{\infty} \subset \mathbb{N}$, so diam $(F_n) = 1$, and $\bigcap_{n=1}^{\infty} F_n = \emptyset$

Definition 3.4.6. Let $(X, \|\cdot\|)$ be a normed linear space. If X is complete with respect to the metric induced by $\|\cdot\|$, then $(X, \|\cdot\|)$ is termed a Banach space.

Definition 3.4.7. Let $(X, \|\cdot\|)$ be a normed linear space. Given $\{x_n\} \subset X$, for each $k \in \mathbb{N}$, the <u>kth partial sum</u> of $\sum_{n=1}^{\infty} x_n$ is defined as $S_k = \sum_{n=1}^k x_n$.

The sum $\sum_{n=1}^{\infty} x_n$ is said to converge iff $\{S_k\}_{k=1}^{\infty}$ converges. Otherwise, the sum is said to diverge.

_	_
_	
_	
_	
_	
_	

Theorem 3.4.8. [GENERALIZED WEIERSTRASS M-TEST]

Let $(X, \|\cdot\|)$ be a normed linear space with $\{x_n\} \subset X$. Then the following are equivalent: **1.** $(X, \|\cdot\|)$ is a Banach space

2. If $\sum_{n=1}^{\infty} ||x_n|| < \infty$, then $\sum_{n=1}^{\infty} x_n$ converges in X

<u>Proof:</u> (1. \implies 2.) Suppose that $\sum_{n=1}^{\infty} ||x_n||$ converges in X.

Let $T_k = \sum_{n=1}^k ||x_n||$ for all $k \in \mathbb{N}$, so $\{T_k\}_{k=1}^\infty$ is Cauchy. So for $\epsilon > 0$ we can find $N_0 \in \mathbb{N}$ such that if $k > m \ge N_0$, then

$$\sum_{n=m+1}^{k} \|x_n\| = |T_k - T_m| < \epsilon$$

Let $S_k = \sum_{n=1}^k x_n$ for all $k \in \mathbb{N}$, so for $k > m \ge N_0$ as above,

$$||S_k - S_m|| = \left\|\sum_{k=m+1}^n x_n\right\| \le \sum_{k=m+1}^n ||x_n|| < \epsilon$$

Hence $\{S_k\}$ is Cauchy, and therefore convergent.

(2. \implies 1.) Let $\{x_n\} \subset X$ be Cauchy.

For all $k \in \mathbb{N}$, choose $n_k \in \mathbb{N}$ such that if $i, j \ge n_k$, then $||x_i - x_j|| < \frac{1}{2^k}$. Let $g_k = x_{n_k} - x_{n_{k+1}}$, and note that $||x_{n_k} - x_{n_{k+1}}|| < \frac{1}{2^k}$, so that

$$\sum_{k=1}^{\infty} \|g_k\| = \sum_{k=1}^{\infty} \|x_{n_k} - x_{n_{k+1}}\| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

By the assumption, the sequence $\{S_k\} = \left\{\sum_{j=1}^k (x_{n_j} - x_{n_{j+1}})\right\}$ also converges. The sequence $\{S_k\}$ may be simplified to

$$S_k = \sum_{j=1}^k \left(x_{n_j} - x_{n_{j+1}} \right) = \left(x_{n_1} - x_{n_2} \right) + \left(x_{n_2} - x_{n_3} \right) + \dots + \left(x_{n_k} - x_{n_{k+1}} \right) = x_{n_1} - x_{n_{k+1}}$$

It follows directly that

$$x_{n_{k+1}} \xrightarrow{k \to \infty} x_{n_1} - \sum_{j=1}^{\infty} \left(x_{n_j} - x_{n_{j+1}} \right)$$

Since the right hand side is finite, we have that $\{x_{n_{k+1}}\}$ converges in $(X, \|\cdot\|)$. Since $\{x_n\}$ is Cauchy, $\{x_n\}$ converges in $(X, \|\cdot\|)$.

3.5 The Banach contractive mapping theorem

Definition 3.5.1. Let (X, d) be a metric space with $\Gamma : X \to X$. Then for all $x, y \in X$,

- · x is termed a fixed point of Γ iff $\Gamma(x) = x$
- · Γ is termed Lipschitz iff there exists a constant $\alpha \ge 0$ such that $d(\Gamma(x), \Gamma(y)) \le \alpha d(x, y)$
- · Γ is termed a <u>contraction</u> iff there exists a constant $k \in [0,1)$ such that $d(\Gamma(x), \Gamma(y)) \leq kd(x, y)$

Theorem 3.5.2. [BANACH CONTRACTIVE MAPPING THEOREM]

Let (X, d) be a complete metric space and $\Gamma : X \to X$ a contraction. Then Γ has a unique fixed point $x_0 \in X$.

Proof: Let $x_1 \in X$, and $x_{i+1} = \Gamma(x_i)$ for $i \in \mathbb{N}$, and observe that

$$d(x_3, x_2) = d(\Gamma(x_2), \Gamma(x_1)) \leqslant kd(x_2, x_1)$$

$$d(x_4, x_3) = d(\Gamma(x_3), \Gamma(x_2)) \leqslant kd(x_3, x_2) \leqslant k^2 d(x_2, x_1)$$

$$d(x_5, x_4) = d(\Gamma(x_4), \Gamma(x_3)) \leqslant kd(x_4, x_3) \leqslant k^3 d(x_2, x_1)$$

$$\vdots$$

$$d(x_{n+1}, x_n) = d(\Gamma(x_n), \Gamma(x_{n-1})) \leqslant kd(x_n, x_{n-1}) \leqslant k^{n-1}(x_2, x_2)$$

Hence for all $m > n \in \mathbb{N}$,

$$d(x_m, x_n) \leq d(x_m, x_{m-1}) + \dots + d(x_{n+1}, x_n)$$

$$\leq k^{m-2} d(x_2, x_1) + \dots + k^{n-1} d(x_2, x_1)$$

$$= k^{n-1} d(x_2, x_1) \left(k^{m-n-1} + \dots + k + 1\right)$$

$$< \frac{k^{n-1} d(x_2, x_1)}{1-k}$$

Since $k^n \to 0$ as $n \to \infty$, it follows that $\{x_n\}$ is Cauchy. As (X,d) is complete, $\{x_n\}$ converges to some $x_0 \in X$. It is clear that Γ is continuous, and hence $\Gamma(x_n) \to \Gamma(x_0)$. But $\Gamma(x_n) = x_{n+1} \to x_0$, and so $\Gamma(x_0) = x_0$.

Now suppose that also $\Gamma(y_0) = y_0$, so for all $n \in \mathbb{N}$,

$$d(x_0, y_0) = d(\Gamma(x_0), \Gamma(y_0)) \leqslant k d(x_0, y_0) \implies d(x_0, y_0) \leqslant k^n d(x_0, y_0)$$

And as $k \in [0, 1), k^n d(x_0, y_0) \to 0$, and so $x_0 = y_0$.

Remark 3.5.3. If k = 1, then the above theorem will not hold, as $f : [1, \infty) \to [1, \infty)$ given by $f(x) = x + \frac{1}{x}$ shows.

Theorem 3.5.4. [PICARD, LINDELOF]

Let $f: [0,1] \times \mathbb{R} \to \mathbb{R}$ be continuous and Lipschitz in y. Equivalently, suppose that there exists $\alpha \ge 0$ such that for all $y, z \in \mathbb{R}$ and $t \in [0,1]$,

 $|f(t,y) - f(t,z)| \leq \alpha |y-z|$

Then for a fixed $y_0 \in \mathbb{R}$, there exists a unique function $y(t) \in C[0, 1]$ with

$$y(0) = y_0$$

$$y'(t) = f(t, y(t)) \text{ for all } x \in (0, 1)$$

3.6 The Baire category theorem

Remark 3.6.1. Consider the function $f : \mathbb{R} \to \mathbb{R}$, given by

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 1 & \text{if } x = 0 \\ \frac{1}{n} & \text{if } x = \frac{n}{m} \in \mathbb{Q}, m \in \mathbb{Z}, n \in \mathbb{N}, \gcd(m, n) = 1 \end{cases}$$

Then f is continuous at every $x \in \mathbb{R} \setminus \mathbb{Q}$ and discontinuous at every $x \in \mathbb{Q}$. However, the reverse type of function, one that is continuous at every \mathbb{Q} and discontinuous at every $\mathbb{R} \setminus \mathbb{Q}$, is impossible to construct.

Definition 3.6.2. Let (X, d) be a metric space with $A \subset X$.

- · A is termed F_{σ} iff there exist closed sets $\{F_n\}_{n=1}^{\infty}$ with $A = \bigcup_{n=1}^{\infty} F_n$ · A is termed G_{δ} iff there exist open sets $\{U_n\}_{n=1}^{\infty}$ with $A = \bigcap_{n=1}^{\infty} U_n$
- · A is termed <u>nowhere dense</u> iff $int(\overline{A}) = \emptyset$
- · A is of first category in X iff there exist nowhere dense sets $\{A_n\}_{n=1}^{\infty}$ with $A = \bigcup_{n=1}^{\infty} A_n$
- $\cdot A$ is of second category in X iff A is not of first category
- $\cdot A$ is termed residual iff A^c is of first category

Remark 3.6.3.

