Contents

1	Preliminaries	2
2	Complex differentiability 2.1 Derivatives 2.2 Exponentials and logarithms 2.3 Curves and regions 2.4 Power series	2 2 3 3 3
3	Integrability	4
J	3.1 Fundamentals	4
	3.2 Paths	5
	3.3 Cauchy	5
	3.4 Implications of the Cauchy integral formula	6
4	Meromorphic functions	7
	4.1 Singularities	7
	4.2 Cauchy's theorem	8
	4.3 Fourier series	9
	4.4 Rouché	9
	4.5 Laurent	10
	4.6 Univalency	10
5	Selected proofs	11

1 Preliminaries

Definition 1.0.1. For $p \in \mathbb{C}$ and $r \in \mathbb{R}$ with r > 0, the <u>(open) disk</u> of center p and radius r is given by $D_p(r) = \{z \in \mathbb{C} \mid |z - p| < r\}.$

Definition 1.0.2. A set $\Omega \in \mathbb{C}$ is termed open if for every $p \in \Omega$, there exists r > 0 such that $D_p(r) \subseteq \Omega$.

Remark 1.0.3. These are some common geometric shapes:

- · An annulus: $A = \{z \mid r < |z p| < R\}$ with $0 \le r < R \le \infty$
- · A half-plane: $H = \{x + iy \mid x > 0\}$

Definition 1.0.4. For $f: \Omega \to \mathbb{C}$ and $p \in \mathbb{C}$, we have that $f(z) \to w$ as $z \to p$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(z) - w| < \epsilon$ when $0 < |z - p| < \delta$ and $z \in \mathbb{C}$.

Definition 1.0.5. If a function $f : \mathbb{C} \to \mathbb{C}$ is such that for all real scalars c, f(cz) = cf(z), then f is <u> \mathbb{R} -linear</u>. If this holds for all complex scalars c, then f is <u> \mathbb{C} -linear</u>.

Remark 1.0.6. A differentiable function $f : \Omega \to \mathbb{C}$ compared with $f : \Omega \to \mathbb{R}^2$ for Ω an open subset of \mathbb{C} and \mathbb{R}^2 respectively, is stronger in the first case, due to complex linearity.

2 Complex differentiability

2.1 Derivatives

Definition 2.1.1. If $f: I \to \mathbb{R}$ is a function defined on an open interval I with $p \in I$, then f is (complex) <u>differentiable</u> at p with derivative m provided $\frac{f(x)-f(p)}{x-p} \to m$ as $x \to p$. This function is then <u>holomorphic</u>.

Definition 2.1.2. A function is <u>entire</u> if it is holomorphic on the whole complex plane.

Remark 2.1.3. Now let $f: \Omega \to \mathbb{R}^2$ and $p \in \Omega$. Then we say that f is real differentiable at $p = \binom{s}{t}$ with derivative $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ provided for $\epsilon > 0$ there exists $\delta > 0$ such that if $0 \leq \|\binom{x}{y} - \binom{s}{t}\| < \delta$, then $\|f(\binom{x}{y}) - f(\binom{s}{t})\| - \begin{bmatrix} a & b \\ c & d \end{bmatrix} \binom{x-s}{y-t} \| < \epsilon \| \binom{x-s}{y-t} \|$.

Proposition 2.1.4. Let $f: \Omega \to \mathbb{C}$ be a function. Then f has complex derivative w = a + ib at some $p = s + it \in \Omega$ provided f has a real derivative at p of the type $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

 $p = s + it \in \Omega \text{ provided } f \text{ nas a real derivative at } p \text{ of the type } \lfloor b \ a \ \rfloor$ **Remark 2.1.5.** If $f: \Omega \to \mathbb{R}^2$ is real differentiable at $p \in \Omega$, then its derivative at p is $\begin{bmatrix} a \ b \\ c \ d \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} \Big|_p & \frac{\partial u}{\partial y} \Big|_p \\ \frac{\partial v}{\partial x} \Big|_p & \frac{\partial v}{\partial y} \Big|_p \end{bmatrix}$ This is termed the Jacobian, with f = u + iv.

Proposition 2.1.6. * [CAUCHY-RIEMANN]

Let $f: \Omega \to \mathbb{C}$ be a function such that f is complex differentiable at p = s + it with complex derivative w = a + ib. Then the partial derivative of u and v exist with

$$\frac{\partial u}{\partial x}\Big|_p = \frac{\partial v}{\partial y}\Big|_p$$
 and $\frac{\partial u}{\partial y}\Big|_p = -\frac{\partial v}{\partial x}\Big|_p$

Remark 2.1.7. If $f: \Omega \to \mathbb{C}$ is differentiable at $p \in \Omega$, then f is continuous at p.

Proposition 2.1.8. If for $f = u + iv : \Omega \to \mathbb{C}$ all partials of u and v exist and are continuous and the Cauchy-Riemann equations hold on Ω , then f is complex differentiable on Ω .

Proposition 2.1.9. [CHAIN RULE]

Let Ω, Γ be open sets in \mathbb{C} with $f: \Omega \to \mathbb{C}$ and $g: \Gamma \to \mathbb{C}$. For $p \in \Omega$ if f'(p) and g'(f(p)) exist, then $g \circ f: \Omega \to \mathbb{C}$ is differentiable at p with $(g \circ f)'(p) = g'(f(p))f'(p)$.

2.2 Exponentials and logarithms

Definition 2.2.1. The exponential function on Ω is given below. Its range is $\Omega \setminus \{0\}$.

$$f(z) = f(x+iy) = e^x \cos(y) + ie^x \sin(y) = e^{x+iy} = e^z$$

Remark 2.2.2. Every complex number $z \neq 0$, z = x + iy is of the form $z = e^{s+i\theta}$ for some $s, \theta \in \mathbb{R}$.

