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1 Set Theory

1.1 Definitions

Definition 1.1.1. Given a set X, the power set of X is defined to be P(X) = {A | A ⊂ X}.

Definition 1.1.2. Given sets A,B define the symmetric difference of them to be A4B = (A∪B)\(A∩B) =

(A ∩BC) ∪ (AC ∩B)

Proposition 1.1.3. [De Morgan’s Laws]
Let {Aα}α∈I ⊂ P(X). Then

1.

(⋃
α∈I

Aα

)C
=
⋂
α∈I

ACα

2.

(⋂
α∈I

Aα

)C
=
⋃
α∈I

ACα

Proof: 1.

x ∈

(⋃
α∈I

Aα

)C
⇐⇒ x /∈

⋃
α∈I

Aα

⇐⇒ x /∈ Aα ∀ α ∈ I
⇐⇒ x ∈ ACα ∀α ∈ I

⇐⇒ x ∈
⋂
α∈I

ACα

2. Similar to above, by replacing A with AC . �

Definition 1.1.4. Given A1, . . . , An ⊂ X, define their product to be

A1 × · · · ×An =

n∏
i=1

Ai = {(a1, . . . , an) | ai ∈ Ai ∀ i}

Definition 1.1.5. The size of a set A, denoted by |A|, is the number elements A has.

If |Ai| = mi, then


n∏
i=1

Ai

 =

n∏
i=1

mi.

1.2 Problems arising

Proposition 1.2.1. Suppose that I = ∅. If the expression {Aα}α∈I is meaningful, then clearly
⋃
α∈I

Aα = ∅.

But then by de Morgan’s laws,
⋂
α∈I

Aα = X.

Axiom 1.2.2. [Axiom of choice]

If I 6= ∅ and Aα 6= ∅ for all α ∈ I, then
∏
α∈I

Aα 6= ∅.

Axiom 1.2.3. [Equivalent to AoC]
If A is non-empty, there exists a function f : P(A) \ {∅} → A such that f(A) ∈ A.
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1.3 Relations

Definition 1.3.1. A relation R on sets X,Y is a subset of X×Y . In general, we write xRy ⇐⇒ (x, y) ∈ R
for x ∈ X and y ∈ Y . Interpreted as a set, R is termed the graph of the relation.

If X = Y , then R is termed a relation on X.

Definition 1.3.2. Let R be a relation on X 3 x, y, z. Then:
1. R is reflexive iff for all x ∈ X, xRx
2. R is symmetric iff xRy ⇐⇒ yRx
3. R is anti-symmetric iff xRy and yRx implies x = y
4. R is transitive iff xRy and yRz implies xRz

Example 1.3.3.
1. Let R be a relation on R and xRy ⇐⇒ x 6 y. This is a poset.
2. Let R be a relation on P(X) for X any set and ARB ⇐⇒ A ⊂ B. This is a poset.

In this case we say ⊂ orders P(X) by inclusion.
3. Let R be a relation on P(X) for X any set, and ARB ⇐⇒ A ⊃ B. This is a poset.

In this case we say ⊃ orders P(X) by containment.

Definition 1.3.4. A partial order on a set X is a relation 4 on X that is reflexive, anti-symmetric, and
transitive. As an ordered pair, (X,4) is termed a poset.

X is a poset off for all x, y ∈ X, either x 4 y ar y 4 x.

Definition 1.3.5. A chain is a subset of (X,4) that is totally ordered, i.e. that has x 4 y or y 4 x for all
x, y ∈ X.

Definition 1.3.6. Let (X,4) be a poset with A ⊂ X. Then:
1a. We say that α ∈ A is an upper bound of A iff x 4 α for all x ∈ A
1b. We say that α is the least upper bound of A iff α is an upper bound of A and for all other upper

bounds β of A, α 4 β.
2a. We say that α ∈ A is an lower bound of A iff x < α for all x ∈ A
2b. We say that α is the greatest lower bound of A iff α is a lower bound of A and for all other lower

bounds β of A, α < β.
3. We say that A is bounded if it has a lower bound and an upper bound.

Axiom 1.3.7. [Least upper bound principle]
If A ⊂ R is bounded above and is non-empty, then there exists a least upper bound for A.

Definition 1.3.8. Let (X,6) be a poset. Then x ∈ X is termed maximal if whenever x 6 y, x = y.

Example 1.3.9.
1. For R, there is no maximal element
2. For (P(X),⊂), X is the maximal element
3. For (P(X),⊃), ∅ is the maximal element

Remark 1.3.10. Note that finite posets may be represented by finite digraphs. As such, two elements are
termed comparable if there is a dipath joining them. We assume that x � y iff there is a path from y to x.

Example 1.3.11. Let X = {x, y, z} have distinct elements. There are 5 basic posets.
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There are 29 relations on X, and of them, 19 are posets.

Theorem 1.3.12. If (X,6) is a finite non-empty poset, then (X,6) has a maximal element.

Proof: Induction on the number of elements in X. �

Axiom 1.3.13. [Zorn’s Lemma]
Let (X,6) be a non-empty, partially ordered set. Assume that every chain C ⊂ X has an upper bound.
Then (X,6) has a maximal element.

Zorn’s lemma is logically equivalent to the axiom of choice.

Example 1.3.14. Let (V,+) be a non-zero vector space. Let L = {L ⊂ V | L is linearly independent}.
Then a basis for V is a maximal element of L, given the ordering ⊂.

Theorem 1.3.15. Every non-zero vector space has a basis.

Proof: Let L = {L ⊂ V | L is linearly independent} ⊂ P(V ).
Then L 6= ∅, as for v ∈ V nonzero, {v} ∈ L.

Let L∗ =
⋃
α∈I

Lα.

We claim that L∗ is linearly independent, so L∗ ∈ L and L∗ is an upper bound.
Let {v1, . . . , vn} be distinct elements of L∗ with a1v1 + · · ·+ anvn = 0.
For each i = 1, 2, . . . , n, vi ∈ Lαi for some αi ∈ I, and we may assume that Lα1 ⊂ Lα2 ⊂ · · · ⊂ Lαn .
Hence {v1, . . . , vn} ⊂ Lαn so that a1 = a2 = · · · = an = 0.
Since every chain has an upper bound, Zorn’s lemma gives us a maximal element. �

Definition 1.3.16. A poset (X,6) is termed well-ordered if every non-empty subset has a least element.

Well-ordered sets are totally ordered.

Example 1.3.17.
1. N with the usual order is well-ordered
2. (Q,6) is not well-ordered, as {r ∈ Q | r >

√
2} has no least element

Proposition 1.3.18. The set Q can be injected into the set N. Consider:

ϕ : Q =
{
n
m | n ∈ Z,m ∈ N, gcd(n,m) = 1

}
→ N

ϕ
(
n
m

)
=


1 if n = 0

2n3m if n
m > 0

2−n5m if n
m < 0

The fundamental theorem of arithmetic gives us that ϕ is injective.

Proposition 1.3.19. The set Q is well-ordered.

Proof: Using the above function and the relation r 4 q iff ϕ(r) 6 ϕ(q) in the usual order on N. �

Axiom 1.3.20. [Well-ordering principle]
Every non-empty set can be well-ordered.

Theorem 1.3.21. The following axioms are logically equivalent:
1. The axiom of choice
2. Zorn’s lemma
3. The well-ordering principle
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1.4 Equivalence relations and cardinaltiy

Definition 1.4.1. A relation ∼ on a set X is termed an equivalence relation iff it is:
1. reflexive
2. symmetric
3. transitive

Definition 1.4.2. Given an equivalence relation ∼ on X, the equivalence class of an element x ∈ X is
defined as

[x] = {y ∈ X | x ∼ y}
The following properties hold for all x, y ∈ X:

1. x ∈ [x]
2. either [x] = [y] or [x] ∩ [y] = ∅

Definition 1.4.3. Given a non-empty set X, a partition on X is a collection {Aα}α∈I of pairwise disjoint
nonempty subsets of X such that

X = ·⋃
α∈I

Aα

Remark 1.4.4.
1. Any equivalence relation ∼ partitions X
2. Any partition {Aα}α∈I of X defines an equivalence relation on X.

Example 1.4.5. Given a set X, let ∼ be an equivalence relation on P(X) by A ∼ B iff there exists a
bijection f : A→ B. Then A is equivalent to B, or A = B iff |A| = |B|. Heuristically, A = B iff both have
the same number of elements.

Definition 1.4.6. A set X is termed finite if either X = ∅ or X ∼ {1, 2, . . . , n} for some n ∈ N. If X = ∅,
then X is said to have cardinality 0. If X ∼ {1, 2, . . . , n}, then X is said to have cardinality n. If X is not
finite, then it is termed infinite.

Theorem 1.4.7. If X is finite, then X cannot be equivalent to a proper subset of itself.

Proof: This is clearly false for X = ∅, so we will not consider that case.
Assume that X = {1, 2, . . . , n} for some n ∈ N.
Let Pn be the statement ”the set {1, 2, . . . , n} is not equivalent to a proper subset of itself”.
Base case: The case P1 clearly holds.
Inductive step: Suppose that Pk holds for k ∈ N.
Also suppose that there exists a bijective function f : {1, 2, . . . , k, k+ 1} → S for S ( {1, 2, . . . , k, k+ 1}.

Case 1: k + 1 /∈ S
Let S′ = S \ {f(k + 1)} ( {1, 2, . . . , k}.
Then f |{1,2,...,k} is bijective from {1, 2, . . . , k} to S′ ( {1, 2, . . . , k}.
This contradicts Pk.

Case 2: k + 1 ∈ S and f(k + 1) = k + 1
Then f |{1,2,...,k} has range S′ = S \ {k + 1} ( {1, 2, . . . , k}.
Since f is bijective on {1, 2, . . . , k}, we have that {1, 2, . . . , k} � S.

Case 3: k + 1 ∈ S and f(k + 1) 6= k + 1
Then f(j0) = k + 1 for some j0 ∈ {1, 2, . . . , k}.
Let g : {1, 2, . . . , k + 1} → S be defined by

g(j) =


k + 1 if j = k + 1

f(k + 1) if j = j0

f(j) if j ∈ {1, 2, . . . , k} with j 6= j0

5



Then g is a bijection on S, which by the above case, is impossible.

Now suppose that X ∼ {1, 2, . . . , n} for some n ∈ N and X ∼ S for S a proper subset of X.
Then there exists a bijective function f : X → {1, 2, . . . , n}.
Then S ∼ f(S) ( {1, 2, . . . , n}.
But then {1, 2, . . . , n} ∼ X ∼ S ∼ f(S). �

Proposition 1.4.8. If X is infinite, then there exists a subset X ⊂ X with S ∼ N.

Proof: Since X is non-empty, there is a choice function f on P(X) \ {∅}.
Let x1 = f(X), X2 = f(X \ {x1}), and proceed recursively with xn+1 = f(X \ {x1, . . . , xn}).
This gives S = {x1, . . . , xn, . . . }. �

Theorem 1.4.9. A set X is infinite if and only if it is equivalent to one of its proper subsets.

Proof: We know that if X is finite, then it is not equivalent to any one of its proper subsets.
Then suppose that X is infinite.
Choose S = {x1, x2, . . . , xn} as in the previous proposition.
Define f : X → X \ {x1} by

f(x) =

{
xn+1 if x = xn ∈ S
x if x /∈ X \ S

This proves the theorem. �

Definition 1.4.10. A set X is termed countable iff it is either finite or X ∼ N.

If X ∼ N, then |X| = ℵ0.

Theorem 1.4.11. [Cantor, Shroeder, Bernstein]
Let A2 ⊂ A1 ⊂ A0. If A2 ∼ A0, then A1 ∼ A0.

Proof: Note that there exists a bijection f : A0 → A2, so f(A0) = A2.
Let A3 = f(A1), A4 = f(A2), . . . , An = f(An−2), . . .
Then An+2 ∼ An via f , as well as An+2 \An ∼ An+2 \An+3 also via f .
We may decompose A0 and A1 as follows:

A1 = (A1 \A2) ∪ (A2 \A3) ∪ (A3 \A4) ∪ · · · ∪
∞⋂
i=1

Ai

A0 = (A0 \A1) ∪ (A1 \A2) ∪ (A2 \A3) ∪ · · · ∪
∞⋂
i=0

Ai

Identification between sets is made if they are equal and otherwise through g : A0 → A1:

g(x) =


f(x) if x ∈ (A2k \A2k+1)

x if x ∈ (A2k+1 \A2k+2)

x if x ∈
∞⋂
i=0

Ai

Since g is a bijection, A1 ∼ A0. �

Corollary 1.4.12. If A1 ⊂ A0 and B1 ⊂ B0 with B1 ∼ A0 and A1 ∼ B0, then A0 ∼ B0.
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Proof: Let f : A0 → B1 and g : B0 → A1 be bijective.
Define A2 ⊂ A1 ⊂ A0 by A2 = g ◦ f(A0) = g(B1).
Therefore A2 ∼ A0.
By CSB, we have that A1 ∼ A0 and so A0 ∼ B0. �

Example 1.4.13. These are some examples of equivalent sets.
· Q ∼ N
· N× N ∼ N

This is given by two injective functions, f : N→ N× N and g : N× N→ N:

f(n) = (n, n)
g((n,m)) = 2n3m

Since both are injective, CSB says that the sets are equivalent.

·
n∏
i=1

N ∼ N for n ∈ N

Theorem 1.4.14. The product of finitely many countable sets is countable.

Theorem 1.4.15. Let {Xn}∞n=1 be a countable collection of countable sets. Then X =

∞⋃
n=1

Xn is countable.

Proof: Recall that if S is countable with T ⊂ S, then T is also countable by CSB.
Let

E1 = X1

E2 = X2 \X1

E3 = X3 \ (X1 ∪X2)

E4 = X4 \ (X1 ∪X2 ∪X3)

...