- $\cdot A \text{ is } F_{\sigma} \text{ iff } A^c \text{ is } G_{\delta}$
- $\begin{array}{l} \cdot [0,1) = \bigcup_{n=1}^{\infty} [0,1-\frac{1}{n}] = \bigcap_{n=1}^{\infty} (-\frac{1}{n},1) \text{ is both } F_{\sigma} \text{ and } G_{\delta} \\ \cdot \text{ If } (X,d) \text{ is a metric space and } F \subset X \text{ is closed, then } F \text{ is } G_{\delta} \text{ implies } F^c \text{ is } F_{\sigma} \end{array}$
- $\cdot \mathbb{O}$ is of first category in \mathbb{R}
- \cdot The Cantor set is nowhere dense in $\mathbb R$
- $\cdot A$ is nowhere-dense in X iff \overline{A} is nowhere dense in X

Definition 3.6.4. For metric spaces (X, d_X) and (Y, d_Y) , let $f: (X, d_X) \to (Y, d_Y)$ be a function. Define

 $D(f) = \{x_0 \in X \mid f(x) \text{ is discontinuous at } x_0\}$

 $D_n(f) = \{x_0 \in X \mid \text{ for every } \delta > 0 \text{ there exists } y, z \in B_x(x_0, \delta) \text{ such that } d_Y(f(y), f(z)) \ge \frac{1}{n}\}$

Proposition 3.6.5. For metric spaces (X, d_X) and (Y, d_Y) , let $f: (X, d_X) \to (Y, d_Y)$ be a function. Then for each $n \in \mathbb{N}$, $D_n(f)$ is closed. Moreover,

$$D(f) = \bigcup_{n=1}^{\infty} D_n(f)$$

hence D(f) is F_{σ} .

Theorem 3.6.6. [BAIRE CATEGORY THEOREM I] Let (X, d) be a complete metric space. If $\{U_n\}_{n=1}^{\infty}$ is a sequence of open dense subsets of X, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.

Proof: Let $W \subset X$ be non-empty and open.

Then $W \cap U_1$ is non-empty and open.

Then there exists $x_1 \in X$ and $r_1 \in (0,1]$ with $B(x_1,r_1) \subset B[x_1,r_1] \subset W \cap U_1$. We can further find $x_2 \in X$ and $r_2 \in (0, \frac{1}{2}]$ with $B(x_2, r_2) \subset B[x_2, r_2] \subset (B(x_1, r_1) \cap U_2)$. Proceeding inductively, we get sequences $\{x_n\} \subset X$ and $\{r_n\} \subset (0,1]$ with $r_i \in (1,\frac{1}{i}]$, and

$$B(x_{n+1}, r_{n+1}) \subset B[x_{n+1}, r_{n+1}] \subset (B(x_n, r_n) \cap U_{n+1})$$

Let $F_n = B[x_n, r_n]$. Then $F_{n+1} \subset F_n$ and diam $(F_n) = 2r_n \leq \frac{2}{n} \to 0$ as $n \to \infty$. By Cantor's intersection theorem, $\{x_0\} = \bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} B[x_n, r_n]$. Hence $x_0 \in B[x_1, r_1] \subset W$, meaning that $x_0 \in W$ and $x_0 \in B[x_n, r_n] \subset U_n$ for all $n \in \mathbb{N}$. Hence $x_0 \in W \cap (\bigcap_{n=1}^{\infty} U_n)$.

Remark 3.6.7. Note that U is open and dense iff $F = U^c$ is closed and nowhere dense.

Theorem 3.6.8. [BAIRE CATEGORY THEOREM II] If (X, d) is a complete metric space, then X is of 2nd category in itself.

Proof: Suppose that X is of 1st category in X.

Then for nowhere dense sets A_n , we have that

$$X = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \overline{A_n}$$

Then for $U_n = (\overline{A_n})^c$, we have that U_n is dense and open in X, implying that

$$\bigcap_{n=1}^{\infty} U_n = X^c = \emptyset$$

As this contradicts BCTI, this is false.

Corollary 3.6.9. $\mathbb{Q} \subset \mathbb{R}$ is not G_{δ} .

<u>Proof:</u> Suppose that $\mathbb{Q} = \bigcap_{n=1}^{\infty} U_n$ for each U_n open. Since $\mathbb{Q} \subset U_n$ for each $n \in \mathbb{N}$, U_n must be dense. Let $F_n = U_n^c$. Then $\mathbb{R} \setminus \mathbb{Q} = \bigcup_{n=1}^{\infty} F_n$, where each F_n is closed and nowhere dense. For $\mathbb{Q} = \{r_1, r_2, \dots\}$, let $F'_n = F_n \cup \{r_n\}$. Then as F'_n is closed and nowhere dense, $\mathbb{R} = \bigcup_{n=1}^{\infty} F'_n$ is of 1st category, a contradiction.

Corollary 3.6.10. There is no function $f : \mathbb{R} \to \mathbb{R}$ with $D(f) = \mathbb{R} \setminus \mathbb{Q}$.

One wonders if the converse is true, i.e. given an F_{σ} set $A \subset \mathbb{R}$, is it possible to find a function $f : \mathbb{R} \to \mathbb{R}$ with D(f) = A. It turns out that such a function does always exist, given that A is of first category in \mathbb{R} .

Definition 3.6.11. Let (X, d_x) and (Y, d_Y) be metric spaces and $\{f_n : X \to Y\}$ a sequence of functions with $f_n \to f_0 : X \to Y$ pointwise on X. Then $\{f_n\}$ converges to f_0 uniformly at x_0 iff for ever $\epsilon > 0$ there exists a $\delta > 0$ and $N_0 \in \mathbb{N}$, such that for $x \in B(x_0, \delta)$ we have $d_Y(f_n(x), f_0(x_0)) < \epsilon$.

Theorem 3.6.12. Let (X, d_x) and (Y, d_Y) be metric spaces and $\{f_n : X \to Y\}$ a sequence of functions with $f_n \to f_0 : X \to Y$ pointwise on X and uniformly at x_0 . If each f_n is continuous at x_0 , then f_0 is also continuous at x_0 .

Theorem 3.6.13. Let $f_n(a,b) \to \mathbb{R}$ with $f_n \to f_0$ pointwise on (a,b). If each f_n is continuous on (a,b), then $f_n \to f_0$ uniformly at some $x_0 \in (a,b)$.

Corollary 3.6.14. If $\{f_n : \mathbb{R} \to \mathbb{R}\}$ is a sequence of continuous functions with $f_n \to f_0$ pointwise on \mathbb{R} , then there exists a dense G_{δ} set $A \subset \mathbb{R}$ with $f_0(x)$ continuous at each $x_0 \in A$.

Remark 3.6.15. It immediately follows that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable on \mathbb{R} , then f'(x) is continuous at each point in a dense G_{δ} subset of \mathbb{R} .

Theorem 3.6.16. If $\{f_n : (a, b) \to \mathbb{R}\}$ is a sequence of continuous functions that converge pointwise on (a, b), then there exists $x_0 \in (a, b)$ such that $f_n \to f_0$ uniformly at x_0 .

<u>Proof:</u> Claim: There exists $\alpha_1 < \beta_1 \in (a, b)$ and $N_1 \in \mathbb{N}$ such that if $x \in [\alpha_1, \beta_1]$ and $n, m \ge \mathbb{N}$, then $|f_n(x) - f_m(x)| \le 1$.

Suppose that the claim fails, so there exists $a < t_1 < b$ and $n_1, m_1 \in \mathbb{N}$ such that $|f_{n_1}(t_1) - f_{m_1}(t_1)| > 1$. Since $f_{n_1} - f_{m_1}$ in continuous, we can find an open interval I_1 with $\overline{I_1} \subset (a, b)$ and $|f_{n_1}(x) - f_{m_1}(x)| > 1$ for all $x \in I_1$.

As the claim does not hold, we can find $t_1 \in I_1$ and $n_2, m_2 > \max\{n_1, m_1\}$ such that $|f_{n_2}(x) - f_{m_2}(x)| > 1$. Again by the continuity of $f_{n_2} - f_{m_2}$, we can find an open interval I_2 with $I_2 \subset \overline{I_2} \subset I_1 \subset \overline{I_1} \subset (a, b)$ for which $|f_{n_2}(x) - f_{m_2}(x)| > 1$ for all $x \in I_2$.

Proceed now inductively to choose a sequence $\{I_n\}$ of open intervals and $\{n_k\}, \{m_k\} \subset \mathbb{N}$ such that $(a,b) \supset \overline{I_1} \supset I_1 \supset \overline{I_2} \supset I_2 \supset \overline{I_3} \supset \cdots$ and $n_{k+1}, m_{k+1} > \max\{n_k, m_k\}$ with $|f_{n_k}(x) - f_{m_k}(x)| > 1$ for all $x \in I_k$.

By the Weierstrass M-test, there exists $t_0 \in \bigcap_{k=1}^{\infty} \overline{I_k} = \bigcap_{k=1}^{\infty} I_k$.

-

Then $|f_{n_k}(t_0) - f_{m_k}(t_0)| > 1$ for all k, so $\{f_n(t_0)\}$ is not Cauchy, a contradiction. Hence the claim holds.

By a similar inductive procedure, we can construct $\{[\alpha_k, \beta_k]\}$ with $(a, b) \subset (\alpha_1, \beta_1) \subset [\alpha_1, \beta_1] \supset (\alpha_2, \beta_2) \supset [\alpha_2, \beta_2] \supset (\alpha_3, \beta_3) \supset \cdots$ and $\{N_k\} \subset \mathbb{N}$ with $N_1 < N_2 < N_3 < \cdots$ such that if $n, m \ge k$, then $|f_n(x) - f_m(x)| < \frac{1}{k}$ for all $x \in [\alpha_k, \beta_k]$.

$$\begin{split} f_m(x)| &< \frac{1}{k} \text{ for all } x \in [\alpha_k, \beta_k].\\ \text{Let } x_0 \in \bigcap_{k=1}^{\infty} [\alpha_k, \beta_k] = \bigcap_{k=1}^{\infty} (\alpha_k, \beta_k).\\ \text{Let } \epsilon > 0 \text{ and choose } k \in \mathbb{N} \text{ such that } \frac{1}{k} < \epsilon\\ \text{If } x \in (\alpha_k, \beta_k) \text{ and } n, m \ge k, \text{ then } |f_n(x) - f_m(x)| \le \frac{1}{k} < \epsilon.\\ \text{And as } x_0 \in (\alpha_k, \beta_k), \text{ we can find } \delta > 0 \text{ so that } B(x_0, \delta) \subset (\alpha_k, \beta_k). \end{split}$$

4 Compactness

4.1 Compact metric spaces

Definition 4.1.1. Let (X, d) be a metric space. A collection $\{U_{\alpha}\}_{\alpha \in I}$ of open sets in X is termed an open cover (or <u>cover</u>) of X iff $X = \bigcup_{\alpha \in I} U_{\alpha}$.