 $s = \frac{1}{2}\ln(x^2 + y^2)$

 $\theta = \overline{\tan^{-1}\left(\frac{y}{x}\right)}$

In this case, there is exactly one $\theta \in (-\pi/2, \pi/2)$ such that $z = e^{s+i\theta}$

2.3 Curves and regions

Definition 2.3.1. A <u>curve</u> in Ω is a continuous function $\alpha : [a, b] \to \Omega$.

Definition 2.3.2. The trajectory of a curve α is the image set of the function, and is denoted by α^* .

Definition 2.3.3. Given two curves $\alpha : [a, b] \to \Omega$ running from p to q, and $\beta : [c, d] \to \Omega$ running from q to r, replace β with $\gamma : [b, e] \to \Omega$ that also runs from q to r and has the same trajectory as β .

Then a <u>splice</u> of the two curves is the curve $\delta : [a, e] \to \Omega$ where $\delta(t) = \begin{cases} \alpha(t) & t \in [a, b] \\ \gamma(t) & t \in [b, e] \end{cases}$

Definition 2.3.4. A curve $\alpha = x + iy : [a, b] \to \Omega$ is termed <u>smooth</u> whenever its complex derivative $\alpha'(t) = x'(t) + iy'(t)$ exists and is continuous on [a, b].

Proposition 2.3.5. If $\alpha : [a,b] \to \Omega$ is smooth and $f : \Omega \to \mathbb{C}$ is holomorphic, then for all $t \in [a,b]$, $(f \circ \alpha)'(t) = f'(\alpha(t))\alpha'(t)$.

Definition 2.3.6. Then curve $\alpha : [a,b] \to \Omega$ is termed piecewise-smooth if there exists a partition of $[a,b]: a = a_0 < a_1 < \cdots < a_n = b$ such that α is smooth on each of $[a_{j-1},a_j]$ for all $j = \{1,\ldots,n\}$.

Definition 2.3.7. An open set Ω is <u>connected</u> when Ω is not the disjoint union of two nonempty open subsets of \mathbb{C} .

Proposition 2.3.8. * A set Ω is connected if and only if for all $p, q \in \Omega$, there exists a piecewise-smooth curve α that runs from p to q.

Definition 2.3.9. A region is a connected open set. Hereinafter Ω always refers to a region.

Proposition 2.3.10. For Ω a region and $f: \Omega \to \mathbb{C}$ holomorphic, if f' = 0 on Ω , then f is constant on Ω .

Definition 2.3.11. A function $f: \Omega \to \mathbb{C}$ is termed a primitive for a function g if f' = g on Ω .

2.4 Power series

Definition 2.4.1. A sequence $z_n \in \mathbb{C}$ converges if for any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ and $p \in \mathbb{C}$ such that $|z_n - p| < \epsilon$ for all $n \ge n_0$. In this case, $\overline{z_n}$ converges to p.

Definition 2.4.2. A sequence $z_n \in \mathbb{C}$ is <u>Cauchy</u> if for any $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|z_m - z_n| < \epsilon$ for all $n \ge n_0$.

Proposition 2.4.3. A sequence converges if and only if it is Cauchy.

Proposition 2.4.4. If $\sum_{k=1}^{\infty} |z_n|$ converges in \mathbb{R} , then $\sum_{k=1}^{\infty} z_n$ converges in \mathbb{C} .

Proposition 2.4.5. * For any power series $\sum_{k=1}^{\infty} a_n z^n$, there exists $R \in \mathbb{R}^*$ (where $\mathbb{R}^* = \mathbb{R} \cup \infty$) with $R \ge 0$ such that the power series converges absolutely if |z| < R and diverges if |z| > R.

In this case, $R = \text{lub}\{r \ge 0 \mid |z_n| r^n \text{ is bounded}\}.$

Definition 2.4.6. The *R* described above is termed the radius of the sequence.

Theorem 2.4.7.* [HADAMARD]

For a series $\sum_{n=1}^{\infty} a_n z^n$, if $\limsup |a_n|^{1/n}$ is nonzero and finite, then $R = \frac{1}{\limsup |a_n|^{1/n}}$

Proposition 2.4.8. Let $\sum_{k=1}^{\infty} a_n z^n$ be a power series with radius *R*.

- 1. If $\limsup |a_n|^{1/n} < \infty$, then $R = \frac{1}{\limsup |a_n|^{1/n}}$.
- **2.** If $\limsup |a_n|^{1/n} = \infty$, then R = 0. **3.** If $\limsup |a_n|^{1/n} = 0$, then $R = \infty$.

Theorem 2.4.9. * [DIFFERENTIATION THEOREM, PT.1] The series $\sum_{n=0}^{\infty} a_n z^n$ and and its differentiated series $\sum_{n=1}^{\infty} n a_n z^{n-1}$ have equal radii. **Theorem 2.4.10.** [DIFFERENTIATION THEOREM, PT.2] Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius R > 0. Then for every $p \in D_0(R)$, $f'(p) = \sum_{n=1}^{\infty} n a_n p^{n-1}$.

Definition 2.4.11. A function is termed <u>entire</u> if the radius of its power series is $R = \infty$.