En = Xn \
n−1⋃
i=1

Xi

Then

∞⋃
n=1

En =

∞⋃
n=1

Xn and {E1, E2, . . . , En} is a pairwise disjoint sequence of countable sets.

For each En, write En = {xn,1, xn,2, . . . } possibly terminating.

Let f :

∞⋃
n=1

En → N by f(xi,j) = 2i3j .

Since f is injective, the theorem is proven. �

Definition 1.4.16. A set is termed uncountable if it is not countable.

Proposition 1.4.17. The set (0, 1) ⊂ R is not countable.

Proof: Suppose that (0, 1) is countable.

Then (0, 1) = {α1, α2, . . . } for each αj = 0.bj1bj2 · · · =
∞∑
i=1

bji
10i

for each bji ∈ {0, 1, 2, . . . , 9}.
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Consider the following expansion:

α1 = 0.b11b12b13 . . .
α2 = 0.b21b22b23 . . .
α3 = 0.b31b32b33 . . .

...
αn = 0.bn1bn2bn3 . . .

...

Now define an element α = 0.b1b2b3 . . . by

bn =

{
1 if bnn 6= 0

2 else

Clearly α ∈ (0, 1), but there is also clearly no i ∈ N such that α = αi.
Therefore α is not in our enumeration, and so (0, 1) is not countable. �

Remark 1.4.18.
1. For any a < b ∈ R, we have that (0, 1) ∼ (a, b) ∼ R, and (0, 1) ∼ R via f(x) = arctan

(
πx− π

2

)
.

2. |R| = c, which is the first uncountable ordinal.

Axiom 1.4.19. [Continuum hypothesis]
For X any set, if ℵ0 4 |X| 4 c, then either |X| = c or |X| = ℵ0.

Definition 1.4.20. For sets W,V , let h : W → V be a function. Denote the pullback of h by h−1 : P(V )→
P(W ), with h−1(B) = {w ∈W | h(w) ∈ B} for any B ⊂ V .

Proposition 1.4.21. Assume that there exists a surjective function g : Y → X. Then there exists an
injective function f : X → Y .

Proof: Let g : Y → X be surjective.

For each x0 ∈ X, g−1({x0}) 6= ∅, as g is surjective.
By the axiom of choice, there if a choice function h on P(Y ) \ {∅}.
Define f(x0) = h(g−1({x0})) = y0 ∈ Y .
Since g is a function, f : X → Y is injective. �

Corollary 1.4.22. Given nonempty sets X,Y , the following are equivalent:
1. |X| 4 |Y |
2. There exists an injective function f : X → Y
3. There exists a surjective function g : Y → X

Theorem 1.4.23. [Computability theorem]
Given any sets X,Y , either |X| 4 |Y | or |Y | 4 |X|.

Proof: We may assume that X,Y are nonempty.
Define S = {(A,B, f) | A ⊂ X,B ⊂ Y, f : A→ B is bijective}.
We may order S by 4, with (A1, B1, f1) 4 (A2, B2, f2) iff A1 ⊂ A2, B1 ⊂ B2, and fa|A1

= f1.
Let C = {(Aα, Bα, fα)}α∈I be a chain in S.
Let A =

⋃
α∈I Aα, B =

⋃
α∈I , and f : A→ B given by f(x) = fα(x) if x ∈ Aα.

First it must be shown that f is well defined.
Assume that x ∈ Aα, x ∈ Aβ .
WLOG we may assume Aα ⊂ Aβ .
Then f(x) = fα(x) = fβ(x).
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Thus f is well-defined.

Now we must show that f is injective.
Let x1 6= x2 ∈ Aα ⊂ Aβ so x1, x2 ∈ Aβ .
Now fα(x1) = fβ(x1) 6= fβ(x2) = f(x2).

Finally it must be shown that f is surjective.
Let w ∈ B.
Then w ∈ Bα for some α.
So here exists x ∈ Aα with fα(x) = w.
Then x ∈ A and f(x) = w.
Therefore (A,B, f) is an upper bound of C.
By Zorn’s lemma, S has a maximal element (A0, B0, f0).
If A0 = X, then |X| 4 |Y |.
Assume A0 6= X.
If B0 = Y , then |Y | 4 |X|.
If B0 6= Y , then choose x0 ∈ X \A0 with y0 ∈ Y \B0.
Define f1 : A0 ∪ {x0} → B0 ∪ {y0} by

f1(x) =

{
f0(x) if x ∈ A0

f(x0) = y0 if x = x0

Then (A0, B0, f0) ≺ (A1, B1, f1).
This is a contradiction, and hence the last situation cannot hold. �

1.5 Cardinal arithmetic

Definition 1.5.1. Given two sets X,Y with X ∩ Y = ∅, define |X|+ |Y | := |X ∪ Y |.

Example 1.5.2. Consider N = {1, 3, 5, . . . } ∪ {2, 4, 6, . . . }, and so |N| = |N|+ |N| = ℵ0 + ℵ0.

Theorem 1.5.3. Given two sets X,Y with X infinite,
1. |X|+ |X| = |X|
2. |X|+ |Y | = max{|X|, |Y |}

Definition 1.5.4. Given two nonempty sets X,Y , define |X||Y | := |X × Y |.
This means that ℵ0 · ℵ0 = ℵ0 and c · c = c.

Theorem 1.5.5. Given two nonempty sets X,Y with X infinite,
1. |X||X| = |X|
2. |X||Y | = max{|X|, |Y |}

Definition 1.5.6. Given two nonempty sets X,Y , define |Y ||X| := |Y X | = |
∏
x∈X Y | = |{f : X → Y }|.

Proposition 1.5.7. For any set X, |P(X)| = 2|X|.

Proof: Given any A ⊂ X, define χA : X → {0, 1} by χA(x) =
{

1 if x∈A
0 if x/∈A .

Then P(X) ∼ {f : X → {0, 1}} via A ⇐⇒ χA. �

Theorem 1.5.8. [Russell ]
For any set X, |X| ≺ 2|X|.

Proof: Let f : X → P(X) be injective.
Suppose that f is onto.
Let A ⊂ X be defined by A = {x ∈ X | x /∈ f(x)}.
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Then there exists x0 with f(x0) = A.
But if x0 ∈ A, then x0 /∈ f(x0) = A.
And if x0 ∈ A, then x0 ∈ f(x0) = A.
This is a contradiction.
Hence no such f injective exists. �

Remark 1.5.9. Given a set A, the number of relations on A is equal to |P(A×A)|.
The number of equivalence relations on A is equal to the number of partitions of A.

2 Metric spaces

Definition 2.0.1. Given a set X, a function d : X ×X → R is termed a metric iff for all x, y, z ∈ X:
1. d(x, y) > 0 and d(x, y) = 0 ⇐⇒ x = y
2. d(x, y) = d(y, x)
3. d(x, y) + d(y, z) > d(x, z)

Example 2.0.2. These are some examples of metrics.
1. X = R and d(x, y) = |x− y|
2. X = any set and d(x, y) =

{
0 if x=y
1 else

, the discrete metric

Definition 2.0.3. Given a set X and a metric d on X, the pair (X, d) is termed a metric space.

2.1 Normed linear spaces

Definition 2.1.1. Let V be a vector space. A function ‖ · ‖ : V → R is termed a norm iff for all v, w ∈ V
and α ∈ R:

1. ‖v‖ > 0 and ‖v‖ = 0 ⇐⇒ v = 0
2. |αv‖ = |α|‖v‖
3. ‖v + w‖ 6 ‖v‖+ ‖w‖

Given a vector space V and a norm ‖ · ‖ on V , the pair (V, ‖ · ‖) is termed a normed linear space.

Definition 2.1.2. Let (V, ‖ · ‖) be a normed linear space. If d(x, y) = ‖x− y‖, then d is a metric on V , and
d is termed the metric induced by ‖ · ‖.

Example 2.1.3. These are some examples of norms.
1. the standard norm: ‖(x1, . . . , xn)‖1 = |x1|+ · · ·+ |xn|
2. the Euclidean norm: ‖(x1, . . . , xn)‖2 =

√
x21 + · · ·+ x2n

3. the p-norm: ‖(x1, . . . , xn)‖p =

(
n∑
i=1

|xi|p
)1/p

for 1 < p <∞

4. the sup norm: ‖(x1, . . . , xn)‖∞ = max
i
{|xi|}

Then we have that ‖x‖∞ 6 ‖x‖p 6 ‖x‖1 6 n‖x‖∞ for x ∈ Rn and for 1 < p <∞.

Lemma 2.1.4. Let 1 < p < ∞ and 1
p + 1

q = 1 (or q(p − 1) = p), where p, q is a conjugate pair. Then for
any α, β > 0,

αβ 6
αp

p
+
βq

q

Theorem 2.1.5. [Holder’s inequality]
Let a, b ∈ Rn with 1

p + 1
q = 1 for 1 < p <∞. Then

‖ab‖1 6 ‖a‖p‖b‖q

10



Proof: We may assume that a, b are nonzero.
Note that the result holds iff it holds for αa and βb for nonzero scalars α, β.

Then we may assume that (
∑n
i=1 |ai|p)

1/p
= 1 and (

∑n
i=1 |bi|q)

1/q
= 1.

Now |aibi| 6 |ai|
p

p + |bi|q
q for all i = 1, . . . , n, so

n∑
i=1

|aibi| 6
∑n
i=1 |ai|p

p
+

∑n
i=1 |bi|q

q
= 1

Replacing 1 with the norms gives the result. �

Theorem 2.1.6. [Minkowski’s inequality]
Let a, b ∈ Rn with 1 < p <∞. Then

‖a+ b‖p 6 ‖a‖p + ‖b‖p

Proof: Let p, q be a conjugate pair.
Note that

n∑
i=1

|ai + bi|p =

n∑
i=1

|ai||ai + bi|p−1 +

n∑
i=1

|bi||ai + bi|p−1

Then by Holder, we have that

n∑
i=1

|ai||ai + bi|p−1 6

(
n∑
i=1

|ai|p
)1/p( n∑

i=1

|ai + bi|(p−1)q
)1/q

=

(
n∑
i=1

|ai|p
)1/p( n∑

i=1

|ai + bi|p
)1/q

n∑
i=1

|bi||ai + bi|p−1 6

(
n∑
i=1

|bi|p
)1/p( n∑

i=1

|ai + bi|p
)1/q

The original equation then becomes

‖a+ b‖p =

(
n∑
i=1

|ai + bi|p
)1−1/p−1/q

6 ‖a‖p + ‖b‖q

This completes the proof. �

Definition 2.1.7. The following are all spaces of infinite sequences.

1. `1(N) = `1 = {{xn} | xn ∈ R,
∑∞
i=1 |xn| <∞}

2. `p(N) = `p = {{xn} | xn ∈ R,
∑∞
i=1 |xn|p <∞}

3. `∞(N) = `∞ = {{xn} | xn ∈ R,maxi{|xi|} <∞}
By checking that ‖ · ‖p for each respective p is a norm, it may be shown that (`p, ‖ · ‖p) is a normed linear
space, for a 6 p 6∞.

Remark 2.1.8. We have the following sequence of inclusions, for all 1 < p2 < p2 <∞:

`1 ( `p1 ( `p2 ( `∞

Proposition 2.1.9. Let {xn} ∈ `p and {yn} ∈ `q with p, q a conjugate pair. Then
∑∞
n=1 xnyn converges

absolutely with ‖{xnyn}‖1 6 ‖{xn}‖p + ‖{yn}‖q.
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Example 2.1.10. Let X = C[a, b] = {f : [a, b]→ R | f is continuous}. Then for

‖f‖∞ = sup
x∈[a,b]

{|f(x)|} = max
x∈[a,b]

{|f(x)|}

|f + g| 6 |f |+ |g| 6 ‖f‖∞ + ‖g‖∞

the space (C[a, b], ‖ · ‖∞) is a normed linear space. We may define other norms on C[a, b] by:

‖f‖p =

(∫ b

a

|f(x)|p dx

)1/p

so then (C[a, b], ‖ · ‖p) will be a norm for all 1 6 p <∞.

Example 2.1.11. Given normed linear spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ), let

L(X,Y ) = {T : X → Y | T is linear}
‖T‖∞ = sup{‖Tx‖Y | ‖x‖X 6 1 ∀ x ∈ X}

B(X,Y ) = {T ∈ L(X,Y ) | T is bounded}

Then the space (B(X,Y ), ‖ · ‖∞) is a normed linear space.

2.2 The topology of metric spaces

Definition 2.2.1. Let (X, d) be a metric space with x ∈ X and ε > 0 . Define
· the open ball of radius ε centered at x: B(x, ε) = {y ∈ X | d(x, y) < ε}
· the closed ball of radius ε centered at x: B[x, ε] = {y ∈ X | d(x, y) 6 ε}
· an open set U ⊂ X has for all y ∈ U some εy > 0 such that B(y, εy) ⊂ U
· a closed set V ⊂ X has X \ V open

Theorem 2.2.2. Let (X, d) be a metric space. Then
1. X, ∅ are open
2. if {Uα}α∈I is a collection of open sets in X, then

⋃
α∈I Uα is open in X

3. if {U1, . . . , Un} is a finite collection of open sets in X, then
⋂n
i=1 Ui is open in X

Proof: 1. This is clear.

2. Let x ∈
⋃
α∈I Uα.

Then there exists α0 ∈ I with x ∈ Uα0 , so there is ε > 0 with B(x, ε) ⊂ Uα0 ⊂
⋃
α∈I Uα.