Similarly, for $A \subset X$, a collection of sets $\{U_{\alpha}\}_{\alpha \in I}$ is said to <u>cover</u> A iff $A \subset \bigcup_{\alpha \in I} U_{\alpha}$.

Given a cover $\{U_{\alpha}\}_{\alpha \in I}$ of X, a <u>subcover</u> of X is a collection $\{U_{\alpha}\}_{\alpha \in J}$ for $J \subset I$ and $X = \bigcup_{\alpha \in J} U_{\alpha}$.

A subcover $\{U_{\alpha}\}_{\alpha \in J}$ is termed a <u>finite subcover</u> iff J is finite.

Definition 4.1.2. A metric space (X, d) is termed compact iff every cover $\{U_{\alpha}\}_{\alpha \in I}$ has a finite subcover. For $A \subset X_1$, A is compact iff every cover of A in X has a finite subcover. That is, A is compact in X iff (A, d_A) is compact.

Definition 4.1.3. A metric space (X, d) is termed sequentially compact iff every sequence $\{x_n\} \subset X$ has a convergent subsequence. A subset $A \subset X$ is termed sequentially compact iff every sequence $\{x_n\} \subset A$ has a subsequence that converges to an element of A.

Definition 4.1.4. A metric space (X, d) has the <u>Bolzano-Weierstrass property</u> (or <u>BWP</u>) iff every infinite subset of X has a limit point.

Theorem 4.1.5. Let (X, d) be a metric space. Then the following are equivalent:

1. (X, d) is sequentially compact

2. (X, d) has the BWP

<u>Proof:</u> (1. \implies 2.) Let $A \subset X$ be infinite, so we can find $\{x_n\} \subset A$ with $x_n \neq x_m \iff n \neq m$. Then there exists $\{x_{n_k}\} \subset \{x_n\}$ with $x_{n_k} \to x_0$. Let $\epsilon > 0$ so that $B(x_0, \epsilon)$ contains infinitely many terms of $\{x_{n_k}\}$, hence $x_0 \in \text{Lim}(A)$.

 $(\mathbf{2}. \implies \mathbf{1}.)$ Let $\{x_n\} \subset X.$

If there is an element in $\{x_n\}$ that appears infinitely many times, then clearly $\{x_n\}$ has a convergent subsequence.

If this is not true, then $\{x_n\}$ as a subset of X is infinite.

We may also assume WLOG by (potentially) replacing $\{x_n\}$ with a subsequence $\{x_{n_k}\}$ that $x_n \neq x_m \iff n \neq m$.

Then $A = \{x_n\}$ has a limit point $x_0 \in X$. Let $\epsilon = 1$, so there exists $n_1 \in \mathbb{N}$ such that $x_{n_1} \in B(x_0, 1)$. Similarly we can find $n_2 > n_1$ such that $x_{n_2} \in B(x_0, \frac{1}{2})$. Proceeding inductively, we find $\{n_k\} \subset \mathbb{N}$ increasing and $\{x_{n_k}\}$ with $d(x_{n_k}, x_0) < \frac{1}{k}$. Hence $x_{n_k} \to x_0$. **Proposition 4.1.6.** Let (X, d) be a metric space and $A \subset X$. Then

- **1.** If A is compact, then A is closed and bounded.
- **2.** If A is closed and (X, d) is compact, then A is compact.
- **3.** If A is sequentially compact, then A is closed and bounded.
- 4. If A is closed and X is sequentially compact, then A is sequentially compact.
- 5. If X is sequentially compact, then X is closed.

<u>Proof:</u> **1.** Let $X_0 \in X$ and let $U_n = B(x_0, n)$ for all $n \in \mathbb{N}$.

Then $\{U_n\}_{n=1}^{\infty}$ is a cover of A.

Hence there is a finite subcover $\{U_{n_i}\}_{i=1}^k$ of A with $\{n_k\}$ increasing. Thus $A \subset B(x_0, n_k)$, and if A is not closed, we can find $x_0 \in \mathsf{bdy}(A) \supset A$. Let $V_n = B[x_0, \frac{1}{n}]^c$. Then $A \subset \bigcup_{n=1}^{\infty} V_n$ and $\{V_n\}_{n=1}^{\infty}$ is a cover with no finite subcover.

2. Suppose that X is compact and $A \subset X$ is closed. Let $\{U_{\alpha}\}_{\alpha \in I}$ be a cover of A, so $\{U_{\alpha}\}_{\alpha \in I} \cup \{A^c\}$ is a cover of X. Hence there is a finite subcover $\{U_{\alpha}\}_{\alpha \in J} \cup \{A^c\}$ of X and $A \subset \{U_{\alpha}\}_{\alpha \in J}$.

3. Suppose that A is sequentially compact.

Let $\{x_n\} \subset A$ with $x_n \to x_0$.

By sequential compactness, we have a subsequence $\{x_{n_k}\}$ with $x_{n_k} \to y_0 \in A$. Hence $x_0 = y_0$ and $x_0 \in A$, so A is closed.

Suppose that A is not bounded.

Then we can find $\{x_n\} \subset A$ with $d(x_n, x_m) \ge 1$ for all $n \ne m$. Therefore $\{x_n\}$ has no Cauchy subsequence, so A cannot be sequentially compact.

4. Suppose that A is closed and X is sequentially compact with $\{x_n\} \subset A$. Then there exists $\{x_{n_k}\} \subset \{x_n\}$ with $x_{n_k} \to x_0 \in X$. Since A is closed, $x_0 \in A$.

5. Let $\{x_n\} \subset X$ be Cauchy. Then $\{x_n\}$ has a convergent subsequence, so $\{x_n\}$ converges.

Remark 4.1.7.

· If $A \subset \mathbb{R}$ is closed and bounded, then A is sequentially compact.

• A sequence $\{x_k\} \subset \mathbb{R}^n$ converges iff $\{x_{n,i}\} \subset \mathbb{R}$ converges for all $1 \leq i \leq n$.

Definition 4.1.8. A <u>cell</u> in \mathbb{R}^n is a set $A = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$.

Theorem 4.1.9. [HEINE, BOREL] A set $A \subset \mathbb{R}^n$ is compact iff A is closed and bounded.

Proof: (\Rightarrow) Trivial.

 (\Leftarrow) Assume that A is closed and bounded, but that $\{U_{\alpha}\}_{\alpha\in I}$ is a cover of A with no finite subcover. Since A is bounded, there exists a closed cell $J_1 = [a_1, b_1] \times \cdots \times [a_n, b_n]$ with $A \subset J_1$.

Bisecting each of the component 1-cells $[a_i, b_i]$ to subdivide A into 2^n closed subcells.

Then at least one of those is such that its intersection with A cannot be covered by finitely many U_{α} . Call this closed subcell J_2 , and note diam $(J_2) = \frac{1}{2} \operatorname{diam}(J_1)$.

Proceed inductively to construct a sequence $\{J_k\}$ of closed cells such that $J_{k+1} \subset J_k$. Then diam $(J_{k+1}) = \frac{1}{2}$ diam (J_k) .

Let $F_k = A \cap J_k$, so F_k cannot be covered by finitely many sets U_{α} .

Note that $\operatorname{diam}(J_k) = \frac{1}{2^{k-1}}\operatorname{diam}(J_1) \to 0$.

Hence F_k is a sequence of non-empty nested closed sets with disappearing diameter.

Hence by Cantor's intersection theorem, $\bigcap_{k=1}^{\infty} F_k = \{x_0\} \subset A$.

Since $x_0 \in A$, $x_0 \in U_{\alpha_0}$ for some $\alpha_0 \in I$.

Therefore there exists $\epsilon > 0$ such that $B(x_0, \epsilon) \subset U_{\alpha_0}$.

If k is large enough so that $\operatorname{diam}(F_k) < \frac{\epsilon}{2}$, then $F_k \subset B(x_0, \epsilon) \subset U_{\alpha_0}$.

Now we have a finite subcover of F_k , a contradiction, so $\{U_\alpha\}_{\alpha \in I}$ has a finite subcover.

Now we know what compactness is in \mathbb{R}^n . Hence we can make the following observations.

Remark 4.1.10. Let $A \subset \mathbb{R}^n$. Then equivalently

- $\cdot A$ is compact
- $\cdot A$ is sequentially compact
- $\cdot A$ has the BWP
- $\cdot A$ is closed and bounded

Definition 4.1.11. Let $\{A_{\alpha}\}_{\alpha \in I} \subset \mathbf{P}(X) \setminus \{\emptyset\}$. Then $\{A_{\alpha}\}_{\alpha \in I}$ has the finite intersection property (FIP) iff given $\{A_{\alpha_1}, \ldots, A_{\alpha_n}\}$, we have that $\bigcap_{i=1}^n A_{\alpha_i} \neq \emptyset$.