3 Integrability

3.1**Fundamentals**

Definition 3.1.1. The integral of a curve $\alpha = x + iy : [a, b] \to \mathbb{C}$ given by $t \mapsto x(t) + iy(t)$ is defined as:

$$\int_{a}^{b} \alpha = \int_{a}^{b} x(t)dt + i \int_{a}^{b} y(t)dt$$

Remark 3.1.2. The integration of curves has the properties of complex linearity and triangle inequality:

$$\int_{a}^{b} (\alpha \pm \beta) = \int_{a}^{b} \alpha \pm \int_{a}^{b} \beta \quad \text{and} \quad \left| \int_{a}^{b} \alpha \right| \leq \int_{a}^{b} |\alpha|$$

Theorem 3.1.3. The integral of a continuous function $f: \Omega \to \mathbb{C}$ along a smooth curve $\gamma: [a, b] \to \Omega$ is:

$$\int_{\gamma} f = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Proposition 3.1.4. If $f: \Omega \to \mathbb{C}$ is continuous and $\gamma: [a, b] \to \mathbb{C}$ is smooth, then

$$\left| \int_{\gamma} f \right| \leq \|f\|_{\gamma^*} \int_a^b |\gamma'(t)| dt$$
$$= \|f\|_{\gamma^*} \operatorname{length}(\gamma)$$

where $||f||_{\gamma^*} = \max_{t \in [a,b]} \{|f(\gamma(t))|\}.$

Theorem 3.1.5. The series $\sum_{n=0}^{\infty} a_n z^n$ and and its integrated series $\sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$ have equal radii.

3.2 Paths

Definition 3.2.1. If $\gamma : [a, b] \to \mathbb{C}$ is smooth and $h : [c, d] \to [a, b]$ has a continuous derivative and h(c) = a, h(d) = b, then $\gamma \circ h : [c, d] \to \mathbb{C}$ is termed a reparametrization of γ .

Proposition 3.2.2. If $f: \Omega \to \mathbb{C}$ is continuous and $\gamma \circ h$ is a reparametrization of γ , then $\int_{\gamma \circ h} f = \int_{\gamma} f$.

Definition 3.2.3. If $\gamma : [a, b] \to \mathbb{C}$ is smooth, then its <u>opposite</u> is $\tilde{\gamma} : [a, b] \to \mathbb{C}$ given by $t \mapsto \gamma(a + b - t)$. Then $\int_{\tilde{\gamma}} f = -\int_{\gamma} f$ for f continuous.

Definition 3.2.4. A path in Ω that runs from p to q is a set of smooth curves

$$\{\gamma_1: [a_1, b_1] \to \Omega, \gamma_2: [a_2, b_2] \to \Omega, \dots, \gamma_n: [a_n, b_n] \to \Omega\}$$

with $\gamma(b_{i-1}) = \gamma(a_i)$ for all *i*, and $\gamma(a_1) = p$, $\gamma(a_n) = q$.

Proposition 3.2.5. If $f: \Omega \to \mathbb{C}$ is continuous and f has a primitive on Ω and γ is a path from p to q in Ω :

$$\int_{\gamma} f = g(q) - g(p)$$

for g the primitive of f on Ω .

Definition 3.2.6. The integrals of $f : \Omega \to \mathbb{C}$ continuous are termed <u>path independent</u> if for any two paths $\gamma, \beta \in \Omega$, both running from p to q in Ω , $\int_{\gamma} f = \int_{\beta} f$.

Proposition 3.2.7. Suppose $f : \Omega \to \mathbb{C}$ is continuous and $\int_{\gamma} f = 0$ for all closed paths γ in Ω . Then f has path independent integrals.

3.3 Cauchy

Proposition 3.3.1. * If $f : \Omega \to \mathbb{C}$ is continuous with $\int_{\gamma} f = 0$ for all closed paths $\gamma \in \Omega$, then f has a primitive in Ω .

Remark 3.3.2. The line from p to q is denoted by \overline{pq} . Explicitly, $\overline{pq} : [0,1] \to \mathbb{C}$ is defined by $t \mapsto (1-t)p+tq$.

Definition 3.3.3. For points p, q, r, the set of lines $\overline{pq}, \overline{qr}, \overline{rp}$ is termed a triangle, denoted by $\partial \bigtriangleup (p, q, r)$.

Theorem 3.3.4. [CAUCHY-GOURSAT]

If f is holomorphic on a region Ω and \triangle is any triangle completely inside Ω , then $\int_{\partial \wedge} f = 0$.

Theorem 3.3.5. If f is holomorphic on a region Ω , except (possibly) on a finite set of points, on which f remains continuous, and Δ is any triangle inside Ω , then $\int_{\partial \Delta} f = 0$.

Definition 3.3.6. A region is <u>convex</u> from a point p in Ω if for all $z \in \Omega$, the segment \overline{pz} is in Ω .

Theorem 3.3.7. * If Ω is convex from a point p, and $f : \Omega \to \mathbb{C}$ is holomorphic except (possibly) at a single point, then f has a primitive on Ω , or equivalently, $\int_{\gamma} f = 0$ for all closed paths γ in Ω .

Theorem 3.3.8. [CAUCHY INTEGRAL FORMULA]

If the following hold:

 $\left. \begin{array}{l} \Omega \text{ is convex from a point } p \\ \gamma \text{ is a closed path in } \Omega \\ f \text{ is holomorphic on } \Omega \\ p \in \Omega \setminus \gamma^* \end{array} \right\} \qquad \text{then} \quad \int_{\gamma} \frac{f(z)}{z-p} dz = \int_{\gamma} \frac{f(p)}{z-p} dz$

Definition 3.3.9. If γ is a closed path in \mathbb{C} and $w \notin \gamma^*$, define the <u>index</u> of γ around w to be

$$\operatorname{ind}_{\gamma}(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - w} dz$$

Theorem 3.3.10. If γ is a closed path in \mathbb{C} , then $\operatorname{ind}_{\gamma}(w) \in \mathbb{Z}$ for all $w \notin \gamma^*$.