3. Let xin
⋂n
i=1 Ui.

For each i, x0 ∈ Ui, so there is ε = mini{εi}, for B(x0, εi) ⊂ Ui for all i.
Hence B(x0, ε) ⊂

⋂n
i=1 Ui. �

Theorem 2.2.3. Let (X, d) be a metric space. Then
1. X, ∅ are closed
2. if {Fα}α∈I is a collection of open sets in X, then

⋂
α∈I Fα is closed in X

3. if {F1, . . . , Fn} is a finite collection of open sets in X, then
⋃n
i=1 Fi is closed in X

Definition 2.2.4. Given a set X, a topology on X is a set τ ⊂ P(X) such that
1. X, ∅ ∈ τ
2. if {Uα}α∈I ⊂ τ , then

⋃
α∈I Uα ∈ τ

3. if {U1, . . . , Un} ⊂ τ , then
⋂n
i=1 Ui ∈ τ

The pair (X, τ) is termed a topological space, with elements of τ termed τ -open, or simply open sets.
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Proposition 2.2.5. Let X 3 x be a space with ε > 0 . Then
1. The open ball B(x, ε) is open.
2. U ⊂ X is open iff it is the union of open balls.
3. The closed ball B[x, ε] is closed.
4. The set {x0} is closed.

Definition 2.2.6. Let A ⊂ (X, d). Define a metric dA : A×A→ R by dA(x, y) = d(x, y) iff x, y ∈ A.

Definition 2.2.7. Given A ⊂ (X, d), define a topology τA on A by W ∈ τA iff W = A∩U for some U ∈ τd.
Then τA is termed the relative topology on A induced by τd.

Proposition 2.2.8. τA = τdA

Proof: Let W ∈ τdA , so for each x ∈W there exists εx > 0 so that W =
⋃
x∈W BdA(x, εx).

Then for U =
⋃
x∈W Bd(x, εx), we have that U is open in X and W = U ∩A.

Hence W ∈ τA.

Let W ∈ τA and x ∈W .
Then there exists U ⊂ X so that W = A ∩ U .
Then as x ∈ U , there exists ε > 0 with

Bd(x, ε) = {y ∈ X | d(x, y) < ε} ⊂ U

Then we also have that
BdA(x, ε) = {y ∈ A | dA(x, y) < ε} ⊂W

Therefore W ∈ τdA .

The result follows. �

2.3 Closures, interiors, and boundaries

Definition 2.3.1. Let A ⊂ (X, d). Define
· closure of A: A =

⋂
{F ⊂ X | A ⊂ F, F is closed}

· interior of A: int(A) = A◦ =
⋃
{U ⊂ X | U ⊂ A,U is open}

· neighborhood of x: N with x ∈ N◦

Note that Ā is the smallest closed set containing A and A◦ is the largest open set contained in A.

Remark 2.3.2.
· A◦ ⊂ A ⊂ A
· A is closed iff A = A
· A is open iff A = A◦

Definition 2.3.3. Given A ⊂ (X, d), a point x ∈ A is termed a boundary point of A iff every neighborhood
N of x is such that N ∩A 6= ∅ and N ∩Ac 6= ∅. Equivalently, x ∈ A is a boundary point iff

B(x, ε) ∩A 6= ∅, B(x, ε) ∩Ac 6= ∅ ∀ ε > 0

A point x ∈ A is termed a limit point (or cluster point) of A iff for all ε > 0 B(x, ε) ∩ A contains a point
different from x.

The set of all boundary points of A is denoted bdy(A).
The set of all limit points of A is denoted Lim(A).

Proposition 2.3.4. Let (X, d) be a metric space and A ⊂ X. Then
1. A = A ∪ bdy(A)
2. A is closed iff bdy(A) ⊂ A

13



Proposition 2.3.5. Let (X, d) be a metric space and A ⊂ X. Then
1. A = A ∪ Lim(A)
2. A is closed iff Lim(A) ⊂ A

Definition 2.3.6. Let (X, d) be a metric space and A ⊂ X. Then A is termed dense in X iff A = X. In
general, if A ⊂ B ⊂ X, then A is termed dense in B iff B ⊂ A.

Another way to characterize denseness is to say A ⊂ X is dense in X iff every open ball B(z, ε) ⊂ X intersects
A.

Example 2.3.7. Q ⊂ R and R \Q ⊂ R are dense in R.

Proposition 2.3.8.
1. A ∪B = A ∪B
2. int(A ∩B) = int(A) ∩ int(B)

Proposition 2.3.9.
1. (A)c = int(Ac)
2. bdy(A) = A \ int(A)

Definition 2.3.10. Given a metric space (X, d), the space is termed separable iff X has a countable dense
set. Otherwise the space is termed non-separable.

Example 2.3.11.

· R is separable
· Rn is separable
· R∞ is not separable

· (`1, ‖ · ‖1) is separable

· (`∞, ‖ · ‖∞) is not separable

It is a direct consequence of the definition of a separable metric space that any separable metric space has
cardinality at most c.

2.4 Sequences in metric spaces

Definition 2.4.1. For (X, d) a metric space, {xn} ⊂ X converges to x0 ∈ X iff for every ε > 0 there exists
N0 ∈ N such that for all n > N0, d(x0, x) < ε. This relationship is expressed as lim

n→∞
[xn] = x0 or xn → x0.

If such an x0 does not exist, then {xn} is said to diverge.

Proposition 2.4.2. Given a sequence {xn} in a metric space (X, d),

lim
n→∞

[xn] = x0 and lim
n→∞

[xn] = y0 =⇒ x0 = y0

Proof: Suppose that x0 6= y0, or equivalently, that d(x0, y0) = ε > 0.
Then we can find N0 ∈ N such that if n > N0, then d(xn, x0) < ε

2 and d(xn, y0) < ε
2 .

This implies that

d(x0, y0) 6 d(x0, xn) + d(y0, xn) <
ε

2
+
ε

2
= ε

As ε was arbitrary, x0 = y0. �

Remark 2.4.3. A sequence xn → x0 iff yn → x0 for all subsequences {yn} of {xn}.

Definition 2.4.4. Given a sequence {xn}, a point x0 is termed a limit point of {xn} iff there exists a

subsequence {xnk
}∞k=1 with xnk

k→∞−−−−−→ x0.

Thes set of all limit points of a sequence xn is denoted by lim∗({xn}).
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Remark 2.4.5. Note that lim∗({xn}) 6= Lim({xn}). For example, for xn = (−1)n−1, we have lim∗({xn}) =
{−1, 1} and Lim({xn}) = ∅.

Theorem 2.4.6. Let (X, d) be a metric space and A ⊂ X. Then
1. x0 ∈ bdy(A) iff there exists {xn} ⊂ A and {yn} ⊂ Ac with xn, yn → x0
2. x0 ∈ Lim(A) iff there exists {xn} ⊂ A \ {x0} with xn → x0
3. A is closed iff {xn} ⊂ A and xn → x0 implies x0 ∈ A

Proof: 1. Suppose that x0 ∈ bdy(A).

For each n ∈ N, we can choose xn ∈ B(x0,
1
n ) ∩A and yn ∈ B(x0,

1
n ) ∩Ac.

This gives us {xn} ⊂ A and {yn} ⊂ Ac with xn, yn → x0.

Suppose that there exist {xn} ⊂ A and {yn} ⊂ Ac with xn, yn → x0.
Let ε > 0 so we can find N0 ∈ N so that xN0

, yN0
∈ B(x0, ε).

Hence x0 ∈ bdy(A).

2. Suppose that x0 ∈ Lim(A).
For any n ∈ N, there exists xn ∈ B(x0,

1
n ) ∩ (A \ {x0}).

Hence {xn} is such that xn 6= x0, but xn → x0.

Suppose there exists {xn} ⊂ (A \ {x0}) with xn → x0.
Let ε > 0 so for some n ∈ N, xn ∈ B(x0, ε), and as xn 6= x0, x0 is a limit point.

3. Suppose that A is closed, and let {xn} ⊂ A with xn → x0.
If x0 ∈ Ac, then there exists ε0 > 0 with B(x0, ε0) ∩A 6= ∅.
This is impossible, as {xn} ⊂ A and xn → x0, and so xn ∈ B(x0, ε0) for all n large enough.

Suppose that A is not closed.
Then there exists x0 ∈ Lim(A) with x0 /∈ A.
Then there exists (by 2.) a sequence {xn} ⊂ A with xn → x0, contradicting the assumption. �

3 Completeness

3.1 Continuity

Definition 3.1.1. Given metric spaces (X, dX), (Y, dY ) with f : X → Y , the function f is termed continuous
at x0 ∈ X iff for every ε > 0 there exists δ > 0 such that if dX(x, x0) < δ, then dY (f(x), f(x0)) < ε.
Otherwise, x0 is termed a point of discontinuity of f .

The function f is termed continuous on X iff it is continuous at every x0 ∈ X.

Theorem 3.1.2. Let (X, dX), (Y, dY ) be metric spaces with x0 ∈ X and f : X → Y . Then the following
are equivalent:

1. f(x) is continuous at x0
2. If W ⊂ Y is a neighborhood of y0 = f(x0), then f−1(W ) is a neighborhood of x0
3. If {xn} ⊂ X with xn → x0, then f(xn)→ f(x0)

Proof: (1. =⇒ 2.) Let W be a neighborhood of y0 = f(x0).
Then there exists ε0 > 0 such that B(y0, ε0) ⊂W .
Then there exists δ > 0 such that if x ∈ B(x0, δ), then dY (f(x), f(x0)) < ε, so f(x) ∈ B(y0, ε0) ⊂W .
Hence B(x0, δ) ⊂ f−1(W ), and so x0 ∈ int(f−1(W )).

(2. =⇒ 3.) Let {xn} ⊂ X with xn → x0 and y0 ∈ f(x0).
For any ε > 0 we have that B(y0, ε) is a neighborhood of y0.
Hence V = f−1(B(y0, ε)) is a neighborhood of x0.
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Hence there exists δ > 0 with B(x0, δ) ⊂ V .
Then as xn → x0, we can find N0 ∈ N such that if n > N0, then xn ∈ B(x0, δ).
Then f(xn) ∈ B(f(x0) = y0, ε), and so f(xn)→ f(x0).

(3. =⇒ 1.) Suppose that f(x) is not continuous at x0.
Then there is ε0 > 0 such that for δ > 0, we can find xδ with dX(xδ, x0) < δ, but dY (f(xδ), f(x0)) > ε0.
Let δ = 1

n and xδ = xn.
Then xn → x0, but f(xn) /∈ B(f(x0), ε0) for any n.
Hence f(xn) 6→ f(x0). �

Theorem 3.1.3. Let (X, dX), (Y, dY ) be metric spaces with f : X → Y . Then the following are equivalent:
1. f is continuous on X
2. f−1(W ) is open for every open W ⊂ Y
3. If xn → x0, then f(xn)→ f(x0)

Definition 3.1.4. Given a metric space (X, d) with A ⊂ X, a function f : X → Y is termed continuous on A
iff f |A is continuous on (A, dA), where dA is the metric on A induced by d.

3.2 Complete metric spaces

Definition 3.2.1. A metric space (X, d) is termed complete iff every Cauchy sequence in (X, d) converges.

Definition 3.2.2. Given a metric space (X, d) with A ⊂ X, the set A is termed bounded iff there exists
x0 ∈ X and M > 0 such that A ⊂ B[x0,M ].

Proposition 3.2.3. Given a metric space (X, d), if a sequence {xn} ⊂ X is Cauchy, then it is bounded.

Proposition 3.2.4. Given a metric space (X, d), if a sequence {xn} ⊂ X is Cauchy and a subsequence
{xnk

} converges to x0, then xn → x0.

Theorem 3.2.5. [Bolzano, Weierstrass]
Every bounded sequence in R has a convergent subsequence.

Corollary 3.2.6. The metric space (R, | · |) is complete.

Theorem 3.2.7. (Rn, ‖ · ‖2) is complete.

Proof: Let {~xk} ⊂ Rn be Cauchy.
Then for all i = 1, 2, . . . , n, we have |xk,i− xm,i| 6 ‖~xk − ~xm‖2, hence {xkn} is Cauchy and thus convergent.
Therefore ~xn → ~x0, where x0,i = lim

n→∞
[xk,i]. �

Theorem 3.2.8. Let 1 6 p 6∞. Then (`p, ‖ · ‖p) is complete.

Proof: The cases done here are only for p ∈ {1,∞}. For other p, the proof follows similarly.

Case 1: p =∞
Let {~xk}∞k=1 ∈ `∞ be Cauchy, with ~xk = {xk,i}∞i=1.
Note that for any i ∈ N, |xn,i − xm,i| 6 ‖~xn − ~xw‖∞ for all m,n ∈ N.
Hence {xk,i} is Cauchy in R for all i, and so it is convergent, as R is complete.
Let x0,i = lim

k→∞
[xk,i] for each i ∈ N, and ~x0 = {xk,i}∞i=1.

We claim that ~x0 ∈ `∞ and ~xk → ~x0 in ‖ · ‖∞.

Let ε > 0 .
Since {~xi} is Cauchy, there exists N ∈ N such that if k,m > N , then ‖~xk − ~xm‖∞ < ε

2 .
Let n > N , so if m > N , then |xn,i − xm,i| < ε

2 for all i, so we have that

|xn,i − x0,i| = lim
m→∞

[|xn,i − xm,i|] 6
ε

2
< ε
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Therefore {xn,i − x0,i}∞i=1 ∈ `∞, and so {x0,i}∞i=1 ∈ `∞, and to prove the claim, note that

‖~xn − ~x0‖∞ = sup
i
{|xn,i − x0,i|} 6

ε

2
< ε

Case 2: p = 1
Let {~xk}∞k=1 ∈ `1, with ~xk Cauchy.
Then |xk,i − xm,i| 6 ‖~xk − ~xm‖1, implying {xk,i}∞i=1 is Cauchy for all k ∈ N.
Let x0,i = lim

n→∞
[xk,i] for all i ∈ N.