Theorem 4.1.12. Let (X, d) be a metric space. Then equivalently

1. X is compact

2. If $\{F_{\alpha}\}_{\alpha \in I}$ is a collection of non-empty closed sets with FIP, then $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$

Proof: $(\mathbf{1} \Rightarrow \mathbf{2})$ Suppose X is compact and $\{F_{\alpha}\}_{\alpha \in I}$ is as in **2**. If $\bigcap_{\alpha \in I} F_{\alpha} = \emptyset$ and $U_{\alpha} = F_{\alpha}^{c}$, then $\bigcup_{\alpha \in I} U_{\alpha} = X$, so $\{U_{\alpha}\}_{\alpha \in I}$ is a cover. By compactness, there exists $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ a finite subcover. Hence $\bigcap_{i=1}^{n} F_{\alpha_i} = \emptyset$, contradicting the FIP.

 $(\mathbf{2} \Rightarrow \mathbf{1})$ Suppose that **2.** holds but X is not compact. Then there exists a cover $\{U_{\alpha}\}_{\alpha \in I}$ with no finite subcover. Let $F_{\alpha} = U_{\alpha}^{c}$, so then $\{F_{\alpha}\}_{\alpha \in I}$ has the FIP, so $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$. This contradicts the fact that $\{U_{\alpha}\}_{\alpha \in I}$ is a cover.

Corollary 4.1.13. If (X, d) is compact and $\{F_n\}_{n=1}^{\infty}$ is a sequence of non-empty and closed sets with $F_{n+1} \subset F_n$ for all n, then $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Corollary 4.1.14. If (X, d) is compact, then it has the BWP. In particular, (X, d) is sequentially compact.

Proof: Let $A \subset X$ be infinite.

Let $\{x_1, x_2, \ldots\} \subset A$ be a sequence of distinct elements, and $F_n = \{x_n, x_{n+1}, \ldots\}$. By the previous corollary, there exists $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Hence for every $\epsilon > 0$ we have $B(x_0, \epsilon) \cap \{x_n, x_{n+1}, \dots\} \neq \emptyset$. Therefore $B(x_0, \epsilon) \cap A$ is infinite, so $x_0 \in \text{Lim}(A)$.

Definition 4.1.15. Let (X, d) be a metric space. Then (X, d) is termed totally bounded iff for any $\epsilon > 0$ there exist finitely many points $\{x_1, \ldots, x_n\} \subset X$ with $X = \bigcup_{i=1}^n B(x_i, \epsilon)$.

Given a collection of points $\{x_{\alpha}\}_{\alpha \in I} \subset X$ with $X = \bigcup_{\alpha \in I} B(x_{\alpha}, \epsilon)$, the set is termed a $\underline{\epsilon}$ -net for X.

A set $A \subset X$ is termed totally bounded iff (A, d_a) is totally bounded.

Remark 4.1.16.

 \cdot If X is totally bounded, then X is bounded.

• The metric space (\mathbb{N}, d) for d the discrete metric, is bounded, but has no finite $\frac{1}{2}$ -net.

Theorem 4.1.17. If (X, d) is sequentially compact, then (X, d) is totally bounded.

Proof: Suppose that (X, d) is not totally bounded.

Then there exists $\epsilon > 0$ such that X has no finite ϵ -net.

From this we may construct a sequence $\{x_n\} \subset X$ with $d(x_n, x_m) \ge \epsilon > 0$ for $n \ne m$.

Then $\{x_n\}$ cannot have a convergent subsequence, so (X, d) can not be sequentially compact.

Remark 4.1.18. For $A \subset (X, d)$, A is totally bounded iff A is totally bounded. Given $\epsilon > 0$, a $\frac{\epsilon}{2}$ -net for A is an ϵ -net for \overline{A} .

Theorem 4.1.19. Let (X, d_X) be sequentially compact, and $f : (X, d_X) \to (Y, d_Y)$ continuous. Then f(X) is sequentially compact in (Y, d_Y) .

Proof: Let $\{y_n\} \subset f(X)$.

Then there exists $\{x_n\} \subset X$ with $y_n = f(x_n)$ for all $n \in \mathbb{N}$.

By sequential compactness, we can find a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ with $x_{n_k} \to x_0 \in X$. Let $y_0 = f(x_0) \in f(X)$. Then we have that $y_{n_k} = f(x_{n_k}) \to f(x_0)$, and so f(X) is sequentially compact.

Corollary 4.1.20. [EXTREME VALUE THEOREM]

If (X, d) is sequentially compact and $f: X \to \mathbb{R}$ is continuous, then there exist $c, d \in X$ wih $f(c) \leq f(x) \leq f(d)$ for all $x \in X$.

<u>Proof:</u> As f(X) is sequentially compact in \mathbb{R} , f(X) is closed and bounded. Let $\alpha = \text{glb}(f(X))$ and $\beta = \text{lub}(f(X))$. Then $\alpha, \beta \in f(X)$ so there exist $c, d \in X$ such that $\alpha = f(c)$ and $\beta = f(d)$.

Theorem 4.1.21. [LEBESGUE]

Let (X, d) be sequentially compact and $\{U_{\alpha}\}_{\alpha \in I}$ an open cover of X. Then there exists $\epsilon_0 > 0$ such that if $0 < \delta < \epsilon_0$ and $x_0 \in X$, then there exists $\alpha_0 \in I$ with $B(x_0, \delta) \subset U_{\alpha_0}$.

<u>Proof</u>: Given $x \in X$, define $\varphi(x) = \sup\{r > 0 \mid \text{there exists } \alpha_0 \in I \text{ with } B(x,r) \subset U_{\alpha_0}\}$. If $U_{\alpha_0} = X$ for some α_0 , the theorem is trivial, so assume $U_{\alpha_0} \neq X$ for all $\alpha_0 \in I$. With this assumption, given that X is bounded, we have that $\varphi(x) < \infty$ for all $x \in X$. By the triangle inequality for $x, y \in X$, we find that $\varphi(x) \leq d(x, y) + \varphi(y)$. This implies that $|\varphi(x) - \varphi(y)| \leq d(x, y)$. Hence φ is uniformly continuous. By the EVT, φ attains its minimum value $\epsilon_0 > 0$ on X.

Note that the ϵ_0 found above is termed the Lebesgue number for the cover $\{U_\alpha\}_{\alpha\in I}$.

Theorem 4.1.22. [LEBESGUE, BOREL]

Let (X, d) be a metric space. Then equivalently

- **1.** X is compact
- **2.** X has the BWP
- **3.** X is sequentially compact

Proof: We already know $1. \Rightarrow 2. \iff 3$., hence it remains to prove $3. \Rightarrow 1$..

Let $\{U_{\alpha}\}_{\alpha \in I}$ be an open cover of X.

Let $\{c_{\alpha}\}_{\alpha \in I}$ be the Lebesgue number for this cover, and find δ with $0 < \delta < \epsilon_0$. Since X is totally bounded, there exist finitely many points $\{x_1, \ldots, x_n\} \subset X$ with $X = \bigcup_{i=1}^n B(x_i, \delta)$. Since $\delta < \epsilon_0$, there exists $\alpha_i \in I$ with $B(x_i, \delta) \subset U_{\alpha_i}$ for all i. Therefore $X = \bigcup_{i=1}^n U_{\alpha_i}$, and so X is compact.

Theorem 4.1.23. Let (X, d) be a metric space. Then X is compact iff X is complete and totally bounded.

Proof: (\Rightarrow) Already known.

(⇐) Let $\{x_n\} \subset X$ and X be totally bounded, so X has a finite $\frac{1}{k}$ -net for all $k \in \mathbb{N}$. Then there exists an open ball $S_1 = B(y_1, 1)$ of radius 1 that contains infinitely many terms of $\{x_n\}$. And there exists an open ball $S_1 = B(y_2, \frac{1}{2})$ of radius $\frac{1}{2}$ that contains infinitely many terms in $\{x_n\} \cap S_1$. Proceed to construct a sequence $\{S_k\} = \{B(y_k, \frac{1}{k}\} \text{ with infinitely many terms of } \{x_n\} \text{ in } S_1 \cap S_2 \cap \cdots \cap S_k$. Then there exist $n_1 < n_2 < \cdots$ such that $x_{n_k} \in S_1 \cap \cdots \cap S_k$. Given $\epsilon > 0$, choose $N \in \mathbb{N}$ such that if $k \ge N$, then $\operatorname{diam}(S_k) = \frac{2}{k} < \epsilon$. If $k > m \ge N$, then $x_{n_m}, x_{n_k} \in S_N$, which implies that $d(x_{n_k}, x_{n_m}) < \epsilon$, so $\{x_n\}$ is Cauchy. Hence X is seventially compact, so X is compact.

Definition 4.1.24. Let $(X, d_X), (Y, d_Y)$ be metric spaces. Then $f : X \to Y$ is termed uniformly continuous iff for every $\epsilon > 0$ there exists $\delta > 0$ such that if $d_X(x_1, x_2) < \delta$, then $d_Y(f(x_1), f(x_2)) < \epsilon$.

Remark 4.1.25. Uniform continuity implies continuity.

Theorem 4.1.26. [SEQUENTIAL CHARACTERIZATION OF UNIFORM CONTINUITY] Let $(X, d_X), (Y, d_Y)$ be metric spaces. Then equivalently

1. *f* is uniformly continuous

2. If $\{x_n\}, \{z_n\} \subset X$ are such that $d_X(x_n, z_n) \to 0$, then $d_Y(f(x_n), f(z_n)) \to 0$.

Proof: $(\mathbf{1} \Rightarrow \mathbf{2})$ Let $\epsilon > 0$.

By uniform continuity, there exists $\delta > 0$ such that if $x, z \in X$ with $d_X(x, z) < \delta$, then $d_Y(f(x), f(z)) < \epsilon$. We can find $N \in \mathbb{N}$ sugh that if $n \ge N$, then $d_X(x_n, z_n) < \delta$. Hence if $n \ge N$, then $d_Y(f(x_n), f(z_n)) < \epsilon$.