Theorem 3.3.11. The function $\operatorname{ind}_{\gamma} : \mathbb{C} \setminus \gamma^* \to \mathbb{Z}$ is continuous.

Proposition 3.3.12. On the unbounded component of $\mathbb{C} \setminus \gamma^*$, $\operatorname{ind}_{\gamma} = 0$.

Theorem 3.3.13. If the following hold:

 $\left.\begin{array}{l} \gamma \text{ is a closed path in }\Omega\\ \operatorname{ind}_{\gamma}(w) = 0 \ \forall \ w \notin \Omega\\ f \text{ is holomorphic on }\Omega\\ z \in \Omega \setminus \gamma^{*} \end{array}\right\} \qquad \text{then} \quad \operatorname{ind}_{\gamma}(z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$

3.4 Implications of the Cauchy integral formula

Definition 3.4.1. A sequence of functions $f_n : A \to \mathbb{C}$ tends to a function $f : A \to \mathbb{C}$ <u>uniformly</u> on A if $||f_n - f||_A \to 0$ as $n \to \infty$.

Remark 3.4.2. If $f_n : A \to \mathbb{C}$ are continuous for all n and $f_n \to f$ uniformly, then f is continuous.

Remark 3.4.3. If γ is a path in Ω and f_n, f are defined and continuous on γ^* for all $n \in \mathbb{N}$, and if $f_n \to f$ uniformly as $n \to \infty$ on γ^* , then $\int_{\gamma} f_n \to \int_{\gamma} f$ as $n \to \infty$.

Theorem 3.4.4. [WEIERSTRASS M-TEST] Let $A \subseteq \mathbb{C}$ and $f_n : A \to \mathbb{C}$ be a sequence of functions. Let $M_n \ge 0$ with $\sum_{n=1}^{\infty} M_n$ a convergent series and $||f_n||_A \le M_n$ for all n. Then $\sum_{n=1}^{\infty} f_n$ converges uniformly on A.

Theorem 3.4.5. * If f is holomorphic on Ω and R > 0 with $D_p(R) \subseteq \Omega$ for some $p \in \Omega$, then for all $z \in D_p(R)$ there exists a power series $\sum_{n=0}^{\infty} a_n (z-p)^n = f(z)$.

Corollary 3.4.6. A holomorphic function is equivalent to an analytic function.

Corollary 3.4.7. If f is holomorphic on Ω and $D_p(r) \subseteq \Omega$ with $\gamma : [0, 2\pi] \to D_p(r)$ the circle of radius r, then $f^{(n)}(p)$ exists for all n with $\frac{f^{(n)}(p)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-p)^{n+1}} dz$.

Corollary 3.4.8. Every holomorphic function has a primitive on some disk.

Corollary 3.4.9. For f analytic in Ω and $D_p(R) \subseteq \Omega$ with M an upper bound for |f| on $D_p(R)$,

$$\left|\frac{f^{(n)}(p)}{n!}\right| \leqslant \frac{M}{R^n}$$

Theorem 3.4.10. * [LIOUVILLE]

If a function f is entire and bounded by some M on \mathbb{C} , then f is constant on \mathbb{C} .

Theorem 3.4.11. * [FUNDAMENTAL THEOREM OF ALGEBRA] If f is a polynomial over \mathbb{C} and deg $(f) \ge 1$, then f has at least one root in \mathbb{C} .

Definition 3.4.12. A point $p \in A \subseteq \mathbb{C}$ is termed a <u>cluster</u> / <u>limit</u> / <u>accumulation point</u> of A if for any $\epsilon > 0$ there exists $q \in D_p(\epsilon) \subseteq A$ with $q \neq p$.

Otherwise, there exists $\epsilon > 0$ such that $D_p(\epsilon) \cap A = \{p\}$, and p is termed <u>isolated</u>.

Proposition 3.4.13. For $f: \Omega \to \mathbb{C}$ non-constant and analytic, every $p \in \Omega$ such that f(p) = 0 is isolated.

Theorem 3.4.14. [IDENTITY THEOREM] If f, g are analytic on Ω and f(z) = g(z) for all $z \in A \subseteq \Omega$ with at least 1 cluster point in A, f = g on Ω . **Theorem 3.4.15.** * [MORERA] If f is continuous on Ω and $\int_{\partial \Delta} f = 0$ for every triangle $\Delta \subset \Omega$, then f is analytic on Ω .

Definition 3.4.16. A sequence of functions $f_n : \Omega \to \mathbb{C}$ is said to converge uniformly on compact sets to a function $f : \Omega \to \mathbb{C}$ if for every compact compact set $A \subseteq \Omega$, $f_n \to \overline{f}$ uniformly on A.

Theorem 3.4.17. * If $f_n : \Omega \to \mathbb{C}$ are analytic and $f_n \to f$ uniformly on compact subsets of Ω , then f is analytic on Ω .

Theorem 3.4.18. [MAXIMUM MODULUS PRINCIPLE]

If f is non-constant and analytic on Ω , then |f| has no local maximum on Ω .

Corollary 3.4.19. For $f : \Omega \to \mathbb{C}$ analytic and non-constant and $\Omega \supseteq A$ compact, |f| attains its maximum over A on the boundary of A.

4 Meromorphic functions

Definition 4.0.1. A meromorphic function $f : \Omega \to \mathbb{C}$ is a holomorphic function that (possibly) has nonessential singularities on a set of measure zero $S \subset \Omega$.