Let ε > 0 .
Then we can find N ∈ N such that if k,m > N , then ‖~xk − ~xm‖1 < ε

2 .
Let n > N , and so if m > N , then for all j ∈ N,

j∑
i=1

|xn,i − xm,i| 6 ‖~xn − ~xm‖1 6
ε

2

This directly implies that, for all i ∈ N,

j∑
i=1

|xn,i − x0,i| = lim
m→∞

[
j∑
i=1

|xn,i − xm,i|

]
6
ε

2
< ε

Letting j →∞, we find that

i∑
i=1

nfty|xn,i − x0,i| = lim
j→∞

[
j∑
i=1

|xn,i − x0,i|

]
6
ε

2
< ε

Therefore {xn,i − x0,i}∞i=1 ∈ `1, and {x0,i} ∈ `1.
Hence ‖~xn − ~x0‖ 6 ε

2 < ε. �

3.3 Completeness of Cb(X)

The space Cb(X) is the space of all continuous bounded functions on x.

Definition 3.3.1. Let fn : X → R be a sequence of functions. Then we say that {fn} converges pointwise

on X to some f0 : X → R iff for all x0 ∈ X, fn(x0)
n→∞−−−−−→ f0(x0)

Example 3.3.2. Let X = [0, 1] and fn = xn, with f0(x) =

{
0 if x ∈ [0, 1)

1 if x = 1

Then fn → f0 pointwise, and every fn is continuous, but f0 is not.

Definition 3.3.3. Let (X, dX), (Y, dY ) be metric spaces and {fn : X → Y } a sequence of functions with
f0 : X → Y fixed. Then {fn} converges uniformly to f0 on X iff for every ε > 0 there exists N0 ∈ N such
that if n > N0, then dY (fn(x), f0(x)) < ε for all x ∈ X.

Theorem 3.3.4. If {fn : X → Y } is such that {fn} converges uniformly on X and if each fn is continuous
at each x0 ∈ X, then f0 is continuous at x0 ∈ X. In particular, if each fn is continuous, then so is f0.

Proof: Let ε > 0 and choose N0 ∈ N such that if n > N0, then dY (fn(x), f0(x)) < ε
3 .

As fN0 is continuous at x0, there exists δ > 0 such that if dX(x, x0) < δ, then dY (fN0(x), fN0(x0)) < ε
3 .

Now let dX(x, x0) < δ, so then

dY (f0(x), f0(x0)) 6 dY (f0(x), fN0
(x)) + dY (fN0

(x), fN0
(x0)) + dY (fN0

(x0), f0(x0))

<
ε

3
+
ε

3
+
ε

3
= ε
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Therefore f0 is continuous at x0. �

Theorem 3.3.5. Let (X, d) be a metric space. Let Cb(X) = {f : X → R | f(x) is bounded and continuous
on R}. Let ‖ · ‖∞ = sup{|f(x)| | x ∈ X}. Then (Cb(X), ‖ · ‖∞) is a normed linear space.

Theorem 3.3.6. Cb(X) is complete.

Proof: Let {fn} ⊂ Cb(X) be Cauchy.
If x ∈ X, then |fn(x)− fm(x)| 6 ‖fn − fm‖∞, so {fn(x)}∞n=1 is Cauchy for all x ∈ X.
Let f0(x) = lim

n→∞
[fn(x)] for all x ∈ X.

Claim: f0 ∈ Cb(X) and fn
n→∞−−−−−→ f0

Let ε > 0 .
Then there exists N0 ∈ N such that if n,m > N0, then |fn(x)− fm(x)| < ε

2 for all x ∈ X.
Let n > N0, so

|fn(x)− f0(x)| = lim
m→∞

[|fn(x)− fm(x)|] 6 ε

2
< ε

This proves that fn → f0 uniformly on X, which implies that f0 is continuous on X.
Since fn(x) ∈ Cb(X) is bounded, there exists M > 0 such that ‖fn‖∞ < M for all n ∈ N.
Then for any x ∈ X,

|f0(x)| 6 |f0(x)− fN0
(x)|+ |fN0

(x)|

This proves that f0 is bounded on X.
Applying the previous result, for all n > N0

|fn(x)−f0(x)| < ε

2
for all x ∈ X

=⇒ ‖fn − f0‖∞ 6
ε

2
< ε

=⇒ fn → f0 in ‖ · ‖∞

This proves the claim and completes the proof. �

Example 3.3.7.
1. Convergence in Cb(X) is exactly uniform convergence.
2. For X = N, Cb(X) = `∞

Proposition 3.3.8. Let (X, d) be a complete metric space with A ⊂ X. Then (A, dA) is complete iff A is
closed in (X, d).

Proof: (⇐) Suppose that A is closed in (X, d).
Let {xn} ⊂ A be Cauchy, so {xn} is Cauchy in X.
Therefore xn → x0 ∈ X, but as A is closed, x0 ∈ A, so A is complete.

(⇒) Suppose that (A, dA) is complete.
Let {xn} ⊂ A with xn → x0 ∈ X.
Then {xn} is Cauchy in X and Cauchy in A.
By completeness, xn → y0 ∈ A, implying x0 = y0.
Hence A is closed. �

Definition 3.3.9. Given a metric space (X, dX), a completion of (X, dX)is a pair ((Y, dy), ϕ), where (Y, dY )
is complete and ϕ : X → Y is an isometry, i.e. dY (ϕ(x1), ϕ(x2)) = dX(x1, x2) for all x1, x2 ∈ X, with
ϕ(X) = Y .

Theorem 3.3.10. Every metric space (X, d) has a completion.
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Proof: Observe that the function Γx0(x) = d(x, x0) is continuous on X for all x0 ∈ X.
Choose a ∈ X, and for every v ∈ X, define

fv : X → R
x 7→ d(v, x)− d(x, a)

Note that fv is continuous, and

|fv(x)| = |d(v, x)− d(v, a)| 6 d(v, a) =⇒ fv ∈ Cb(X)

Define a function ϕ : X → Cb(X) by ϕ(v) = fv.
Then for v, w ∈ X, we have that

|fv(x)− fw(x)| = |(d(v, x)− d(v, a))− (d(w, x)− d(w, a))| = |d(v, x)− d(v, w)| 6 d(v, w)

As the above holds for each x ∈ X, we have that ‖fv − fw‖∞ 6 d(v, w), and letting x = v, we find that

|fv(v)− fw(v)| = |d(v, v)− d(v, w)| = d(v, w) =⇒ ‖fv − fw‖ = d(v, w)

Let Y = ϕ(X) ⊂ Cb(X), completing the completion. �

Remark 3.3.11. Using the same notation as in the theorem above, note that once one isometric function
for a completion is found, they are all found. Consider two isometries ϕ1, ϕ2:

X

ϕ−11

Y1 = ϕ1(X) Y2 = ϕ2(X)

ϕ1

ϕ2

The function ϕ−11 exists as ϕ1 is an isometry, necessitating an inverse. Then ϕ2 ◦ ϕ−11 : Y1 → Y2 is an
isometry itself, and an isomorphism.

3.4 Characterizations of completeness

Recall the nested interval theorem for R:

Theorem 3.4.1. If {[an, bn]} is a sequence with [an+1, bn+1] ⊂ [an, bn] for all n ∈ N, then

∞⋂
n=1

[an, bn] 6= ∅

Is there a generalization of this for complete spaces?

Definition 3.4.2. Given a non-empty set A ⊂ (X, d), denote the diameter of A to be

diam(A) = sup{d(x, y) | x, y ∈ A}

Proposition 3.4.3. Given a non-empty set A ⊂ (X, d), diam(A) = diam(A).

19



Proof: If diam(A) =∞, the proposition holds, so assume that diam(A) <∞.

Clearly diam(A) 6 diam(A), as A ⊂ A.
Let ε > 0 and x, y ∈ A.
Then there exist w, v ∈ A with d(x,w) < ε

2 and d(v, y) < ε
2 , so

d(x, y) 6 d(x,w) + d(w, v) + d(v, y)

<
ε

2
+ diam(A) +

ε

2
= diam(A) + ε

As ε was arbitrary, d(x, y) 6 diam(A), so sup{d(x, y) | x, y ∈ A} 6 diam(A). �

Theorem 3.4.4. [Cantor’s intersection theorem]
Let (X, d) be a metric space. Then the folowing are equivalent:

1. (X, d) is complete
2. If {Fn}∞n=1 is a sequence of non-empty closed subsets of X with Fn+1 ⊂ Fn for all n ∈ N and

lim
n→∞

[diam(Fn)] = 0, then
∞⋂
n=1

Fn 6= ∅

Proof: (1.⇒ 2.) Assume that {Fn} is as in the assumption of 2.
For each n ∈ N, choose any xn ∈ Fn.
Let ε > 0 .
Then there exists N0 ∈ N such that diam(FN0

) < ε.
Further, for all m,n > N0, we have that d(xn, xm) < ε, hence {xn} is Cauchy.
Since X is complete, xn → x0 for some x0 ∈ X.
However, note that {xi}∞i=n ⊂ Fn, and {xi}∞i=n → x0.
As Fn is closed, x0 ∈ Fn for all n ∈ N, thus

x0 ∈
∞⋂
n=1

Fn

(
{x0} =

∞⋂
n=1

Fn

)

(2.⇒ 1.) Assume 2. and let {xn} ⊂ X be Cauchy.
For each n ∈ N, let An = {xi}∞i=n and let Fn = An.
As {xn} is Cauchy, diam(An)→ 0, implying that diam(Fn)→ 0.
Clearly Fn 6= ∅ and Fn+1 ⊂ Fn, hence there exists x0 ∈

⋂∞
n=1 Fn.

Let ε > 0 and choose N0 ∈ N so that diam(FN0) < ε.
Then AN0 = {xi}∞i=N0

⊂ FN0 ⊂ B(x0, ε).
Hence for all n > N0, d(xn, x0) < ε, implying xn → x0. �

Remark 3.4.5. There are some counterexamples to why the limit of diam(Fn) must go to 0 rather than
something else. In the first we use the 1-norm on R, and in the second example we apply the discrete metric.

1. Fn = [n,∞) ⊂ R, so diam(Fn) =∞ for all n ∈ N, and
⋂∞
n=1 Fn = ∅

2. Fn = {i}∞i=n ⊂ N, so diam(Fn) = 1, and
⋂∞
n=1 Fn = ∅

Definition 3.4.6. Let (X, ‖ · ‖) be a normed linear space. If X is complete with respect to the metric
induced by ‖ · ‖, then (X, ‖ · ‖) is termed a Banach space.

Definition 3.4.7. Let (X, ‖ · ‖) be a normed linear space. Given {xn} ⊂ X, for each k ∈ N, the

kth partial sum of
∑∞
n=1 xn is defined as Sk =

∑k
n=1 xn.

The sum
∑∞
n=1 xn is said to converge iff {Sk}∞k=1 converges. Otherwise, the sum is said to diverge.
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Theorem 3.4.8. [Generalized Weierstrass M-test]
Let (X, ‖ · ‖) be a normed linear space with {xn} ⊂ X. Then the following are equivalent:

1. (X, ‖ · ‖) is a Banach space
2. If

∑∞
n=1 ‖xn‖ <∞, then

∑∞
n=1 xn converges in X

Proof: (1. =⇒ 2.) Suppose that
∑∞
n=1 ‖xn‖ converges in X.

Let Tk =
∑k
n=1 ‖xn‖ for all k ∈ N, so {Tk}∞k=1 is Cauchy.

So for ε > 0 we can find N0 ∈ N such that if k > m > N0, then

k∑
n=m+1

‖xn‖ = |Tk − Tm| < ε

Let Sk =
∑k
n=1 xn for all k ∈ N, so for k > m > N0 as above,

‖Sk − Sm‖ =

wwwww
n∑

k=m+1

xn

wwwww 6
n∑

k=m+1

‖xn‖ < ε

Hence {Sk} is Cauchy, and therefore convergent.

(2. =⇒ 1.) Let {xn} ⊂ X be Cauchy.
For all k ∈ N, choose nk ∈ N such that if i, j > nk, then ‖xi − xj‖ < 1

2k
.

Let gk = xnk
− xnk+1

, and note that ‖xnk
− xnk+1

‖ < 1
2k

, so that

∞∑
k=1

‖gk‖ =

∞∑
k=1

‖xnk
− xnk+1

‖ <
∞∑
k=1

1

2k
= 1

By the assumption, the sequence {Sk} =
{∑k

j=1

(
xnj
− xnj+1

)}
also converges.

The sequence {Sk} may be simplified to

Sk =

k∑
j=1

(
xnj
− xnj+1

)
= (xn1

− xn2
) + (xn2

− xn3
) + · · ·+ (xnk

− xnk+1
) = xn1

− xnk+1

It follows directly that

xnk+1

k→∞−−−−−→ xn1
−
∞∑
j=1

(
xnj
− xnj+1

)
Since the right hand side is finite, we have that {xnk+1

} converges in (X, ‖ · ‖).
Since {xn} is Cauchy, {xn} converges in (X, ‖ · ‖). �

3.5 The Banach contractive mapping theorem

Definition 3.5.1. Let (X, d) be a metric space with Γ : X → X. Then for all x, y ∈ X,

· x is termed a fixed point of Γ iff Γ(x) = x

· Γ is termed Lipschitz iff there exists a constant α > 0 such that d(Γ(x),Γ(y)) 6 αd(x, y)

· Γ is termed a contraction iff there exists a constant k ∈ [0, 1) such that d(Γ(x),Γ(y)) 6 kd(x, y)

Theorem 3.5.2. [Banach contractive mapping theorem]
Let (X, d) be a complete metric space and Γ : X → X a contraction. Then Γ has a unique fixed point
x0 ∈ X.
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Proof: Let x1 ∈ X, and xi+1 = Γ(xi) for i ∈ N, and observe that

d(x3, x2) = d(Γ(x2),Γ(x1)) 6 kd(x2, x1)

d(x4, x3) = d(Γ(x3),Γ(x2)) 6 kd(x3, x2) 6 k2d(x2, x1)

d(x5, x4) = d(Γ(x4),Γ(x3)) 6 kd(x4, x3) 6 k3d(x2, x1)

...

d(xn+1, xn) = d(Γ(xn),Γ(xn−1)) 6 kd(xn, xn−1) 6 kn−1(x2, x2)

Hence for all m > n ∈ N,

d(xm, xn) 6 d(xm, xm−1) + · · ·+ d(xn+1, xn)

6 km−2d(x2, x1) + · · ·+ kn−1d(x2, x1)

= kn−1d(x2, x1)
(
km−n−1 + · · ·+ k + 1

)
<
kn−1d(x2, x1)

1− k

Since kn → 0 as n→∞, it follows that {xn} is Cauchy.
As (X, d) is complete, {xn} converges to some x0 ∈ X.
It is clear that Γ is continuous, and hence Γ(xn)→ Γ(x0).
But Γ(xn) = xn+1 → x0, and so Γ(x0) = x0.