 $(2. \Rightarrow 1.)$ Suppose f is not uniformly continuous. Then for some $\epsilon \ge 0$ and each $\delta \ge 0$, we can find $m \in \epsilon$.

Then for some $\epsilon_0 > 0$ and each $\delta > 0$, we can find $x_{\delta}, z_{\delta} \in X$ with $d_X(x_{\delta}, z_{\delta}) < \delta$. This gives us that $d_Y(f(x_{\delta}), f(z_{\delta})) \ge \epsilon_0$. Let $\delta = \frac{1}{n}$ to get two sequences $\{x_n\}, \{z_n\} \subset X$ with $d_X(x_n, z_n) < \frac{1}{n}$ and $d_Y(f(x_n), f(z_n)) \ge \epsilon_0$. Hence **2.** fails.

Theorem 4.1.27. Let (X, d_X) be a compact metric space. If $f : (X, d_X) \to (Y, d_Y)$ is continuous, then f is uniformly continuous.

 $\begin{array}{l} \underline{Proof:} \text{ Suppose that } f \text{ is not uniformly continuous.} \\ \hline \text{Then there exist } \{x_n\}, \{z_n\} \subset X \text{ with } d_X(x_n, z_n) \to 0, \text{ but } d_Y(f(x_n), f(z_n)) \geqslant \epsilon_0 > 0 \text{ for all } n \in \mathbb{N}. \\ \text{Since } (X, d_X) \text{ is compact, } \{x_n\} \text{ has a subsequence } \{x_{n_k}\} \text{ with } x_{n_k} \to x_0 \in X. \\ \text{Therefore also } z_{n_k} \to x_0 \text{ for some subsequence } \{z_{n_k}\} \text{ of } \{z_n\}. \\ \text{By continuity, } f(x_{n_k}) \to f(x_0) \text{ and } f(z_{n_k}) \to f(x_0), \text{ but from above } d_Y(f(x_{n_k}), f(z_{n_k})) \not \to 0. \\ \text{This is a contradiction.} \end{array}$

Definition 4.1.28. If $(X, d_X), (Y, d_Y)$ are metric spaces, then a <u>homeomorphism</u> between X and Y is a bijection $\varphi : X \to Y$ with φ and φ^{-1} continuous.

Remark 4.1.29. If φ is a homeomorphism, then $U \subset X$ is open iff $\varphi(U)$ is open. Hence (X, d_X) and (Y, d_Y) are essentially the same as topological spaces.

Theorem 4.1.30. Let $(X, d_X), (Y, d_Y)$ be metric spaces and X be compact. If $\varphi : X \to Y$ is bijective and continuous, then φ^{-1} is continuous.

Proof: We need to show that if $U \subset X$ is open, then $\varphi(U)$ is open.

Let $F = U^c$, so F is closed, and further compact. Hence $\varphi(F)$ is compact, and further closed. As $\varphi(U)^c = \varphi(F)$, we have that $\varphi(U)$ is open.

4.2 Finite dimensional normed linear spaces

Definition 4.2.1. Let W be an n-dimensional vector space with basis $\{v_1, \ldots, v_n\}$ and $\Gamma_n : \mathbb{R}^n \to W$ defined by

$$\Gamma_n((a_1,\ldots,a_n)) = a_1v_1 + \cdots + a_nv_n$$

Then Γ_n is termed a vector space isomorphism, and $\Gamma^{-1}: W \to \mathbb{R}^n$ is also an isomorphism. Let $(W, \| \cdot$

 $||_W$), $(V, || \cdot ||_V)$ be normed linear spaces. Let $T_V \to W$ be linear. Let $||T|| = \sup\{||T(v)||_W \mid v \in V, ||v||_V = 1\}$. Then T is termed <u>bounded</u> iff $||T|| < \infty$.

Definition 4.2.2. If $T: V \to W$ is linear, then T is bounded iff T is continuous.

Remark 4.2.3.

 $\cdot T$ is bounded iff T is uniformly continuous

 $\cdot T$ is bounded iff T is continuous at $0 \in V$

Theorem 4.2.4. Let $(W, \|\cdot\|_W)$ be an *n*-dimensional normed linear space. Let $\Gamma_n : \mathbb{R}^n \to W$ be as before. Then Γ_n, Γ_n^{-1} are bounded.

<u>Proof:</u> Let $\{v_1, \ldots, v_n\}$ be a basis of W. Let $a = (a_1, \ldots, a_n) \in (\mathbb{R}^n, \|\cdot\|_2)$ be such that $\|a\|_2 \leq 1$.

Then $\Gamma_n(a) = a_1v_1 + \cdots + a_nv_n$, and

$$\|\Gamma_n(a)\|_W \leqslant \|a_1v_1\|_2 + \dots + \|a_nv_n\|_2 \leqslant \|v_1\|_2 a_1 + \dots + \|v_n\|_2 a_n \implies \|\Gamma_n\| \leqslant \sum_{i=1}^n \|v_i\|_2 a_i = 0$$

This shows that Γ_n is bounded.

Now let $S = \{a \in \mathbb{R}^n \mid \|a\| = 1\}$. As S is compact, $\Gamma_n(S)$ is compact on W. The map $w \to \|w\|_2$ is continuous on W, so $\Gamma_n(S)$ has an element w_0 of least norm. However, $\|w_0\|_2 > 0$. Let $\alpha = \min\{\|\Gamma_n(a) \mid a \in S\} > 0$. If $w \in W$ and $\|w\|_2 \leq \alpha$, then $\|\Gamma_n^{-1}(w)\|_2 \leq 1$ and further $\|\Gamma_n^{-1}\| \leq \frac{1}{\alpha}$.

Theorem 4.2.5. If $(W, \|\cdot\|_W)$ is *n*-dimensional and $(V, \|\cdot\|_V)$ is *m*-dimensional and $T: V \to W$ is linear, then T is bounded.

Proof: Consider the following diagram.

The map $S = \Gamma_m^{-1} \circ T \circ \Gamma_n : \mathbb{R}^n \to \mathbb{R}^m$ is necessarily bounded and continuous. Therefore the map $T = \Gamma_m \circ S \circ \Gamma_n^{-1}$ is similarly bounded and continuous.

Corollary 4.2.6. For the spaces as above, if the map $T: W \to (V, \|\cdot\|_V)$ is linear, then it is bounded.

Remark 4.2.7. As Γ_n is a homeomorphism, $(W, \|\cdot\|_W) \simeq (\mathbb{R}^n, \|\cdot\|_2)$, for W *n*-dimensional. Moreover, if $w \in W$, then

 $\|\Gamma_n^{-1}(w)\|_2 \leqslant \|\Gamma_n^{-1}\| \|w\|_W \implies \|w\|_W \implies \|w\|_W = \|\Gamma_n(\Gamma_n^{-1}(w))\|_W \leqslant \|\Gamma_n\| \|\Gamma_n^{-1}(w)\|_2 \leqslant \|\Gamma_n\| \|\Gamma_n^{-1}\| \|w\|_W = \|\Gamma_n\| \|w\|_W = \|\Gamma_n\|\|w\|_W = \|\Gamma_n\| \|w\|_W = \|\Gamma_n\| + \|\Gamma_n\| + \|\Gamma_n\| = \|\Gamma_n\| \|w\|_W = \|\Gamma_n\| + \|\Gamma_n\|$

This means that there exist $\alpha, \beta \in W$ such that for all $w \in W$,

$$\alpha \|\Gamma_n^{-1}(w)\|_2 \leqslant \|w\|_W \leqslant \beta \|\Gamma_n^{-1}(w)\|_2$$

Hence we come to the following conclusions.

- $\cdot \; U \subset W$ is open iff $\Gamma_n^{-1}(U)$ is open in \mathbb{R}^n
- $\cdot A \subset W$ is bounded iff $\Gamma_n^{-1}(A)$ is bounded
- $\cdot F \subset W$ is closed iff Γ_n^{-1} is closed

This implies that $\{w_n\} \subset A$ is Cauchy iff $\{\Gamma_n^{-1}(w_n)\}$ is Cauchy, which in turn implies $(W, \|\cdot\|_W)$ is complete.

Remark 4.2.8. If $(V, \|\cdot\|_V)$ is a normed linear space and $W \subset V$ is a finite-dimensional subspace, then W is closed. Further, if $(X, \|\cdot\|_X)$ is an infinite-dimensional Banach space and $\{U_\alpha\}_{\alpha \in I}$ is a basis of X, then I is uncountable.

Remark 4.2.9. If $(V, \|\cdot\|_V)$ is a normed linear space and $W \subset V$ is a proper subspace of V, then $int(V) = \emptyset$.

4.3 The Weierstrass approximation theorem

Proposition 4.3.1. The set of polynomials is dense in C[a, b].

To prove this, we first show how to normalize functions, so that we are only considering the interval [0, 1], and f(0) = f(1) = 0. Let $\varphi : [a, b] \to [0, 1]$ be defined by

$$\varphi(x) = \frac{x-a}{b-a}$$

Then φ, φ^{-1} are continuous bijections, and the linear isometric operator $\Gamma : C[a, b] \to C[0, 1]$ with $\Gamma(f)(t) = f \circ \varphi(t)$ normalizes all functions to [0, 1]. Let $\Upsilon : C[0, 1] \to C[0, 1]$ be defined by

$$\Upsilon(f)(x) = f(x) - ((f(1) - f(0))x + f(0))$$

Then Υ is a linear isometric operator and enforces that f(0) = f(1) = 0. Hence we may assume that all $f \in C[0, 1]$ with f(0) = f(1) = 0.

Lemma 4.3.2. For any $x \in [0, 1]$ and $n \in \mathbb{N}$, $(1 - x^2)^n \ge 1 - nx^2$.