4.1 Singularities

Definition 4.1.1. Define the <u>punctured disk</u> of radius r > 0 centered at $p \in \mathbb{C}$ be described by $D_p^*(r) = \{z \in \mathbb{C} \mid r < |z - p| < r\}.$

Definition 4.1.2. If f is analytic on Ω , a singularity of f at p is termed <u>removable</u> if $\lim_{z \to p} [f(z)]$ exists, so

that $f^*(z) = \begin{cases} f(z) & z \neq p\\ \lim_{z \to p} [f(z)] & z = p \end{cases}$ is analytic on Ω .

Proposition 4.1.3. If f is analytic on Ω with singularity at p, and f is bounded on some $D_p^*(r) \subseteq \Omega$, then f has a removable singularity at p.

Definition 4.1.4. For $f: \Omega \to \mathbb{C}$ holomorphic and $\epsilon > 0$, $f(D_p^*(\epsilon))$ is <u>not dense</u> in \mathbb{C} if there exists $w \in \mathbb{C}$ and $\delta > 0$ such that $|f(z) - w| \ge \delta$ for all $z \in D_p^*(\epsilon) \subseteq \Omega$.

Proposition 4.1.5. For f a non-constant and entire function, $f(\mathbb{C})$ is dense in \mathbb{C} .

Theorem 4.1.6. * [CASORATI-WEIERSTRASS]

Let f be analytic on Ω with non-removable singularity at p. Then only one of the following conditions hold: i. For every $D_p^*(\epsilon) \subseteq \Omega$ with $\epsilon > 0$, $f(D_p^*(\epsilon))$ is dense in \mathbb{C} .

ii. There exists a positive integer m such that $(z-p)^m f(z)$ has a removable singularity at p.

Definition 4.1.7. With respect to the above definition, in case \mathbf{i} , p is termed an <u>essential</u> singularity of f. In case \mathbf{ii} , p is termed a pole of f.

Theorem 4.1.8. [PICARD]

For $f: \Omega \to \mathbb{C}$ analytic with $p \in \Omega$ an essential singularity, for any $\epsilon > 0$ either

i. $f(D_n^*(\epsilon)) = \mathbb{C}$

ii. $f(D_p^*(\epsilon)) = \mathbb{C} \setminus \{w\}$ for some $w \in \mathbb{C}$

Moreover, for every $y \in f(D_p^*(\epsilon))$, there are infinitely many $z \in D_p^*(\epsilon)$ such that f(z) = y.

Proposition 4.1.9. If f is analytic on Ω with a pole at p, then there exist:

i. an analytic function h(z) on $\Omega \cup \{p\}$

ii. an integer $m \ge 1$

iii. scalars b_1, b_2, \dots, b_m with $b_m \neq 0$ such that $f(z) = h(z) + \underbrace{\frac{b_1}{z-p} + \frac{b_2}{(z-p)^2} + \dots + \frac{b_m}{(z-p)^m}}_{\text{the principal part of } f \text{ at } n}$

Definition 4.1.10. With respect to the above, b_1 is termed the <u>residue</u> of f at p and is denoted res(f, p). The integer m is termed the <u>order</u> of the pole p.

Theorem 4.1.11. For γ a closed curve in Ω and $p \in \Omega$ with f holomorphic on Ω , $\int_{\gamma} f = b_1 2\pi i \cdot \operatorname{ind}_{\gamma}(p)$

Proposition 4.1.12. If f has a singularity at p and f is analytic on Ω , then p is a pole of order 1 \iff $(z-p)f(z) \rightarrow b \neq 0$ and finite. Moreover, b is the residue of f at p.

Remark 4.1.13. Let $f, g: \Omega \to \mathbb{C}$ be analytic on $\Omega \setminus \{p\}$ with g(p) = 0 but $f(p) \neq 0$ and $g'(p) \neq 0$. Then f/g has a pole of order 1 at p with $\operatorname{res}(f/g, p) = f(p)/g'(p)$.

4.2 Cauchy's theorem

Definition 4.2.1. A <u>chain</u> in Ω is a finite list of closed paths $\gamma_1, \gamma_2, \ldots, \gamma_n$ in Ω denoted $\gamma = \gamma_1 + \gamma_2, + \cdots + \gamma_n$. The <u>image</u> of this chain is defined as $\gamma^* = \bigcup_{i=1}^n \gamma_i^*$.

Definition 4.2.2. Two chains α, β are homologous in Ω if $\operatorname{ind}_{\alpha}(w) = \operatorname{ind}_{\beta}(w)$ for all $w \notin \Omega$.

Remark 4.2.3. If Ω is convex from a point, then every chain in Ω is homologous to 0 in Ω .