Now suppose that also Γ(y0) = y0, so for all n ∈ N,

d(x0, y0) = d(Γ(x0),Γ(y0)) 6 kd(x0, y0) =⇒ d(x0, y0) 6 knd(x0, y0)

And as k ∈ [0, 1), knd(x0, y0)→ 0, and so x0 = y0. �

Remark 3.5.3. If k = 1, then the above theorem will not hold, as f : [1,∞)→ [1,∞) given by f(x) = x+ 1
x

shows.

Theorem 3.5.4. [Picard, Lindelof]
Let f : [0, 1]× R→ R be continuous and Lipschitz in y. Equivalently, suppose that there exists α > 0 such
that for all y, z ∈ R and t ∈ [0, 1],

|f(t, y)− f(t, z)| 6 α|y − z|

Then for a fixed y0 ∈ R, there exists a unique function y(t) ∈ C[0, 1] with

y(0) = y0

y′(t) = f(t, y(t)) for all x ∈ (0, 1)

3.6 The Baire category theorem

Remark 3.6.1. Consider the function f : R→ R, given by

f(x) =


0 if x ∈ R \Q
1 if x = 0
1
n if x = n

m ∈ Q,m ∈ Z, n ∈ N, gcd(m,n) = 1

Then f is continuous at every x ∈ R \ Q and discontinuous at every x ∈ Q. However, the reverse type of
function, one that is continuous at every Q and discontinuous at every R \Q, is impossible to construct.
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Definition 3.6.2. Let (X, d) be a metric space with A ⊂ X.
· A is termed Fσ iff there exist closed sets {Fn}∞n=1 with A =

⋃∞
n=1 Fn

· A is termed Gδ iff there exist open sets {Un}∞n=1 with A =
⋂∞
n=1 Un

· A is termed nowhere dense iff int(A) = ∅
· A is of first category in X iff there exist nowhere dense sets {An}∞n=1 with A =

⋃∞
n=1An

· A is of second category in X iff A is not of first category
· A is termed residual iff Ac is of first category

Remark 3.6.3.
· A is Fσ iff Ac is Gδ
· [0, 1) =

⋃∞
n=1[0, 1− 1

n ] =
⋂∞
n=1(− 1

n , 1) is both Fσ and Gδ
· If (X, d) is a metric space and F ⊂ X is closed, then F is Gδ implies F c is Fσ
· Q is of first category in R
· The Cantor set is nowhere dense in R
· A is nowhere-dense in X iff A is nowhere dense in X

Definition 3.6.4. For metric spaces (X, dX) and (Y, dY ), let f : (X, dX)→ (Y, dY ) be a function. Define

D(f) = {x0 ∈ X | f(x) is discontinuous at x0}
Dn(f) = {x0 ∈ X | for every δ > 0 there exists y, z ∈ Bx(x0, δ) such that dY (f(y), f(z)) > 1

n}

Proposition 3.6.5. For metric spaces (X, dX) and (Y, dY ), let f : (X, dX) → (Y, dY ) be a function. Then
for each n ∈ N, Dn(f) is closed. Moreover,

D(f) =

∞⋃
n=1

Dn(f)

hence D(f) is Fσ.

Theorem 3.6.6. [Baire category theorem I]
Let (X, d) be a complete metric space. If {Un}∞n=1 is a sequence of open dense subsets of X, then

⋂∞
n=1 Un

is dense in X.

Proof: Let W ⊂ X be non-empty and open.
Then W ∩ U1 is non-empty and open.
Then there exists x1 ∈ X and r1 ∈ (0, 1] with B(x1, r1) ⊂ B[x1, r1] ⊂W ∩ U1.
We can further find x2 ∈ X and r2 ∈ (0, 12 ] with B(x2, r2) ⊂ B[x2, r2] ⊂ (B(x1, r1) ∩ U2).
Proceeding inductively, we get sequences {xn} ⊂ X and {rn} ⊂ (0, 1] with ri ∈ (1, 1i ], and

B(xn+1, rn+1) ⊂ B[xn+1, rn+1] ⊂ (B(xn, rn) ∩ Un+1)

Let Fn = B[xn, rn].
Then Fn+1 ⊂ Fn and diam(Fn) = 2rn 6 2

n → 0 as n→∞.
By Cantor’s intersection theorem, {x0} =

⋂∞
n=1 Fn =

⋂∞
n=1B[xn, rn].

Hence x0 ∈ B[x1, r1] ⊂W , meaning that x0 ∈W and x0 ∈ B[xn, rn] ⊂ Un for all n ∈ N.
Hence x0 ∈W ∩ (

⋂∞
n=1 Un). �

Remark 3.6.7. Note that U is open and dense iff F = U c is closed and nowhere dense.

Theorem 3.6.8. [Baire category theorem II]
If (X, d) is a complete metric space, then X is of 2nd category in itself.

Proof: Suppose that X is of 1st category in X.
Then for nowhere dense sets An, we have that

X =

∞⋃
n=1

An =

∞⋃
n=1

An
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Then for Un =
(
An
)c

, we have that Un is dense and open in X, implying that

∞⋂
n=1

Un = Xc = ∅

As this contradicts BCTI, this is false. �

Corollary 3.6.9. Q ⊂ R is not Gδ.

Proof: Suppose that Q =
⋂∞
n=1 Un for each Un open.

Since Q ⊂ Un for each n ∈ N, Un must be dense.
Let Fn = U cn.
Then R \Q =

⋃∞
n=1 Fn, where each Fn is closed and nowhere dense.

For Q = {r1, r2, . . . }, let F ′n = Fn ∪ {rn}.
Then as F ′n is closed and nowhere dense, R =

⋃∞
n=1 F

′
n is of 1st category, a contradiction. �

Corollary 3.6.10. There is no function f : R→ R with D(f) = R \Q.

One wonders if the converse is true, i.e. given an Fσ set A ⊂ R, is it possible to find a function f : R→ R
with D(f) = A. It turns out that such a function does always exist, given that A is of first category in R.

Definition 3.6.11. Let (X, dx) and (Y, dY ) be metric spaces and {fn : X → Y } a sequence of functions
with fn → f0 : X → Y pointwise on X. Then {fn} converges to f0 uniformly at x0 iff for ever ε > 0 there
exists a δ > 0 and N0 ∈ N, such that for x ∈ B(x0, δ) we have dY (fn(x), f0(x0)) < ε.

Theorem 3.6.12. Let (X, dx) and (Y, dY ) be metric spaces and {fn : X → Y } a sequence of functions
with fn → f0 : X → Y pointwise on X and uniformly at x0. If each fn is continuous at x0, then f0 is also
continuous at x0.

Theorem 3.6.13. Let fn(a, b) → R with fn → f0 pointwise on (a, b). If each fn is continuous on (a, b),
then fn → f0 uniformly at some x0 ∈ (a, b).

Corollary 3.6.14. If {fn : R → R} is a sequence of continuous functions with fn → f0 pointwise on R,
then there exists a dense Gδ set A ⊂ R with f0(x) continuous at each x0 ∈ A.

Remark 3.6.15. It immediately follows that if f : R → R is differentiable on R, then f ′(x) is continuous
at each point in a dense Gδ subset of R.

Theorem 3.6.16. If {fn : (a, b) → R} is a sequence of continuous functions that converge pointwise on
(a, b), then there exists x0 ∈ (a, b) such that fn → f0 uniformly at x0.

Proof: Claim: There exists α1 < β1 ∈ (a, b) and N1 ∈ N such that if x ∈ [α1, β1] and n,m > N, then
|fn(x)− fm(x)| 6 1.

Suppose that the claim fails, so there exists a < t1 < b and n1,m1 ∈ N such that |fn1
(t1)− fm1

(t1)| > 1.
Since fn1

− fm1
in continuous, we can find an open interval I1 with I1 ⊂ (a, b) and |fn1

(x)− fm1
(x)| > 1

for all x ∈ I1.
As the claim does not hold, we can find t1 ∈ I1 and n2,m2 > max{n1,m1} such that |fn2(x)−fm2(x)| > 1.
Again by the continuity of fn2

− fm2
, we can find an open interval I2 with I2 ⊂ I2 ⊂ I1 ⊂ I1 ⊂ (a, b) for

which |fn2
(x)− fm2

(x)| > 1 for all x ∈ I2.

Proceed now inductively to choose a sequence {In} of open intervals and {nk}, {mk} ⊂ N such that
(a, b) ⊃ I1 ⊃ I1 ⊃ I2 ⊃ I2 ⊃ I3 ⊃ · · · and nk+1,mk+1 > max{nk,mk} with |fnk

(x) − fmk
(x)| > 1 for all

x ∈ Ik.
By the Weierstrass M-test, there exists t0 ∈

⋂∞
k=1 Ik =

⋂∞
k=1 Ik.
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Then |fnk
(t0)− fmk

(t0)| > 1 for all k, so {fn(t0)} is not Cauchy, a contradiction.
Hence the claim holds.

By a similar inductive procedure, we can construct {[αk, βk]} with (a, b) ⊂ (α1, β1) ⊂ [α1, β1] ⊃ (α2, β2) ⊃
[α2, β2] ⊃ (α3, β3) ⊃ · · · and {Nk} ⊂ N with N1 < N2 < N3 < · · · such that if n,m > k, then |fn(x) −
fm(x)| < 1

k for all x ∈ [αk, βk].
Let x0 ∈

⋂∞
k=1[αk, βk] =

⋂∞
k=1(αk, βk).

Let ε > 0 and choose k ∈ N such that 1
k < ε

If x ∈ (αk, βk) and n,m > k, then |fn(x)− fm(x)| 6 1
k < ε.

And as x0 ∈ (αk, βk), we can find δ > 0 so that B(x0, δ) ⊂ (αk, βk). �

4 Compactness

4.1 Compact metric spaces

Definition 4.1.1. Let (X, d) be a metric space. A collection {Uα}α∈I of open sets in X is termed an
open cover (or cover) of X iff X =

⋃
α∈I Uα.

Similarly, for A ⊂ X, a collection of sets {Uα}α∈I is said to cover A iff A ⊂
⋃
α∈I Uα.

Given a cover {Uα}α∈I of X, a subcover of X is a collection {Uα}α∈J for J ⊂ I and X =
⋃
α∈J Uα.

A subcover {Uα}α∈J is termed a finite subcover iff J is finite.

Definition 4.1.2. A metric space (X, d) is termed compact iff every cover {Uα}α∈I has a finite subcover.
For A ⊂ X1, A is compact iff every cover of A in X has a finite subcover. That is, A is compact in X iff
(A, dA) is compact.

Definition 4.1.3. A metric space (X, d) is termed sequentially compact iff every sequence {xn} ⊂ X has a
convergent subsequence. A subset A ⊂ X is termed sequentially compact iff every sequence {xn} ⊂ A has a
subsequence that converges to an element of A.

Definition 4.1.4. A metric space (X, d) has the Bolzano-Weierstrass property (or BWP) iff every infinite
subset of X has a limit point.

Theorem 4.1.5. Let (X, d) be a metric space. Then the folowing are equivalent:
1. (X, d) is sequentially compact
2. (X, d) has the BWP

Proof: (1. =⇒ 2.) Let A ⊂ X be infinite, so we can find {xn} ⊂ A with xn 6= xm ⇐⇒ n 6= m.
Then there exists {xnk

} ⊂ {xn} with xnk
→ x0.

Let ε > 0 so that B(x0, ε) contains infinitely many terms of {xnk
}, hence x0 ∈ Lim(A).

(2. =⇒ 1.) Let {xn} ⊂ X.
If there is an element in {xn} that appears infinitely many times, then clearly {xn} has a convergent

subsequence.
If this is not true, then {xn} as a subset of X is infinite.
We may also assume WLOG by (potentially) replacing {xn} with a subsequence {xnk

} that xn 6= xm ⇐⇒
n 6= m.

Then A = {xn} has a limit point x0 ∈ X.
Let ε = 1, so there exists n1 ∈ N such that xn1

∈ B(x0, 1).
Similarly we can find n2 > n1 such that xn2 ∈ B(x0,

1
2 ).

Proceeding inductively, we find {nk} ⊂ N increasing and {xnk
} with d(xnk

, x0) < 1
k .

Hence xnk
→ x0. �
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Proposition 4.1.6. Let (X, d) be a metric space and A ⊂ X. Then
1. If A is compact, then A is closed and bounded.
2. If A is closed and (X, d) is compact, then A is compact.
3. If A is sequentially compact, then A is closed and bounded.
4. If A is closed and X is sequentially compact, then A is sequentially compact.
5. If X is sequentially compact, then X is closed.

Proof: 1. Let X0 ∈ X and let Un = B(x0, n) for all n ∈ N.
Then {Un}∞n=1 is a cover of A.
Hence there is a finite subcover {Uni

}ki=1 of A with {nk} increasing.
Thus A ⊂ B(x0, nk), and if A is not closed, we can find x0 ∈ bdy(A) ⊃ A.
Let Vn = B[x0,

1
n ]c.

Then A ⊂
⋃∞
n=1 Vn and {Vn}∞n=1 is a cover with no finite subcover.

2. Suppose that X is compact and A ⊂ X is closed.
Let {Uα}α∈I be a cover of A, so {Uα}α∈I ∪ {Ac} is a cover of X.
Hence there is a finite subcover {Uα}α∈J ∪ {Ac} of X and A ⊂ {Uα}α∈J .