Proof: Let $h(x) = (1 - x^2)^n - 1 + nx^2$, so h(0) = 0, and

$$h'(x) = 2nx(1 - (1 - x^2)^{n-1}) \ge 0$$

Hence h(x) is always increasing, and the result follows.

Theorem 4.3.3. [APPROXIMATION THEOREM - WEIERSTRASS] For $f \in C[a, b]$ there exists a sequence of polynomials $\{P_n\}$ such that $P_n \to f$ uniformly on [a, b]

Proof: First we assume that [a, b] = [0, 1] and f(0) = f(1) = 0.

From here we may extend f to a uniformly continuous function on \mathbb{R} , by f(x) = 0 for all $x \notin [0, 1]$. For each $n \in \mathbb{N}$, define

$$Q_n(t) = c_n(1-t^2)^n, \quad \int_{-1}^1 Q_n(t)dt = 1$$

Then we have that

$$\int_{-1}^{1} (1-x^2)^n dx = 2 \int_0^1 (1-x^2)^n dx$$
$$\geqslant 2 \int_0^{1/\sqrt{n}} (1-nx^2) dx$$
$$= 2 \left(\frac{2}{3\sqrt{n}}\right)$$
$$= \frac{4}{3} \cdot \sqrt{n}$$
$$> \frac{1}{\sqrt{n}}$$

Hence $c_n \leq \sqrt{n}$. For $n \in \mathbb{N}$, let

$$P_n(x) = \int_{-1}^{1} f(x+t)Q_n(t)dt$$
$$= \int_{-x}^{1-x} f(x+t)Q_n(t)dt$$
$$= \int_{0}^{1} f(u)Q_n(u-x)du$$

Above the change u = x + t was made. Now apply The Liebniz rule to get

$$\frac{d^{2n+1}}{dx^{2n+1}}P_n(x) = \int_0^1 f(u)\frac{\partial^{2n+1}}{\partial x^{2n+1}}Q_n(u-x)du = 0$$

Hence P_n is a polynomial of degree at most 2n. So if $\delta \in (0,1)$, then $c_n(1-x^2)^n \leq \sqrt{n}(1-\delta^2)^n$ on $[-1,-\delta] \cup [\delta,1]$. Let $\epsilon > 0$ and $\delta \in (0,1)$ such that if $|t| < \delta$, then $|f(x+t) - f(x)| < \frac{\epsilon}{2}$ for all $x \in \mathbb{R}$. Let $x \in [0,1]$, so then

$$\begin{aligned} |P_n(x) - f(x)| &= \left| \int_{-1}^{1} (f(x+t) - f(x))Q_n(t)dt \right| \\ &\leq \int_{-1}^{1} |f(x+t) - f(x)|Q_n(t)dt \\ &\leq \int_{-1}^{-\delta} |f(x+t) - f(x)|Q_n(t)dt + \int_{-\delta}^{\delta} |f(x+t) - f(x)|Q_n(t)dt + \int_{\delta}^{1} |f(x+t) - f(x)|Q_n(t)dt \\ &\leq 2\|f\|_{\infty}\sqrt{n}(1-\delta^2)^n + \frac{\epsilon}{2} + 2\|f\|_{\infty}\sqrt{n}(1-\delta^2)^n \\ &= 4\|f\|_{\infty}\sqrt{n}(1-\delta^2)^n + \frac{\epsilon}{2} \end{aligned}$$

Let n be large enough so that $4||f||_{\infty}\sqrt{n}(1-\delta^2)^n < \frac{\epsilon}{2}$, and the result will follow.

Corollary 4.3.4. Let $f \in C[0,1]$, and assume that $\int_0^1 f(t)t^n dt = 0$ for all $n \in \mathbb{N} \cup \{0\}$. Then f = 0. **Corollary 4.3.5.** C[a, b] is separable. *Proof:* Define the following sets:

 $P_n = \{ p(x) \in C[a, b] \mid p(x) \text{ is a polynomial of degree } n \text{ over } \mathbb{R} \}$ $Q_n = \{ p(x) \in C[a, b] \mid p(x) \text{ is a polynomial of degree } n \text{ over } \mathbb{Q} \}$

Note that $\overline{Q_n} = P_n$. Since $\bigcup_{n=1}^{\infty} P_n$ is dense in C[a, b], we have that $\bigcup_{n=1}^{\infty} Q_n$ is dense in C[a, b].

Proposition 4.3.6. The collection of nowhere-differentiable functions in C[0,1] is residual.

Lemma 4.3.7. For each $n \in \mathbb{N}$ define

$$\mathcal{F}_n = \{ f(x) \in C[0,1] \mid \exists x_0 \in [0, 1 - \frac{1}{n}] \text{ such that } |f(x_0 + h) - f(x_0)| \leq nh \ \forall \ 0 < h < 1 - x_0 \}$$

Then \mathcal{F}_n is closed and nowhere dense in $\mathbb{C}[0,1]$.

Proof: Let $n \in \mathbb{N}$ and $\{f_k\} \subset \mathcal{F}_n$ with $f_k \to f$ in $\|\cdot\|_{\infty}$. For each k, we can find $x_k \in [0, 1 - \frac{1}{n}]$ with $|f_k(x_k + h) - f_k(x_k)| \leq nh$ for all $0 < h < 1 - x_k$. WLOG, assume that, by choosing a subsequence if necessary, $x_k \to x_0 \in [0, 1 - \frac{1}{n}]$. Let $0 < h < 1 - x_0$ and $\epsilon > 0$. We can choose $N_0 \in \mathbb{N}$ such that if $k \ge N_0$, then $0 < h < 1 - x_k$, and $N_1 > N_0$, such that if $k \ge N_1$, then **1.** $|f(x_0) - f(x_k)| < \frac{\epsilon}{4}$ 2. $|f(x_0+h) - f(x_k+h)| < \frac{\epsilon}{4}$ **3.** $||f_k - f||_{\infty} < \frac{\epsilon}{4}$ Now note that | b | < | f(m) - f(m) | + | f(m) - f(m) | + | f(m) |f(a + b) + f(a + b). 1) 6(, 1) | , | 6(. 1) C/ . 1)

$$\begin{aligned} |f(x_0) - f(x_0 + h)| &\leq |f(x_0) - f(x_k)| + |f(x_k) - f_k(x_k)| + |f_k(x_k) - f_k(x_k + h)| + |f_k(x_k + h) - f(x_k + h)| + |f(x_k + h) - f(x_0 + h)| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} + nh + \frac{\epsilon}{4} + \frac{\epsilon}{4} \\ &= nh + \epsilon \end{aligned}$$

Since ϵ was arbitrary, $|f(x_0) - f(x_0 + h)| \leq nh$, hence $f \in \mathcal{F}_n$, and \mathcal{F}_n is closed.

Now let $f \in C[0, 1]$ and $\epsilon > 0$. Then we can find a polynomial p(x) with $||f - p||_{\infty} < \frac{\epsilon}{2}$. Define functions

$$\varphi(x) = \begin{cases} x & \text{if } x \in [0,1] \\ 2-x & \text{if } x \in [1,2] \end{cases} \qquad \qquad g(x) = \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x) \qquad \qquad F(x) = g|_{[0,1]}$$

Choose $\alpha > 0$ such that $\|\alpha F\|_{\infty} < \frac{\epsilon}{2}$. Then $p(x) + \alpha F(x) \in \mathcal{F}_n^c$ for each n, so $\|f - (p + \alpha F)\|_{\infty} < \epsilon$.

Theorem 4.3.8. [BANACH, MAZURKIEWICZ]

Let ND[0,1] be the set of continuous nowhere-differentiable functions on [0,1]. Then ND[0,1] is residual in $(C[0,1], \|\cdot\|_{\infty})$.

<u>Proof:</u> Let $f \in C[0, 1]$ be differentiable at $x_0 \in C[0, 1]$. Then $f \in \mathcal{F}_n$ for some $n \in \mathbb{N}$, and hence

$$ND[0,1] \supset \left(\bigcup_{n=1}^{\infty} \mathcal{F}_n\right)^c \implies ND[0,1]^c \subset \bigcup_{n=1}^{\infty} \mathcal{F}_n$$

1st category

4.4 The Stone-Weierstrass theorem

Definition 4.4.1. Let (X, d) be a compact metric space. Then $\Phi \subset C(X)$ is termed point separating iff whenever $x, y \in X$ with $x \neq y$, there exists $\varphi \in \Phi$ with $\varphi(x) \neq \varphi(y)$.

Proposition 4.4.2. If (X, d) is a compact metric space, then C(X) is point separating.

<u>Proof:</u> Let $a, b \in X$ with $a \neq b$. Let f(x) = d(a, x), so f(a) = 0 and $f(b) \neq 0$.

Remark 4.4.3. Suppose that $\Phi \subset C(X)$ is such that f(x) = f(y) for all $f \in \Phi$. If $g \in \overline{\Phi}$, then g(x) = g(y) as well. Hence if Φ is dense in C(X), it must be point-separating.

Definition 4.4.4. A linear subspace $\Phi \subset C(X)$ is termed a <u>lattice</u> iff for each $f, g \in \Phi$,

i. $f \lor g \in \Phi$, for $(f \lor g)(x) = \max\{f(x), g(x)\}$ ii. $f \land g \in \Phi$, for $(f \land g)(x) = \min\{f(x), g(x)\}$

Remark 4.4.5. First note that the subspace of all piecewise linear functions is a lattice. Further, note that condition **ii.** above is superfluous, as

$$f \wedge g = -(-f \vee -g)$$

Next, observe that condition **i**. above may be replaced with simply having the absolute value of any function in the space, as

$$f \lor g = \frac{1}{2}(f + g - |f - g|)$$

Theorem 4.4.6. [STONE, WEIERSTRASS - LATTICE VERSION]

Let (X, d) be a compact metric space, and Φ a linear subspace of C(X) such that

i. Φ is point separating

ii.
$$1 \in \Phi$$

iii. If $f, g \in \Phi$, then $f \lor g \in \Phi$ (i.e. Φ is a lattice)

Then $\overline{\Phi} = C(X)$.