Theorem 4.2.4. [CAUCHY]

For $f: \Omega \to \mathbb{C}$ holomorphic, a chain γ is homologous to 0 on a region $\Omega \subseteq \mathbb{C}$ if and only if

$$\int_{\gamma} f = 0$$

in which case the Cauchy integral formula holds:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = f(z) \operatorname{ind}_{\gamma}(z) \quad \text{ for every } z \in \Omega \setminus \gamma^*$$

Corollary 4.2.5. For $f: \Omega \to \mathbb{C}$ analytic and chains α homologous to β in Ω ,

$$\int_{\alpha} f = \int_{\beta} f$$

Theorem 4.2.6. * [RESIDUE THEOREM]

Let f be analytic on Ω and p_1, p_2, \ldots, p_n be poles of f and γ a chain in Ω that is homologous to 0 in $\Omega \cup \{p_1, p_2, \ldots, p_n\}$. Then

$$\int_{\gamma} f = 2\pi i \left(\sum_{j=1}^{n} \operatorname{ind}_{\gamma}(p_j) \operatorname{res}(f, p_j) \right)$$

Proposition 4.2.7. A function f at p has a pole of order n if and only if $\lim_{z \to p} [(z-p)^n f(z)] = b \neq 0$ and finite. Then

$$\operatorname{res}(f,p) = \lim_{z \to p} \left[\frac{d^{n-1}}{dz^{n-1}} (z-p)^n f(z) \right] \frac{1}{(n-1)!}$$

Definition 4.2.8. A region Ω is <u>simply connected</u> if $\operatorname{ind}_{\gamma}(w) = 0$ for every closed path $\gamma \in \Omega$ and all $w \notin \Omega$. **Proposition 4.2.9.** If $f : \Omega \to \mathbb{C}$ is holomorphic for Ω simply connected, then f has a primitive on Ω .

4.3 Fourier series

Definition 4.3.1. For $f : \mathbb{R} \to \mathbb{R}$ continuous and $\omega \in \mathbb{R}$, the <u>Fourier transform</u> of f is

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx$$
$$= \lim_{r \to \infty} \left[\int_{-r}^{r} f(x)\cos(\omega x) dx + i \int_{-r}^{r} f(x)\sin(\omega x) dx \right]$$

Proposition 4.3.2. For f analytic on $\Omega = \mathbb{C} \setminus \{p_1, p_2, \dots, p_m\}$ and poles p_i of f with $\operatorname{Im}(p_i) \neq 0$ for all i, if $|zf(z)| \leq M$ when $|z| \geq R$ for some values M, R, then $\hat{f}(\omega)$ exists for all $\omega > 0$ and

$$\hat{f}(\omega) = 2\pi i \sum_{\substack{i=1\\\mathrm{Im}(p_i)>0}}^{m} \mathrm{res}(f(z)e^{i\omega z}, p_i)$$

Proposition 4.3.3. Let f be analytic on $\Omega = \mathbb{C} \setminus \{p_1, p_2, \dots, p_m\}$ where the p_i 's are the poles of f. Then if $|z|^{\lambda}|f(z)| \leq M$ for some M and $\lambda > 1$ and all $z \in \Omega$ with $|z| \geq |z_0|$ for some $|z_0|$ large enough, then

$$\int_{\gamma_N} f(z) \pi \frac{\cos(\pi z)}{\sin(\pi z)} dz \to 0 \quad \text{ as } \quad N \to \infty$$

where γ_N is the rectangular path of width 2N + 1 and height 2N centered at the origin for $N \in \mathbb{N}$. Moreover, in this case

$$\sum_{\substack{n=-\infty\\n\neq p_i}}^{\infty} f(n) = -\sum_{i=1}^{m} \operatorname{res}\left(f(z)\pi \frac{\cos(\pi z)}{\sin(\pi z)}, p_i\right)$$

4.4 Rouché

Proposition 4.4.1. Let $f: \Omega \to \mathbb{C}$ be analytic and non-constant. Then f'/f has poles at the zeros of f. If $p \in \Omega$ is a zero of f of multiplicity $m \ge 1$, then $\operatorname{res}(f'/f, p) = m$.

Definition 4.4.2. A path γ has <u>interior</u> of for all $w \notin \gamma^*$, $\operatorname{ind}_{\gamma}(w) \in \{0, 1\}$. Then the interior is defined to be the set $\{w \mid ind_{\gamma}(w) = 1\}$.

Remark 4.4.3. A path with interior is equivalent to a simple closed path.

Proposition 4.4.4. If the following hold:

f is analytic and non-constant on Ω $m_{\infty} \left\{ \text{Then} \quad \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} = \sum_{\substack{\text{all } p \\ \text{ind}_{\gamma}(p)=1}} \operatorname{res}(f'/f, p) = \sum_{\substack{\text{all } p \\ \text{ind}_{\gamma}(p)=1}} m_p$ γ is a simple closed path in Ω γ is homologous to 0 in Ω $p \in \Omega$ is a zero of f with multiplicity m_p

Proposition 4.4.5. * Let $\alpha, \beta : [0,1] \to \mathbb{C}$ be closed paths such that $|\alpha(t) - \beta(t)| < |\beta(t)|$ for all $t \in [0,1]$. Then $\operatorname{ind}_{\alpha}(0) = \operatorname{ind}_{\beta}(0)$.

Theorem 4.4.6. [ROUCHÉ]

If the following hold:

 $\left.\begin{array}{l}f,g \text{ are analytic on }\Omega\\\gamma:[0,1] \to \Omega \text{ is a simple closed path}\\\gamma \text{ is homologous to }0 \text{ in }\Omega\\|g(z) - f(z)| < |f(z)| \text{ for all } z \in \gamma^*\end{array}\right\}$ Then f and g have the same number of zeros in the interior of γ , counting multiplicities.

Theorem 4.4.7. For $f: \Omega \to \mathbb{C}$ analytic and non-constant, $f(\Gamma)$ is open for every open set $\Gamma \subseteq \Omega$.

4.5 Laurent

Definition 4.5.1. The <u>annulus</u> around $p \in \mathbb{C}$ is the set of points in the open set between an inner radius r and outer radius R, denoted $A_p(r, R) := \{z \mid r < |z - p| < R\}$, with $0 \leq r < R \leq \infty$.