3. Suppose that A is sequentially compact.
Let {xn} ⊂ A with xn → x0.
By sequential compactness, we have a subsequence {xnk

} with xnk
→ y0 ∈ A.

Hence x0 = y0 and x0 ∈ A, so A is closed.

Suppose that A is not bounded.
Then we can find {xn} ⊂ A with d(xn, xm) > 1 for all n 6= m.
Therefore {xn} has no Cauchy subsequence, so A cannot be sequentially compact.

4. Suppose that A is closed and X is sequentially compact with {xn} ⊂ A.
Then there exists {xnk

} ⊂ {xn} with xnk
→ x0 ∈ X.

Since A is closed, x0 ∈ A.

5. Let {xn} ⊂ X be Cauchy.
Then {xn} has a convergent subsequence, so {xn} converges. �

Remark 4.1.7.
· If A ⊂ R is closed and bounded, then A is sequentially compact.
· A sequence {xk} ⊂ Rn converges iff {xn,i} ⊂ R converges for all 1 6 i 6 n.

Definition 4.1.8. A cell in Rn is a set A = [a1, b1]× [a2, b2]× · · · × [an, bn].

Theorem 4.1.9. [Heine, Borel]
A set A ⊂ Rn is compact iff A is closed and bounded.

Proof: (⇒) Trivial.

(⇐) Assume that A is closed and bounded, but that {Uα}α∈I is a cover of A with no finite subcover.
Since A is bounded, there exists a closed cell J1 = [a1, b1]× · · · × [an, bn] with A ⊂ J1.
Bisecting each of the component 1-cells [ai, bi] to subdivide A into 2n closed subcells.
Then at least one of those is such that its intersection with A cannot be covered by finitely many Uα.
Call this closed subcell J2, and note diam(J2) = 1

2diam(J1).
Proceed inductively to construct a sequence {Jk} of closed cells such that Jk+1 ⊂ Jk.
Then diam(Jk+1) = 1

2diam(Jk).
Let Fk = A ∩ Jk, so Fk cannot be covered by finitely many sets Uα.
Note that diam(Jk) = 1

2k−1 diam(J1)→ 0.
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Hence Fk is a sequence of non-empty nested closed sets with disappearing diameter.
Hence by Cantor’s intersection theorem,

⋂∞
k=1 Fk = {x0} ⊂ A.

Since x0 ∈ A, x0 ∈ Uα0
for some α0 ∈ I.

Therefore there exists ε > 0 such that B(x0, ε) ⊂ Uα0
.

If k is large enough so that diam(Fk) < ε
2 , then Fk ⊂ B(x0, ε) ⊂ Uα0

.
Now we have a finite subcover of Fk, a contradiction, so {Uα}α∈I has a finite subcover. �

Now we know what compactness is in Rn. Hence we can make the following observations.

Remark 4.1.10. Let A ⊂ Rn. Then equivalently
· A is compact
· A is sequentially compact
· A has the BWP
· A is closed and bounded

Definition 4.1.11. Let {Aα}α∈I ⊂ P(X) \ {∅}. Then {Aα}α∈I has the finite intersection property (FIP)
iff given {Aα1

, . . . , Aαn
}, we have that

⋂n
i=1Aαi

6= ∅.

Theorem 4.1.12. Let (X, d) be a metric space. Then equivalently
1. X is compact
2. If {Fα}α∈I is a collection of non-empty closed sets with FIP, then

⋂
α∈I Fα 6= ∅

Proof: (1.⇒ 2.) Suppose X is compact and {Fα}α∈I is as in 2.
If
⋂
α∈I Fα = ∅ and Uα = F cα, then

⋃
α∈I Uα = X, so {Uα}α∈I is a cover.

By compactness, there exists {Uα1 , . . . , Uαn} a finite subcover.
Hence

⋂n
i=1 Fαi = ∅, contradicting the FIP.

(2.⇒ 1.) Suppose that 2. holds but X is not compact.
Then there exists a cover {Uα}α∈I with no finite subcover.
Let Fα = U cα, so then {Fα}α∈I has the FIP, so

⋂
α∈I Fα 6= ∅.

This contradicts the fact that {Uα}α∈I is a cover. �

Corollary 4.1.13. If (X, d) is compact and {Fn}∞n=1 is a sequence of non-empty and closed sets with
Fn+1 ⊂ Fn for all n, then

⋂∞
n=1 Fn 6= ∅.

Corollary 4.1.14. If (X, d) is compact, then it has the BWP. In particular, (X, d) is sequentially compact.

Proof: Let A ⊂ X be infinite.
Let {x1, x2, . . . } ⊂ A be a sequence of distinct elements, and Fn = {xn, xn+1, . . . }.
By the previous corollary, there exists x0 ∈

⋂∞
n=1 Fn.

Hence for every ε > 0 we have B(x0, ε) ∩ {xn, xn+1, . . . } 6= ∅.
Therefore B(x0, ε) ∩A is infinite, so x0 ∈ Lim(A). �

Definition 4.1.15. Let (X, d) be a metric space. Then (X, d) is termed totally bounded iff for any ε > 0
there exist finitely many points {x1, . . . , xn} ⊂ X with X =

⋃n
i=1B(xi, ε).

Given a collection of points {xα}α∈I ⊂ X with X =
⋃
α∈I B(xα, ε), the set is termed a ε-net for X.

A set A ⊂ X is termed totally bounded iff (A, da) is totally bounded.

Remark 4.1.16.
· If X is totally bounded, then X is bounded.
· The metric space (N, d) for d the discrete metric, is bounded, but has no finite 1

2 -net.

Theorem 4.1.17. If (X, d) is sequentially compact, then (X, d) is totally bounded.
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Proof: Suppose that (X, d) is not totally bounded.
Then there exists ε > 0 such that X has no finite ε-net.
From this we may construct a sequence {xn} ⊂ X with d(xn, xm) > ε > 0 for n 6= m.
Then {xn} cannot have a convergent subsequence, so (X, d) can not be sequentially compact. �

Remark 4.1.18. For A ⊂ (X, d), A is totally bounded iff A is totally bounded. Given ε > 0 , a ε
2 -net for

A is an ε-net for A.

Theorem 4.1.19. Let (X, dX) be sequentially compact, and f : (X, dX)→ (Y, dY ) continuous. Then f(X)
is sequentially compact in (Y, dY ).

Proof: Let {yn} ⊂ f(X).
Then there exists {xn} ⊂ X with yn = f(xn) for all n ∈ N.
By sequential compactness, we can find a subsequence {xnk

} of {xn} with xnk
→ x0 ∈ X.

Let y0 = f(x0) ∈ f(X).
Then we have that ynk

= f(xnk
)→ f(x0), and so f(X) is sequentially compact. �

Corollary 4.1.20. [Extreme value theorem]
If (X, d) is sequentially compact and f : X → R is continuous, then there exist c, d ∈ X wih f(c) 6 f(x) 6
f(d) for all x ∈ X.

Proof: As f(X) is sequentially compact in R, f(X) is closed and bounded.
Let α = glb(f(X)) and β = lub(f(X)).
Then α, β ∈ f(X) so there exist c, d ∈ X such that α = f(c) and β = f(d). �

Theorem 4.1.21. [Lebesgue]
Let (X, d) be sequentially compact and {Uα}α∈I an open cover of X. Then there exists ε0 > 0 such that if
0 < δ < ε0 and x0 ∈ X, then there exists α0 ∈ I with B(x0, δ) ⊂ Uα0 .

Proof: Given x ∈ X, define ϕ(x) = sup{r > 0 | there exists α0 ∈ I with B(x, r) ⊂ Uα0
}.

If Uα0
= X for some α0, the theorem is trivial, so assume Uα0

6= X for all α0 ∈ I.
With this assumption, given that X is bounded, we have that ϕ(x) <∞ for all x ∈ X.
By the triangle inequality for x, y ∈ X, we find that ϕ(x) 6 d(x, y) + ϕ(y).
This implies that |ϕ(x)− ϕ(y)| 6 d(x, y).
Hence ϕ is uniformly continuous.
By the EVT, ϕ attains its minimum value ε0 > 0 on X. �

Note that the ε0 found above is termed the Lebesgue number for the cover {Uα}α∈I .

Theorem 4.1.22. [Lebesgue, Borel]
Let (X, d) be a metric space. Then equivalently

1. X is compact
2. X has the BWP
3. X is sequentially compact

Proof: We already know 1.⇒ 2. ⇐⇒ 3., hence it remains to prove 3.⇒ 1..
Let {Uα}α∈I be an open cover of X.
Let ε0 be the Lebesgue number for this cover, and find δ with 0 < δ < ε0.
Since X is totally bounded, there exist finitely many points {x1, . . . , xn} ⊂ X with X =

⋃n
i=1B(xi, δ).

Since δ < ε0, there exists αi ∈ I with B(xi, δ) ⊂ Uαi
for all i.

Therefore X =
⋃n
i=1 Uαi

, and so X is compact. �

Theorem 4.1.23. Let (X, d) be a metric space. Then X is compact iff X is complete and totally bounded.

28



Proof: (⇒) Already known.

(⇐) Let {xn} ⊂ X and X be totally bounded, so X has a finite 1
k -net for all k ∈ N.

Then there exists an open ball S1 = B(y1, 1) of radius 1 that contains infinitely many terms of {xn}.
And there exists an open ball S1 = B(y2,

1
2 ) of radius 1

2 that contains infinitely many terms in {xn}∩S1.
Proceed to construct a sequence {Sk} = {B(yk,

1
k} with infinitely many terms of {xn} in S1∩S2∩· · ·∩Sk.

Then there exist n1 < n2 < · · · such that xnk
∈ S1 ∩ · · · ∩ Sk.

Given ε > 0 , choose N ∈ N such that if k > N , then diam(Sk) = 2
k < ε.

If k > m > N , then xnm , xnk
∈ SN , which implies that d(xnk

, xnm) < ε, so {xn} is Cauchy.
Hence X is seuentially compact, so X is compact. �

Definition 4.1.24. Let (X, dX), (Y, dY ) be metric spaces. Then f : X → Y is termed uniformly continuous
iff for every ε > 0 there exists δ > 0 such that if dX(x1, x2) < δ, then dY (f(x1), f(x2)) < ε.

Remark 4.1.25. Uniform continuity implies continuity.

Theorem 4.1.26. [Sequential characterization of uniform continuity]
Let (X, dX), (Y, dY ) be metric spaces. Then equivalently

1. f is uniformly continuous
2. If {xn}, {zn} ⊂ X are such that dX(xn, zn)→ 0, then dY (f(xn), f(zn))→ 0.

Proof: (1.⇒ 2.) Let ε > 0 .
By uniform continuity, there exists δ > 0 such that if x, z ∈ X with dX(x, z) < δ, then dY (f(x), f(z)) < ε.
We can find N ∈ N sugh that if n > N , then dX(xn, zn) < δ.
Hence if n > N , then dY (f(xn), f(zn)) < ε.

(2.⇒ 1.) Suppose f is not uniformly continuous.
Then for some ε0 > 0 and each δ > 0, we can find xδ, zδ ∈ X with dX(xδ, zδ) < δ.
This gives us that dY (f(xδ), f(zδ)) > ε0.
Let δ = 1

n to get two sequences {xn}, {zn} ⊂ X with dX(xn, zn) < 1
n and dY (f(xn), f(zn)) > ε0.

Hence 2. fails. �

Theorem 4.1.27. Let (X, dX) be a compact metric space. If f : (X, dX) → (Y, dY ) is continuous, then f
is uniformly continuous.

Proof: Suppose that f is not uniformly continuous.
Then there exist {xn}, {zn} ⊂ X with dX(xn, zn)→ 0, but dY (f(xn), f(zn)) > ε0 > 0 for all n ∈ N.
Since (X, dX) is compact, {xn} has a subsequence {xnk

} with xnk
→ x0 ∈ X.

Therefore also znk
→ x0 for some subsequence {znk

} of {zn}.
By continuity, f(xnk

)→ f(x0) and f(znk
)→ f(x0), but from above dY (f(xnk

), f(znk
)) 6→ 0.

This is a contradiction. �

Definition 4.1.28. If (X, dX), (Y, dY ) are metric spaces, then a homeomorphism between X and Y is a

bijection ϕ : X → Y with ϕ and ϕ−1 continuous.

Remark 4.1.29. If ϕ is a homeomorphism, then U ⊂ X is open iff ϕ(U) is open. Hence (X, dX) and (Y, dY )
are essentially the same as topological spaces.

Theorem 4.1.30. Let (X, dX), (Y, dY ) be metric spaces and X be compact. If ϕ : X → Y is bijective and
continuous, then ϕ−1 is continuous.

Proof: We need to show that if U ⊂ X is open, then ϕ(U) is open.
Let F = U c, so F is closed, and further compact.
Hence ϕ(F ) is compact, and further closed.
As ϕ(U)c = ϕ(F ), we have that ϕ(U) is open. �
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4.2 Finite dimensional normed linear spaces

Definition 4.2.1. Let W be an n-dimensional vector space with basis {v1, . . . , vn} and Γn : Rn → W
defined by

Γn((a1, . . . , an)) = a1v1 + · · ·+ anvn

Then Γn is termed a vector space isomorphism, and Γ−1 : W → Rn is also an isomorphism.Let (W, ‖ ·
‖W ), (V, ‖·‖V ) be normed linear spaces. Let TV →W be linear. Let ‖T‖ = sup{‖T (v)‖W | v ∈ V, ‖v‖V = 1}.
Then T is termed bounded iff ‖T‖ <∞.

Definition 4.2.2. If T : V →W is linear, then T is bounded iff T is continuous.

Remark 4.2.3.
· T is bounded iff T is uniformly continuous
· T is bounded iff T is continuous at 0 ∈ V

Theorem 4.2.4. Let (W, ‖ · ‖W ) be an n-dimensional normed linear space. Let Γn : Rn →W be as before.
Then Γn,Γ

−1
n are bounded.