Proof: Let $\alpha, \beta \in \mathbb{R}$ and $x, y \in X$ with $x \neq y$.

Then there exists $g \in \Phi$ with $g(x) = \alpha$ and $g(y) = \beta$. Since Φ is point separating, there is $\varphi \in \Phi$ with $\varphi(x) \neq \varphi(y)$, so define

$$g(t) = \alpha + (\beta - \alpha) \frac{\varphi(t) - \varphi(x)}{\varphi(y) - \varphi(x)}$$

This function satisfies the conditions. So now let $f \in C(X)$ and let $\epsilon > 0$.

Step 1: Fix $x \in X$.

We know that for all $y \in X$, we can find $\varphi_{x,y} \in \Phi$ with $\varphi_{x,y}(x) = f(x)$, and $\varphi_{x,y}(y) = f(y)$. For each $y \in X$, $\varphi_{x,y}(t) - f(t)$ is continous, with $\varphi_{x,y}(y) - f(y) = 0$. We can find $\delta_y > 0$ such that if $z \in B(y, \delta_y)$, then $|\varphi_{x,y}(z) - f(z)| < \epsilon$. Then $\{B(y, \delta_y)\}_{y \in X}$ is a cover of X. Then there exists $\{y_1, \ldots, y_n\}$ with $\{B(y_i, \delta_{y_i})\}_{i=1}^n$ covering X. Let $\varphi_x(t) = \varphi_{x,y_1} \lor \varphi_{x,y_2} \lor \cdots \lor \varphi_{x,y_n}$. Then $\varphi_x \in \Phi$ with $\varphi_x(x) = x$, and $f(z) - \epsilon < \varphi_x(z)$ for all $z \in X$. Step 2: Note that $\varphi(t) - f(t)$ is continuous and $\varphi_x(x) - f(x) = 0$.

So for each $x \in X$, we can find $\delta_x > 0$ such that $z \in B(x, \delta_x)$, and hence $|\varphi_x(z) - f(z)| < \epsilon$. As before, we can find $\{x_1, \ldots, x_m\}$ with $\{B(x_j, \delta_{x_j})\}_{j=1}^m$ a cover of X. Let $\varphi = \varphi_{x_1} \land \varphi_{x_2} \land \cdots \land vp_{x_m} \in \Phi$. Then for any $z \in X$, we have that $f(z) - \epsilon < \varphi(z) < f(z) + \epsilon$. **Definition 4.4.7.** A linear space $\Phi \subset C(X)$ is termed an <u>algebra</u> iff $f, g \in \Phi$ implies $fg \in \Phi$, for (fg)(x) = f(x)g(x).

Remark 4.4.8. Let $\Phi \subset C(X)$ be an algebra. Then $\overline{\Phi}$ is also an algebra. To see this, let $f, g \in \Phi$, and $\{f_n\}, \{g_n\} \subset \overline{\Phi}$ with $f_n \to f$ and $g_n \to g$. Then

$$\begin{aligned} \|fg - f_n g_n\|_{\infty} &\leqslant \|fg - f_n g\|_{\infty} + \|f_n g - f_n g_n\|_{\infty} \\ &\leqslant \|g\|_{\infty} \|f - f_n\|_{\infty} = \|f_n\|_{\infty} \|g - g_n\|_{\infty} \\ &\leqslant \|g\|_{\infty} \|f - f_n\|_{\infty} + M \|g - g_n\|_{\infty} \\ &\xrightarrow{n \to \infty} 0 \end{aligned}$$

The M above is such that $||f_n||_{\infty} \leq M$ for all $n \in \mathbb{N}$.

Theorem 4.4.9. [STONE, WEIERSTRASS - SUBALGEBRA VERSION] Let (X, d) be a compact metric space, and Φ a linear subspace of C(X) such that

$$\label{eq:point_separating} \begin{split} \mathbf{i.} \ \ \Phi \ \ \mathbf{is} \ point \ \mathbf{separating} \\ \mathbf{ii.} \ \ \mathbf{1} \in \Phi \\ \mathbf{iii.} \ \ \mathbf{If} \ f,g \in \Phi, \ \mathbf{then} \ fg \in \Phi \end{split}$$

Then $\overline{\Phi} = C(X)$.

Proof: Since $\overline{\Phi}$ also satisfies the above conditions, assume that Φ is closed.

Let $f \in \Phi$ and $\epsilon > 0$.

Then f is bounded, so there exists M > 0 such that $f(x) \in [-M, M]$ for all $x \in X$. By the Weierstrass approximation theorem, we can find $p(t) = a_0 + a_1 t + \cdots + a_n t^n$ with

$$||t| - p(t)| < \epsilon \ \forall \ t \in [-M, M]$$

Let $p \circ f = a_0 + a_1 f + \dots + a_n f^n \in \Phi$, so then

$$||f(x)| - (p \circ f)(x)| < \epsilon \ \forall \ x \in X$$

Hence $|f| \in \Phi$. As $f \vee g = \frac{1}{2}(f + g + |f - g|)$, Φ is a lattice and is dense in C(X). As Φ is closed, $\Phi = C(X)$.

Example 4.4.10.

 $\cdot X = [a, b]$

A function $f \in C(X)$ is piecewise linear (or polynomial) iff there is a partition $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ such that on $[t_{i-1}, t_i]$, $f(x) = m_i x + b_i$ (or $f(x) = p_i(x)$ a polynomial). Moreover, if we let

 $\Phi = \{ f \in C[a, b] \mid f \text{ is piecewise linear (or polynomial}) \}$

then Φ is a lattice, and hence $\overline{\Phi} = C[a, b]$.

$$\cdot X = [0,1] \times [0,1]$$

Then if we let

$$\Phi = \left\{ h = \sum_{i=1}^{n} f_i(x) g_i(x) \mid f_i, g_i \in C[0, 1], n \in \mathbb{N} \right\}$$

Then Φ is a subalgebra, and hence $\overline{\Phi} = C([0, 1] \times [0, 1])$.

Definition 4.4.11. Let (X, d) be a compact metric space. Then define

$$C(X, \mathbb{C}) = \{f : X \to \mathbb{C} \mid f \text{ is continuous}\}$$
$$\|f\|_{\infty} = \max_{x \in X} \{|f(x)|\}$$

Remark 4.4.12. For $f \in C(X, \mathbb{C})$ with $f = \operatorname{Re}(f) + i\operatorname{Im}(f)$, we have that

$$\operatorname{Re}(f) = \frac{f + \overline{f}}{2}$$
 $\operatorname{Im}(f) = \frac{f - \overline{f}}{2}$

Where $\overline{f} = \operatorname{Re}(f) - i\operatorname{Im}(f)$.

Theorem 4.4.13. [STONE, WEIERSTRASS - COMPLEX VERSION] Let (X, d) be a compact metric space, and Φ a self-adjoint linear subspace of $C(X, \mathbb{C})$ such that

i. Φ is point separating ii. $1 \in \Phi$ iii. $f, g \in \Phi$ implies $fg \in \Phi$

Then $\overline{\Phi} = C(X, \mathbb{C}).$

Example 4.4.14. Let $X = \Pi = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$, and $\phi : [0, 2\pi] \to \Pi$ given by $\varphi(\theta) = e^{i\pi\theta} = \cos(\theta) + i\sin(\theta)$. Define a metric on $[0, 2\pi)$ by the arc-length on Π . Then

 $C(\Pi) \simeq C([0, 2\pi)^*) = \{ f \in C([0, 2\pi]) \mid f(0) = f(\pi) \}$

which is the set of 2π -periodic functions. Then define the point separating algebra algebra of $C([0, 2\pi)^*)$ to be

$$\operatorname{Trig}(\Pi) = \operatorname{span}\{1, \cos(nx), \sin(mx) \mid m, n \in \mathbb{N}\} = \left\{h = \sum_{k=0}^{n} a_{x} \cos(kx) + b_{k} \sin(kx)\right\}$$
$$\operatorname{Trig}_{\mathbb{C}}(\Pi) = \operatorname{span}\{e^{in\theta} \mid n \in \mathbb{Z}\}$$

4.5 The Arzela-Ascoli theorem

Remark 4.5.1. Given $\mathcal{F} \subset C(X)$, for (X, d) a compact metric space, when is \mathcal{F} compact?

Definition 4.5.2. Given a metric space (X, d), a set $A \subset X$ is termed relatively compact iff \overline{A} is compact.

Note that an A is totally bounded iff \overline{A} is totally bounded, it follows that $\mathcal{F} \subset C(X)$ is relatively compact iff \mathcal{F} is totally bounded.

Definition 4.5.3. Let (X, d) be a compact metric space with $\mathcal{F} \subset C(X)$. Then \mathcal{F} is termed equicontinuous at x_0 iff for each $\epsilon > 0$ there exists $\delta > 0$ such that if $d(x, x_0) < \delta$, then $|f(x) - f(x_0)| < \epsilon$ for all $f \in \mathcal{F}$.

Similarly, \mathcal{F} is termed equicontinuous iff \mathcal{F} is equicontinuous at all $x_0 \in X$.

Further, \mathcal{F} is termed uniformly equicontinuous iff for each $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in X$, if $d(x, y) < \delta$, then $|f(x) - f(y)| < \epsilon$ for all $f \in \mathcal{F}$.

Example 4.5.4. Let $\mathcal{F} = \{x^n\}_{n=1}^{\infty}$. Then \mathcal{F} is equicontinuous on $[0, \frac{1}{2}]$, but not on [0, 1].