Definition 4.5.2. The <u>Laurent series</u> of a function f defined on an annulus $A_p(r, R)$ is the series of coefficients for integer powers of z - p, when f is expressed as

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z-p)^n} + \sum_{m=0}^{\infty} a_m (z-p)^m$$

Proposition 4.5.3. Suppose f has a Laurent expansion in a region Ω , and $p \in \Omega$ is a singularity of f. Then

1. p is removable $\iff b_i = 0$ for all i

2. p is a pole $\iff b_i = 0$ for infinitely many i

3. p is essential $\iff b_i = 0$ for finitely many i

Theorem 4.5.4. [LAURENT]

If f is analytic on $A_p(r, R)$, then f has a Laurent expansion on $A_p(r, R)$.

Remark 4.5.5. Note that Laurent expansions are unique.

4.6 Univalency

Definition 4.6.1. Let $f: \Omega \to \mathbb{C}$ be analytic and one-to-one. Then f is termed <u>univalent</u>.

This is equivalent to stating that $f(z_1) = f(z_2) \iff z_1 = z_2$ for all $a_1, z_2 \in \Omega$.

Theorem 4.6.2. Let $f : \Omega \to \mathbb{C}$ be univalent, and let $f(\Omega) = \Gamma$. Then Γ is an open region also, and the inverse function $g : \Gamma \to \Omega$ is also analytic. Moreover, if $p \in \Omega$ with f(p) = q, then

$$g'(q) = \frac{1}{f'(p)}$$

5 Selected proofs

Proposition 2.1.6. [CAUCHY-RIEMANN] Let $f : \Omega \to \mathbb{C}$ be a function such that f is complex differentiable at p = s + it with complex derivative w = a + ib. Then the partial derivatives of u and v exist with

$$\frac{\partial u}{\partial x}\Big|_p = \frac{\partial v}{\partial y}\Big|_p$$
 and $\frac{\partial u}{\partial y}\Big|_p = -\frac{\partial v}{\partial x}\Big|_p$

Proof: Suppose that f = u + iv is complex differentiable at p with derivative w.

Let p = s + it, z = x + iy, w = a + ib.

Then $\frac{f(z)-f(p)}{z-p} \to w$ as $z \to p$.

Equivalently: for every $\epsilon > 0$, there exists $\delta > 0$ such that if $z \in \Omega$ and $0 < |z - p| < \delta$, then

$$|f(z) - f(p) - w(z - p)| < \epsilon |z - p|$$

Equivalently: for $\epsilon > 0$, there exists $\delta > 0$ such that if $x + iy \in \Omega$ and $0 < |(x + iy) - (s + it)| < \delta$, then

$$|f(x+iy) - f(s+it) - (a+ib)((x-s) + i(y-t))| < \epsilon |(x-s) + i(y-t)|$$

Equivalently: for $\epsilon > 0$, there is $\delta > 0$ such that if $\binom{x}{y} \in \Omega$ and $0 \leq \left\| \binom{x}{y} - \binom{s}{t} \right\| < \delta$, then

$$\left\| f\begin{pmatrix} x\\ y \end{pmatrix} - f\begin{pmatrix} s\\ t \end{pmatrix} - \begin{bmatrix} a & -b\\ b & a \end{bmatrix} \begin{pmatrix} x-s\\ y-t \end{pmatrix} \right\| < \epsilon \left\| \begin{pmatrix} x\\ y \end{pmatrix} - \begin{pmatrix} s\\ t \end{pmatrix} \right\|$$

Then the derivative of f at p is $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

For f = u + iv with u, v real functions, the derivative of f at p is given by the 2-dimensional Jacobian,

$$\begin{bmatrix} \frac{\partial u}{\partial x} & & \frac{\partial u}{\partial y} & \\ \frac{\partial v}{\partial x} & & \frac{\partial v}{\partial y} & \\ p & \frac{\partial v}{\partial y} & & p \end{bmatrix}$$

Since the two matrices must be equal, we have

$$\left. \frac{\partial u}{\partial x} \right|_p = a = \left. \frac{\partial v}{\partial y} \right|_p \quad \text{and} \quad \left. \frac{\partial u}{\partial y} \right|_p = -b = -\left. \frac{\partial v}{\partial x} \right|_p$$

Proposition 2.3.8. A set Ω is connected if and only if for all $p, q \in \Omega$, there exists a piecewise-smooth curve α that runs from p to q.

Proof: Suppose that there does not exist a piecewise-smooth curve from p to q in Ω . Let $A = \{z \mid \exists a \text{ pw-sc in } \Omega \text{ from } p \text{ to } z \}$ and $B = \{z \mid \nexists a \text{ pw-sc in } \Omega \text{ from } p \text{ to } z \}$. Clearly $p \in A, q \in B$ and $A \cap B = \emptyset$ with $A \cup B = \Omega$, a disjoint union.

Pick $w \in A$ and take r > 0 such that $D_w(r) \subseteq \Omega$. Then there exists a pw-sc α in Ω from p to w. For each $z \in D_w(r)$ there exists a pw-sc β to w in $D_w(r)$ and hence in Ω . Splice α with β to get a pw-sc from p to z inside Ω . Therefore A is open.

Take $w \in B$ and r > 0 such that $D_w(r) \subseteq \Omega$.

- Suppose that $D_w(r) \not\subseteq B$ and there exists $z \in D_w(r)$ with $z \in A$.
- Then there exists a pw-sc α from p to z in Ω .

Note there also exists a pw-sc β from z to w in $D_w(r)$ and hence in Ω .

Splice α with β to get a pw-sc from p to w in Ω .

Then $w \notin B$, a contradiction.