Proof: Let {v1, . . . , vn} be a basis of W .
Let a = (a1, . . . , an) ∈ (Rn, ‖ · ‖2) be such that ‖a‖2 6 1.

Then Γn(a) = a1v1 + · · ·+ anvn, and

‖Γn(a)‖W 6 ‖a1v1‖2 + · · ·+ ‖anvn‖2 6 ‖v1‖2a1 + · · ·+ ‖vn‖2an =⇒ ‖Γn‖ 6
n∑
i=1

‖vi‖2

This shows that Γn is bounded.

Now let S = {a ∈ Rn | ‖a‖ = 1}.
As S is compact, Γn(S) is compact on W .
The map w → ‖w‖2 is continuous on W , so Γn(S) has an element w0 of least norm.
However, ‖w0‖2 > 0.
Let α = min{‖Γn(a) | a ∈ S} > 0.
If w ∈W and ‖w‖2 6 α, then ‖Γ−1n (w)‖2 6 1 and further ‖Γ−1n ‖ 6 1

α . �

Theorem 4.2.5. If (W, ‖ · ‖W ) is n-dimensional and (V, ‖ · ‖V ) is m-dimensional and T : V →W is linear,
then T is bounded.

Proof: Consider the following diagram.

(Rn, ‖ · ‖2) (Rn, ‖ · ‖2)

(W, ‖ · ‖W ) (V, ‖ · ‖V )

Γn

Γ−1n

Γm

Γ−1m

S

T

The map S = Γ−1m ◦ T ◦ Γn : Rn → Rm is necessarily bounded and continuous.
Therefore the map T = Γm ◦ S ◦ Γ−1n is similarly bounded and continuous. �

Corollary 4.2.6. For the spaces as above, if the map T : W → (V, ‖ · ‖V ) is linear, then it is bounded.

Remark 4.2.7. As Γn is a homeomorphism, (W, ‖ · ‖W ) ' (Rn, ‖ · ‖2), for W n-dimensional. Moreover, if
w ∈W , then

‖Γ−1n (w)‖2 6 ‖Γ−1n ‖‖w‖W =⇒ ‖w‖W = ‖Γn(Γ−1n (w))‖W 6 ‖Γn‖‖Γ−1n (w)‖2 6 ‖Γn‖‖Γ−1n ‖‖w‖W
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This means that there exist α, β ∈W such that for all w ∈W ,

α‖Γ−1n (w)‖2 6 ‖w‖W 6 β‖Γ−1n (w)‖2

Hence we come to the following conclusions.

· U ⊂W is open iff Γ−1n (U) is open in Rn
· A ⊂W is bounded iff Γ−1n (A) is bounded
· F ⊂W is closed iff Γ−1n is closed

This implies that {wn} ⊂ A is Cauchy iff {Γ−1n (wn)} is Cauchy, which in turn implies (W, ‖·‖W ) is complete.

Remark 4.2.8. If (V, ‖ · ‖V ) is a normed linear space and W ⊂ V is a finite-dimensional subspace, then W
is closed. Further, if (X, ‖ · ‖X) is an infinite-dimensional Banach space and {Uα}α∈I is a basis of X, then
I is uncountable.

Remark 4.2.9. If (V, ‖·‖V ) is a normed linear space and W ⊂ V is a proper subspace of V , then int(V ) = ∅.

4.3 The Weierstrass approximation theorem

Proposition 4.3.1. The set of polynomials is dense in C[a, b].

To prove this, we first show how to normalize functions, so that we are only considering the interval [0, 1],
and f(0) = f(1) = 0. Let ϕ : [a, b]→ [0, 1] be defined by

ϕ(x) =
x− a
b− a

Then ϕ,ϕ−1 are continuous bijections, and the linear isometric operator Γ : C[a, b]→ C[0, 1] with Γ(f)(t) =
f ◦ ϕ(t) normalizes all functions to [0, 1]. Let Υ : C[0, 1]→ C[0, 1] be defined by

Υ(f)(x) = f(x)− ((f(1)− f(0))x+ f(0))

Then Υ is a linear isometric operator and enforces that f(0) = f(1) = 0. Hence we may assume that all
f ∈ C[0, 1] with f(0) = f(1) = 0.

Lemma 4.3.2. For any x ∈ [0, 1] and n ∈ N, (1− x2)n > 1− nx2.

Proof: Let h(x) = (1− x2)n − 1 + nx2, so h(0) = 0, and

h′(x) = 2nx(1− (1− x2)n−1) > 0

Hence h(x) is always increasing, and the result follows. �

Theorem 4.3.3. [Approximation theorem - Weierstrass]
For f ∈ C[a, b] there exists a sequence of polynomials {Pn} such that Pn → f uniformly on [a, b]

Proof: First we assume that [a, b] = [0, 1] and f(0) = f(1) = 0.
From here we may extend f to a uniformly continuous function on R, by f(x) = 0 for all x /∈ [0, 1].
For each n ∈ N, define

Qn(t) = cn(1− t2)n,

∫ 1

−1
Qn(t)dt = 1
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Then we have that ∫ 1

−1
(1− x2)ndx = 2

∫ 1

0

(1− x2)ndx

> 2

∫ 1/
√
n

0

(1− nx2)dx

= 2

(
2

3
√
n

)
=

4

3
·
√
n

>
1√
n

Hence cn 6
√
n.

For n ∈ N, let

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t)dt

=

∫ 1−x

−x
f(x+ t)Qn(t)dt

=

∫ 1

0

f(u)Qn(u− x)du

Above the change u = x+ t was made.
Now apply The Liebniz rule to get

d2n+1

dx2n+1
Pn(x) =

∫ 1

0

f(u)
∂2n+1

∂x2n+1
Qn(u− x)du = 0

Hence Pn is a polynomial of degree at most 2n.
So if δ ∈ (0, 1), then cn(1− x2)n 6

√
n(1− δ2)n on [−1,−δ] ∪ [δ, 1].

Let ε > 0 and δ ∈ (0, 1) such that if |t| < δ, then |f(x+ t)− f(x)| < ε
2 for all x ∈ R.

Let x ∈ [0, 1], so then

|Pn(x)− f(x)| =
∫ 1

−1
(f(x+ t)− f(x))Qn(t)dt


6
∫ 1

−1
|f(x+ t)− f(x)|Qn(t)dt

6
∫ −δ
−1
|f(x+ t)− f(x)|Qn(t)dt+

∫ δ

−δ
|f(x+ t)− f(x)|Qn(t)dt+

∫ 1

δ

|f(x+ t)− f(x)|Qn(t)dt

6 2‖f‖∞
√
n(1− δ2)n +

ε

2
+ 2‖f‖∞

√
n(1− δ2)n

= 4‖f‖∞
√
n(1− δ2)n +

ε

2

Let n be large enough so that 4‖f‖∞
√
n(1− δ2)n < ε

2 , and the result will follow. �

Corollary 4.3.4. Let f ∈ C[0, 1], and assume that
∫ 1

0
f(t)tndt = 0 for all n ∈ N ∪ {0}. Then f = 0.

Corollary 4.3.5. C[a, b] is separable.
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Proof: Define the following sets:

Pn = {p(x) ∈ C[a, b] | p(x) is a polynomial of degree n over R}
Qn = {p(x) ∈ C[a, b] | p(x) is a polynomial of degree n over Q}

Note that Qn = Pn.
Since

⋃∞
n=1 Pn is dense in C[a, b], we have that

⋃∞
n=1Qn is dense in C[a, b]. �

Proposition 4.3.6. The collection of nowhere-differentiable functions in C[0, 1] is residual.

Lemma 4.3.7. For each n ∈ N define

Fn = {f(x) ∈ C[0, 1] | ∃ x0 ∈ [0, 1− 1
n ] such that |f(x0 + h)− f(x0)| 6 nh ∀ 0 < h < 1− x0}

Then Fn is closed and nowhere dense in C[0, 1].

Proof: Let n ∈ N and {fk} ⊂ Fn with fk → f in ‖ · ‖∞.

For each k, we can find xk ∈ [0, 1− 1
n ] with |fk(xk + h)− fk(xk)| 6 nh for all 0 < h < 1− xk.

WLOG, assume that, by choosing a subsequence if necessary, xk → x0 ∈ [0, 1− 1
n ].

Let 0 < h < 1− x0 and ε > 0 .
We can choose N0 ∈ N such that if k > N0, then 0 < h < 1−xk, and N1 > N0, such that if k > N1, then

1. |f(x0)− f(xk)| < ε
4

2. |f(x0 + h)− f(xk + h)| < ε
4

3. ‖fk − f‖∞ < ε
4

Now note that

|f(x0)− f(x0 + h)| 6 |f(x0)− f(xk)|+ |f(xk)− fk(xk)|+ |fk(xk)− fk(xk + h)|+ |fk(xk + h)− f(xk + h)|+ |f(xk + h)− f(x0 + h)|

<
ε

4
+
ε

4
+ nh+

ε

4
+
ε

4
= nh+ ε

Since ε was arbitrary, |f(x0)− f(x0 + h)| 6 nh, hence f ∈ Fn, and Fn is closed.

Now let f ∈ C[0, 1] and ε > 0 .
Then we can find a polynomial p(x) with ‖f − p‖∞ < ε

2 .
Define functions

ϕ(x) =

{
x if x ∈ [0, 1]

2− x if x ∈ [1, 2]
g(x) =

∞∑
n=0

(
3

4

)n
ϕ(4nx) F (x) = g|[0,1]

Choose α > 0 such that ‖αF‖∞ < ε
2 .

Then p(x) + αF (x) ∈ Fcn for each n, so ‖f − (p+ αF )‖∞ < ε. �

Theorem 4.3.8. [Banach, Mazurkiewicz]
Let ND[0, 1] be the set of continuous nowhere-differentiable functions on [0, 1]. Then ND[0, 1] is residual in
(C[0, 1], ‖ · ‖∞).

Proof: Let f ∈ C[0, 1] be differentiable at x0 ∈ C[0, 1].
Then f ∈ Fn for some n ∈ N, and hence

ND[0, 1] ⊃

( ∞⋃
n=1

Fn

)c
=⇒ ND[0, 1]c ⊂

∞⋃
n=1

Fn︸ ︷︷ ︸
1st category

�
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4.4 The Stone-Weierstrass theorem

Definition 4.4.1. Let (X, d) be a compact metric space. Then Φ ⊂ C(X) is termed point separating iff
whenever x, y ∈ X with x 6= y, there exists ϕ ∈ Φ with ϕ(x) 6= ϕ(y).

Proposition 4.4.2. If (X, d) is a compact metric space, then C(X) is point separating.

Proof: Let a, b ∈ X with a 6= b.
Let f(x) = d(a, x), so f(a) = 0 and f(b) 6= 0. �

Remark 4.4.3. Suppose that Φ ⊂ C(X) is such that f(x) = f(y) for all f ∈ Φ. If g ∈ Φ, then g(x) = g(y)
as well. Hence if Φ is dense in C(X), it must be point-separating.

Definition 4.4.4. A linear subspace Φ ⊂ C(X) is termed a lattice iff for each f, g ∈ Φ,

i. f ∨ g ∈ Φ, for (f ∨ g)(x) = max{f(x), g(x)}
ii. f ∧ g ∈ Φ, for (f ∧ g)(x) = min{f(x), g(x)}

Remark 4.4.5. First note that the subspace of all piecewise linear functions is a lattice. Further, note that
condition ii. above is superfluous, as

f ∧ g = −(−f ∨ −g)

Next, observe that condition i. above may be replaced with simply having the absolute value of any function
in the space, as

f ∨ g =
1

2
(f + g − |f − g|)

Theorem 4.4.6. [Stone, Weierstrass - Lattice version]
Let (X, d) be a compact metric space, and Φ a linear subspace of C(X) such that

i. Φ is point separating
ii. 1 ∈ Φ
iii. If f, g ∈ Φ, then f ∨ g ∈ Φ (i.e. Φ is a lattice)

Then Φ = C(X).

Proof: Let α, β ∈ R and x, y ∈ X with x 6= y.
Then there exists g ∈ Φ with g(x) = α and g(y) = β.
Since Φ is point separating, there is ϕ ∈ Φ with ϕ(x) 6= ϕ(y), so define

g(t) = α+ (β − α)
ϕ(t)− ϕ(x)

ϕ(y)− ϕ(x)

This function satisfies the conditions.
So now let f ∈ C(X) and let ε > 0 .

Step 1: Fix x ∈ X.
We know that for all y ∈ X, we can find ϕx,y ∈ Φ with ϕx,y(x) = f(x), and ϕx,y(y) = f(y).
For each y ∈ X, ϕx,y(t)− f(t) is continous, with ϕx,y(y)− f(y) = 0.
We can find δy > 0 such that if z ∈ B(y, δy), then |ϕx,y(z)− f(z)| < ε.
Then {B(y, δy)}y∈X is a cover of X.
Then there exists {y1, . . . , yn} with {B(yi, δyi)}ni=1 covering X.
Let ϕx(t) = ϕx,y1 ∨ ϕx,y2 ∨ · · · ∨ ϕx,yn .
Then ϕx ∈ Φ with ϕx(x) = x, and f(z)− ε < ϕx(z) for all z ∈ X.

Step 2: Note that ϕ(t)− f(t) is continuous and ϕx(x)− f(x) = 0.
So for each x ∈ X, we can find δx > 0 such that z ∈ B(x, δx), and hence |ϕx(z)− f(z)| < ε.
As before, we can find {x1, . . . , xm} with {B(xj , δxj )}mj=1 a cover of X.
Let ϕ = ϕx1

∧ ϕx2
∧ · · · ∧ vpxm

∈ Φ.
Then for any z ∈ X, we have that f(z)− ε < ϕ(z) < f(z) + ε. �
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Definition 4.4.7. A linear space Φ ⊂ C(X) is termed an algebra iff f, g ∈ Φ implies fg ∈ Φ, for (fg)(x) =
f(x)g(x).