Remark 4.5.5. It follows from the definition that if \mathcal{F} is finite, then it is uniformly equicontinuous.

Proposition 4.5.6. Let (X, d) be a compact metric space, and $\mathcal{F} \subset C(X)$ equicontinuous. Then \mathcal{F} is uniformly equicontinuous.

Proof: Let $\epsilon > 0$.

For each $x_0 \in X$, there exists $\delta_{x_0} > 0$ such that if $d(x, x_0) < \delta_{x_0}$, then $|f(x) - f(x_0)| < \frac{\epsilon}{2}$. This holds for all $f \in \mathcal{F}$. Note that $\{B(x_0, \delta_{x_0})\}_{x_0 \in X}$ is a cover of X. Hence this cover has a Lebesgue number $\delta_1 > 0$, so choose $0 < \delta_0 < \delta_1$. Hence for any $y \in X$ there is some $x_0 \in X$ so that $B(y, \delta_0) \subset B(x_0, \delta_{x_0})$. So for $z \in B(y, \delta_0)$, we have that

$$|f(y) - f(z)| \leq |f(y) - f(x_0)| + |f(x_0) - f(z)|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon$$

Definition 4.5.7. Let (X, d) be a compact metric space with $\mathcal{F} \subset C(X)$. Then \mathcal{F} is termed <u>pointwise bounded</u> iff for each $x_0 \in X$, $\{f(x_0) \mid f \in \mathcal{F}\}$ is bounded.

Proposition 4.5.8. Let (X, d) be a compact metric space and $\mathcal{F} \subset C(X)$ equicontinuous and pointwise bounded. Then \mathcal{F} is uniformly bounded.

<u>Proof</u>: As \mathcal{F} is uniformly equicontinuous, there exists $\delta > 0$ such that $d(x, y) < \delta$ implies |f(x) - f(y)| < 1. The above holds for all $f \in \mathcal{F}$.

Let $\{x_1, \ldots, x_n\}$ be a δ -net for X, and suppose that $|f(x_i)| < M_i$ for each $f \in \mathcal{F}$. Let $M_0 = \max\{M_1, \ldots, M_n\}$, so if $x \in X$, then there exists x_i with $d(x, x_i) < \delta$ implying

$$|f(x)| \leq |f(x) - f(x_i)| + |f(x_i)| \leq 1 + M_0$$

Theorem 4.5.9. [ARZELA, ASCOLI]

Let (X, d) be a compact metric space with $\mathcal{F} \subset (C(X), \|\cdot\|_{\infty})$. Then equivalently:

1. \mathcal{F} is relatively compact

2. \mathcal{F} is equicontinuous and pointwise bounded

Proof: $\mathbf{1}$. \Rightarrow $\mathbf{2}$. As \mathcal{F} is relatively compact, it is bounded.

Hence it is both pointwise and totally bounded.

Let $\epsilon > 0$.

So there exists a finite $\frac{\epsilon}{3}$ -net $\{f_1, \ldots, f_n\} \subset \mathcal{F}$ of \mathcal{F} .

Since $\{f_1, \ldots, f_n\}$ is uniformly equicontinuous, there exists $\delta > 0$ with $d(x, y) < \delta$ implying

$$|f_i(x) - f_i(y)| < \frac{\epsilon}{3} \ \forall \ x, y \in X \text{ and } i = 1, \dots, n$$

Let $f \in \mathcal{F}$.

For $d(x,y) < \delta$, there exists $i_0 \in \{1, 2, \dots, n\}$ such that $||f - f_{i_0}||_{\infty} < \frac{\epsilon}{3}$, so

$$\begin{split} |f(x) - f(y)| &\leq |f(x) - f_{i_0}(x)| + |f_{i_0}(x) - f_{i_0}(y)| + |f_{i_0}(y) - f(y)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &= \epsilon \end{split}$$

Hence \mathcal{F} is equicontinuous.

2. \Rightarrow **1**. Since (X, d) is compact, \mathcal{F} is uniformly equicontinuous and uniformly bounded. Hence there is M > 0 such that $f(x) \in [-M, M]$ for each $f \in \mathcal{F}$ and $x \in X$. Let $\epsilon > 0$. Let $P = \{-M = y_0 < y_1 < \cdots < y_m = M\}$ be a partition of [-M, M], with

$$||P|| = \max_{j} \{y_i - y_{i-1}\} < \frac{\epsilon}{3}$$

As \mathcal{F} is uniformly equicontinuous, there exists $\delta > 0$ with $d(x, z) < \delta$ implies $|f(x) - f(z)| < \frac{\epsilon}{3} \forall f \in \mathcal{F}$. Let $\{x_1, \ldots, x_n\}$ be a δ -net for X, and

$$\Phi = \{ \sigma : \{1, 2, \dots, n\} \to \{1, 2, \dots, m\} \}$$

Then $|\Phi| = m^n = \ell < \infty$, so for each $k = 1, \ldots, \ell$, let

$$\mathcal{F}_{k} = \{ f \in \mathcal{F} \mid f(x_{i}) \in [y_{\sigma_{k}(i)-i}, y_{\sigma_{k}(i)}] \forall i = 1, \dots, n \}$$
$$\mathcal{F} = \bigcup_{k=1}^{\ell} \mathcal{F}_{k}$$

If possible, choose $f_k \in \mathcal{F}_k$ for every k.

Then for $f \in \mathcal{F}$, $f \in \mathcal{F}_k$ for some k, and for $w \in X$, $w \in B(x_i, \delta)$ for some i, so

$$|f(w) - f_k(w)| \leq |f(w) - f(x_i)| + |f(x_i) - f_k(x_i)| + |f_k(x_i) - f_k(w)|$$
$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$
$$= \epsilon$$

Hence $||f - f_k||_{\infty} < \epsilon$, and $\{f_k\}$ is an ϵ -net for \mathcal{F} .

Definition 4.5.10. Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ be metric spaces. Then a linear map $\Gamma : (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is termed compact if $\Gamma(B_X[0,1]) \subset Y$ is relatively compact.

Theorem 4.5.11. [PEANO]

Let $D \subset \mathbb{R}^2$ be open and f continuous on D. Then for $(x_0, y_0) \in D$, the differential equation y' = f(x, y) has a local solution passing through the point (x_0, y_0) .

Index

 $A \bigtriangleup B, 2$ $C(X, \mathbb{C}), 35$ $C_b(X), 18$ D(f), 23 $D_n(f), 23$ $F_{\sigma}, 23$ $G_{\delta}, 23$ ND(A), 33int(A), 13Lim(A), 13ℵ₀, 9 bdy(A), 13 ϵ -net, 27 $\mathcal{F}_n, 33$ $\mathcal{L}(X, Y), 12$ ||T||, 12 \overline{A} , 13 $\overline{f}, 36$ $\mathbf{P}(X), 2$ algebra, 35 anti-symmetric, 3 axiom of choice, 2 ball, 12 closed, 12 open, 12 bound greatest lower, 3 least upper, 3 boundary point, 13 bounded operator, 30 pointwise, 37 boundedness of a set, 16 cell, 26 chain, 3 closed, 12 closure, 13 cluster point, 13 cmopact operator, 38 compact, 25 relatively, 36 sequentially, 25 comparable, 3 completeness, 16 of ℓ_p , 16

of $C_b(X)$, 18 completion, 18 conjugate pair, 10 continuity at a point, 15 on a set, 15contraction, 21 convergence of a sequence, 14 pointwise, 17 uniform, 17 uniform at a point, 24 cover, 25 open, 25 dense, 14 nowhere, 23 diameter, 19 discontinuity at a point, 15 divergence of a sequence, 14 equicontinuous, 36 at a point, 36 uniformly, 36 fixed point, 21 graph, 3 homeomorphism, 29 interior, 13 isometry, 18 lattice, 34 Lebesgue number, 28 limit point of a sequence, 14 of a set, 13Lipschitz property, 21 maximal element, 3metric, 10 discrete, 10 induced, 10 induced by a topology, 13 metric space, 10 neighborhood, 13

of \mathbb{R}^n , 16

norm, 10 Euclidean, 10 p-, 10 standard, 10 supremum, 10 nowhere-differentiable, 33 open, 12 ordering, 3 by containment, 3 by inclusion, 3 partial, 3 total, 3 well-, 4 partial sum, 20 point separating, 34 poset, 3product, 2 property Bolzano-Weierstrass, 25 finite intersection, 27 pullback, 8 reflexive, 3 relation, 3 separable, 14 set, 2, 12 closed. 12 finite, 5 infinite, 5 of first category, 23 of second category, 23 open, 12 power, 2residual, 23 size, 2 size, 2 space Banach, 20 metric, 12 normed linear, 10 topological, 12 subcover, 25 finite, 25 symmetric, 3 symmetric difference, 2 theorem Baire category, 23

Banach conractive mapping, 21 Cantor's intersection, 20 extreme value, 28

Mathematicians

Arzela, Cesare, 37 Ascoli, Giulio, 37

Baire, Rene-Louis, 23 Banach, Stefan, 20, 21, 33 Bolzano, Bernard, 16, 25 Borel, Emile, 26, 28

Cantor, Georg, 20

de Morgan, Augustus, 2

Heine-Borel, 26 nested interval, 19 Weierstrass approximation, 31 topology, 12 relative, 13 totally bounded, 27 transitive, 3

Heine, Eduard, 26 Holder, Otto, 10

Lebesgue, Henri, 28 Lindelof, Ernst, 22 Lipschitz, Rudolf, 21

Mazurkiewicz, Stefan, 33 Minkowski, Hermann, 11

Peano, Giuseppe, 38

Picard, Charles Emile, 22

Russell, Bertrand, 9

Stone, Marshall, 34–36

Weierstrass, Karl, 16, 21, 25, 31, 34–36

Zermelo, Ernst, 2