Remark 4.4.8. Let Φ ⊂ C(X) be an algebra. Then Φ is also an algebra. To see this, let f, g ∈ Φ, and
{fn}, {gn} ⊂ Φ with fn → f and gn → g. Then

‖fg − fngn‖∞ 6 ‖fg − fng‖∞ + ‖fng − fngn‖∞
6 ‖g‖∞‖f − fn‖∞ = ‖fn‖∞‖g − gn‖∞
6 ‖g‖∞‖f − fn‖∞ +M‖g − gn‖∞
n→∞−−−−−→ 0

The M above is such that ‖fn‖∞ 6M for all n ∈ N.

Theorem 4.4.9. [Stone, Weierstrass - Subalgebra version]
Let (X, d) be a compact metric space, and Φ a linear subspace of C(X) such that

i. Φ is point separating
ii. 1 ∈ Φ
iii. If f, g ∈ Φ, then fg ∈ Φ

Then Φ = C(X).

Proof: Since Φ also satisfies the above conditions, assume that Φ is closed.
Let f ∈ Φ and ε > 0 .
Then f is bounded, so there exists M > 0 such that f(x) ∈ [−M,M ] for all x ∈ X.
By the Weierstrass approximation theorem, we can find p(t) = a0 + a1t+ · · ·+ ant

n with

||t| − p(t)| < ε ∀ t ∈ [−M,M ]

Let p ◦ f = a0 + a1f + · · ·+ anf
n ∈ Φ, so then

||f(x)| − (p ◦ f)(x)| < ε ∀ x ∈ X

Hence |f | ∈ Φ.
As f ∨ g = 1

2 (f + g + |f − g|), Φ is a lattice and is dense in C(X).
As Φ is closed, Φ = C(X). �

Example 4.4.10.
· X = [a, b]

A function f ∈ C(X) is piecewise linear (or polynomial) iff there is a partition P = {a = t0 < t1 < · · · <
tn = b} such that on [ti−1, ti], f(x) = mix+ bi (or f(x) = pi(x) a polynomial). Moreover, if we let

Φ = {f ∈ C[a, b] | f is piecewise linear (or polynomial)}

then Φ is a lattice, and hence Φ = C[a, b].

· X = [0, 1]× [0, 1]
Then if we let

Φ =

{
h =

n∑
i=1

fi(x)gi(x) | fi, gi ∈ C[0, 1], n ∈ N

}
Then Φ is a subalgebra, and hence Φ = C([0, 1]× [0, 1]).

Definition 4.4.11. Let (X, d) be a compact metric space. Then define

C(X,C) = {f : X → C | f is continuous}
‖f‖∞ = max

x∈X
{|f(x)|}
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Remark 4.4.12. For f ∈ C(X,C) with f = Re(f) + iIm(f), we have that

Re(f) =
f + f

2
Im(f) =

f − f
2

Where f = Re(f)− iIm(f).

Theorem 4.4.13. [Stone, Weierstrass - Complex version]
Let (X, d) be a compact metric space, and Φ a self-adjoint linear subspace of C(X,C) such that

i. Φ is point separating
ii. 1 ∈ Φ
iii. f, g ∈ Φ implies fg ∈ Φ

Then Φ = C(X,C).

Example 4.4.14. Let X = Π = {λ ∈ C | |λ| = 1}, and φ : [0, 2π] → Π given by ϕ(θ) = eiπθ = cos(θ) +
i sin(θ). Define a metric on [0, 2π) by the arc-length on Π. Then

C(Π) ' C([0, 2π)∗) = {f ∈ C([0, 2π]) | f(0) = f(π)}

which is the set of 2π-periodic functions. Then define the point separating algebra algebra of C([0, 2π)∗) to
be

Trig(Π) = span{1, cos(nx), sin(mx) | m,n ∈ N} =

{
h =

n∑
k=0

ax cos(kx) + bk sin(kx)

}
TrigC(Π) = span{einθ | n ∈ Z}

4.5 The Arzela-Ascoli theorem

Remark 4.5.1. Given F ⊂ C(X), for (X, d) a compact metric space, when is F compact?

Definition 4.5.2. Given a metric space (X, d), a set A ⊂ X is termed relatively compact iff A is compact.

Note that an A is totally bounded iff A is totally bounded, it follows that F ⊂ C(X) is relatively compact
iff F is totally bounded.

Definition 4.5.3. Let (X, d) be a compact metric space with F ⊂ C(X). Then F is termed equicontinuous at x0
iff for each ε > 0 there exists δ > 0 such that if d(x, x0) < δ, then |f(x)− f(x0)| < ε for all f ∈ F .

Similarly, F is termed equicontinuous iff F is equicontinuous at all x0 ∈ X.

Further, F is termed uniformly equicontinuous iff for each ε > 0 there exists δ > 0 such that for all x, y ∈ X,
if d(x, y) < δ, then |f(x)− f(y)| < ε for all f ∈ F .

Example 4.5.4. Let F = {xn}∞n=1. Then F is equicontinuous on [0, 12 ], but not on [0, 1].

Remark 4.5.5. It follows from the definition that if F is finite, then it is uniformly equicontinuous.

Proposition 4.5.6. Let (X, d) be a compact metric space, and F ⊂ C(X) equicontinuous. Then F is
uniformly equicontinuous.

Proof: Let ε > 0 .
For each x0 ∈ X, there exists δx0 > 0 such that if d(x, x0) < δx0 , then |f(x)− f(x0)| < ε

2 .
This holds for all f ∈ F .
Note that {B(x0, δx0

)}x0∈X is a cover of X.
Hence this cover has a Lebesgue number δ1 > 0, so choose 0 < δ0 < δ1.

36



Hence for any y ∈ X there is some x0 ∈ X so that B(y, δ0) ⊂ B(x0, δx0).
So for z ∈ B(y, δ0), we have that

|f(y)− f(z)| 6 |f(y)− f(x0)|+ |f(x0)− f(z)|

<
ε

2
+
ε

2
= ε

�

Definition 4.5.7. Let (X, d) be a compact metric space with F ⊂ C(X). Then F is termed pointwise bounded
iff for each x0 ∈ X, {f(x0) | f ∈ F} is bounded.

Proposition 4.5.8. Let (X, d) be a compact metric space and F ⊂ C(X) equicontinuous and pointwise
bounded. Then F is uniformly bounded.

Proof: As F is uniformly equicontinuous, there exists δ > 0 such that d(x, y) < δ implies |f(x)− f(y)| < 1.
The above holds for all f ∈ F .
Let {x1, . . . , xn} be a δ-net for X, and suppose that |f(xi)| < Mi for each f ∈ F .
Let M0 = max{M1, . . . ,Mn}, so if x ∈ X, then there exists xi with d(x, xi) < δ implying

|f(x)| 6 |f(x)− f(xi)|+ |f(xi)| 6 1 +M0

�

Theorem 4.5.9. [Arzela, Ascoli]
Let (X, d) be a compact metric space with F ⊂ (C(X), ‖ · ‖∞). Then equivalently:

1. F is relatively compact
2. F is equicontinuous and pointwise bounded

Proof: 1.⇒ 2. As F is relatively compact, it is bounded.
Hence it is both pointwise and totally bounded.
Let ε > 0 .
So there exists a finite ε

3 -net {f1, . . . , fn} ⊂ F of F .
Since {f1, . . . , fn} is uniformly equicontinuous, there exists δ > 0 with d(x, y) < δ implying

|fi(x)− fi(y)| < ε

3
∀ x, y ∈ X and i = 1, . . . , n

Let f ∈ F .
For d(x, y) < δ, there exists i0 ∈ {1, 2, . . . , n} such that ‖f − fi0‖∞ < ε

3 , so

|f(x)− f(y)| 6 |f(x)− fi0(x)|+ |fi0(x)− fi0(y)|+ |fi0(y)− f(y)|

<
ε

3
+
ε

3
+
ε

3
= ε

Hence F is equicontinuous.

2.⇒ 1. Since (X, d) is compact, F is uniformly equicontinuous and uniformly bounded.
Hence there is M > 0 such that f(x) ∈ [−M,M ] for each f ∈ F and x ∈ X.
Let ε > 0 .
Let P = {−M = y0 < y1 < · · · < ym = M} be a partition of [−M,M ], with

‖P‖ = max
j
{yi − yi−1} <

ε

3
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As F is uniformly equicontinuous, there exists δ > 0 with d(x, z) < δ implies |f(x)− f(z)| < ε
3 ∀ f ∈ F .

Let {x1, . . . , xn} be a δ-net for X, and

Φ = {σ : {1, 2, . . . , n} → {1, 2, . . . ,m}}

Then |Φ| = mn = ` <∞, so for each k = 1, . . . , `, let

Fk = {f ∈ F | f(xi) ∈ [yσk(i)−i, yσk(i)] ∀ i = 1, . . . , n}

F =
⋃̀
k=1

Fk

If possible, choose fk ∈ Fk for every k.
Then for f ∈ F , f ∈ Fk for some k, and for w ∈ X, w ∈ B(xi, δ) for some i, so

|f(w)− fk(w)| 6 |f(w)− f(xi)|+ |f(xi)− fk(xi)|+ |fk(xi)− fk(w)|

<
ε

3
+
ε

3
+
ε

3
= ε

Hence ‖f − fk‖∞ < ε, and {fk} is an ε-net for F . �

Definition 4.5.10. Let (X, ‖·‖X), (Y, ‖·‖Y ) be metric spaces. Then a linear map Γ : (X, ‖·‖X)→ (Y, ‖·‖Y )
is termed compact if Γ(BX [0, 1]) ⊂ Y is relatively compact.

Theorem 4.5.11. [Peano]
Let D ⊂ R2 be open and f continuous on D. Then for (x0, y0) ∈ D, the differential equation y′ = f(x, y)
has a local solution passing through the point (x0, y0).

38



Index

A4B, 2
C(X,C), 35
Cb(X), 18
D(f), 23
Dn(f), 23
Fσ, 23
Gδ, 23
ND(A), 33
int(A), 13
Lim(A), 13
ℵ0, 9
bdy(A), 13
ε-net, 27
Fn, 33
L(X,Y ), 12
‖T‖, 12
A, 13
f , 36
P(X), 2

algebra, 35
anti-symmetric, 3
axiom of choice, 2

ball, 12
closed, 12
open, 12

bound
greatest lower, 3
least upper, 3

boundary point, 13
bounded

operator, 30
pointwise, 37

boundedness
of a set, 16

cell, 26
chain, 3
closed, 12
closure, 13
cluster point, 13
cmopact

operator, 38
compact, 25

relatively, 36
sequentially, 25

comparable, 3
completeness, 16

of `p, 16

of Rn, 16
of Cb(X), 18

completion, 18
conjugate pair, 10
continuity

at a point, 15
on a set, 15

contraction, 21
convergence

of a sequence, 14
pointwise, 17
uniform, 17
uniform at a point, 24

cover, 25
open, 25

dense, 14
nowhere, 23

diameter, 19
discontinuity

at a point, 15
divergence

of a sequence, 14

equicontinuous, 36
at a point, 36
uniformly, 36

fixed point, 21

graph, 3

homeomorphism, 29

interior, 13
isometry, 18

lattice, 34
Lebesgue number, 28
limit point

of a sequence, 14
of a set, 13

Lipschitz property, 21

maximal element, 3
metric, 10

discrete, 10
induced, 10
induced by a topology, 13

metric space, 10

neighborhood, 13

norm, 10
Euclidean, 10
p-, 10
standard, 10
supremum, 10

nowhere-differentiable, 33

open, 12
ordering, 3

by containment, 3
by inclusion, 3
partial, 3
total, 3
well-, 4

partial sum, 20
point separating, 34
poset, 3
product, 2
property

Bolzano-Weierstrass, 25
finite intersection, 27

pullback, 8

reflexive, 3
relation, 3

separable, 14
set, 2, 12

closed, 12
finite, 5
infinite, 5
of first category, 23
of second category, 23
open, 12
power, 2
residual, 23
size, 2

size, 2
space

Banach, 20
metric, 12
normed linear, 10
topological, 12

subcover, 25
finite, 25

symmetric, 3
symmetric difference, 2

theorem
Baire category, 23

39



Banach conractive
mapping, 21

Cantor’s intersection, 20
extreme value, 28

Heine-Borel, 26
nested interval, 19
Weierstrass

approximation, 31

topology, 12
relative, 13

totally bounded, 27
transitive, 3

Mathematicians

Arzela, Cesare, 37
Ascoli, Giulio, 37

Baire, Rene-Louis, 23
Banach, Stefan, 20, 21, 33
Bolzano, Bernard, 16, 25
Borel, Emile, 26, 28

Cantor, Georg, 20

de Morgan, Augustus, 2

Heine, Eduard, 26
Holder, Otto, 10

Lebesgue, Henri, 28
Lindelof, Ernst, 22
Lipschitz, Rudolf, 21

Mazurkiewicz, Stefan, 33
Minkowski, Hermann, 11

Peano, Giuseppe, 38

Picard, Charles Emile, 22

Russell, Bertrand, 9

Stone, Marshall, 34–36

Weierstrass, Karl, 16, 21, 25,
31, 34–36

Zermelo, Ernst, 2

40


	Set Theory
	Definitions
	Problems arising
	Relations
	Equivalence relations and cardinaltiy
	Cardinal arithmetic

	Metric spaces
	Normed linear spaces
	The topology of metric spaces
	Closures, interiors, and boundaries
	Sequences in metric spaces

	Completeness
	Continuity
	Complete metric spaces
	Completeness of Cb(X)
	Characterizations of completeness
	The Banach contractive mapping theorem
	The Baire category theorem

	Compactness
	Compact metric spaces
	Finite dimensional normed linear spaces
	The Weierstrass approximation theorem
	The Stone-Weierstrass theorem
	The Arzela-Ascoli theorem

	Index