Therefore $D_w(r) \subseteq B$ and B is open.

Thus Ω is the disjoint union of non-empty open sets.

Proposition 2.4.5. For any power series $\sum_{k=1}^{\infty} a_n z^n$, there exists $R \in \mathbb{R}^*$ (where $\mathbb{R}^* = \mathbb{R} \cup \infty$) with $R \ge 0$ such that the power series converges absolutely if |z| < R and diverges if |z| > R.

Proof: Consider $B = \{r \ge 0 \mid |a_n|r^n \text{ is a bounded sequence }\}.$ Let $R = \text{lub}\{S\}.$ If |z| > R, then $|a_n z^n| = |a_n||z^n| = |a_n||z|^n$ is not bounded. If |z| < R, then there exists $r \in B$ such that |z| < r < R. Hence all $|a_n|r^n \le \text{some bound } M$. Then $|a_n z^n| = |a_n|r^n \mid \frac{z^n}{r^n} \mid \le M \mid \frac{z}{r} \mid^n$ and $\mid \frac{z}{r} \mid < 1$. Then by the geometric series test, $\sum M \mid \frac{z}{r} \mid^n$ converges. By the comparison test, $\sum a_n z^n$ also converges.

Theorem 2.4.7. [HADAMARD]

For a series $\sum_{k=1}^{\infty} a_n z^n$, if $\limsup |a_n|^{1/n}$ is nonzero and finite, then $R = \frac{1}{\limsup |a_n|^{1/n}}$

 $\begin{array}{l} \mbox{Proof: Suppose that } 0 < L = \limsup |a_n|^{1/n} < \infty. \\ \mbox{It will be shown that } |a_n|r^n \mbox{ is bounded when } r < \frac{1}{L} \mbox{ and unbounded when } r > \frac{1}{L}. \\ \mbox{Then } 0 < r < \frac{1}{L} \Longrightarrow 0 < L < \frac{1}{r} \\ \implies |a_n|^{1/n} < \frac{1}{r} \mbox{ eventually} \\ \implies |a_n|^{1/n} < 1 \mbox{ eventually} \\ \implies |a_n|r^n \mbox{ is bounded} \\ \mbox{Next, let } 0 < \frac{1}{L} < r \Longrightarrow 0 < \frac{1}{r} < L \\ \implies \exists \ s \mbox{ such that } \frac{1}{r} < s < L \\ \implies \frac{1}{r} < s < |a_n|^{1/n} \mbox{ infinitely often} \\ \implies 1 < (sr)^n < |a_n|r^n \mbox{ is unbounded}. \\ \mbox{Therefore the radius of the series is } \frac{1}{L}. \end{array}$

Theorem 2.4.9. [DIFFERENTIATION THEOREM, PT.1] The series $\sum_{n=0}^{\infty} a_n z^n$ and and its differentiated series $\sum_{n=1}^{\infty} n a_n z^{n-1}$ have equal radii. **Proof:** The former series has radius $\frac{1}{\limsup |a_n|^{1/n}}$. The latter series has radius $\frac{1}{\limsup |na_n|^{1/n}} = \frac{1}{\limsup |n|^{1/n} |a_n|^{1/n}}$ $= \frac{1}{\limsup |n|^{1/n} \limsup |a_n|^{1/n}}$ $= \frac{1}{\limsup |a_n|^{1/n}}$

Therefore the two series have equal radii.

Proposition 3.3.1. If $f : \Omega \to \mathbb{C}$ is continuous with $\int_{\gamma} f = 0$ for all closed paths $\gamma \in \Omega$, then f has a primitive in Ω .

Proof: Pick $p \in \Omega$.

For $z \in \Omega$, let $g(z) = \int_{\gamma} f$ where γ is any path that runs from p to z. Note that all such γ from p to z give the same value for g(z). Check that g'(w) = f(w) for all $w \in \Omega$. It will be shown that for z arbitrarily close to w, there exists a function $\varphi(z)$ with

$$|g(z) - g(w) - f(w)(z - w)| \leq \varphi(z)|z - w|$$
 with $\varphi(z) \to 0$ as $z \to p$

Pick r > 0 so that $D_w(r) \subseteq \Omega$. For $z \in D_w(r)$, let ℓ be the straight line from w to z. Take any path $\gamma \in \Omega$ from p to w. Then $\gamma + \ell$ is a path in Ω from p to z. Then

$$\begin{split} g(z) - g(w) - f(w)(z - w) &= \int_{\gamma + \ell} f - \int_{\gamma} f - f(w)(z - w) \\ &= \int_{\gamma} f + \int_{\ell} f - \int_{\gamma} f - f(w)(z - w) \\ &= \int_{\ell} f - f(w)(z - w) \\ &= \int_{\ell} (f - f(w)) \\ &= \int_{\ell} (f(\mu) - f(w)) d\mu \end{split}$$

So then $\left|\int_{\ell} (f - f(w))\right| \leq ||f - f(w)||_{\ell} |z - w|$. Now check that $||f - f(w)||_{\ell} \to 0$ as $z \to w$. Let $\epsilon > 0$. Need $\delta > 0$ such that $||f - f(w)||_{\ell} < \epsilon$ when $|z - w| < \delta$. So we need $\delta > 0$ such that $||f(w + t(z - w)) - f(w)| < \epsilon$ for all $t \in [0, 1]$ when $|z - w| < \delta$. Since f is continuous at w, we get $\delta > 0$ such that $|z - w| < \delta \Longrightarrow |f(z) - f(w)| < \epsilon$. In particular, for every $t \in [0, 1]$ and $|z - w| < \delta$, $|w + t(z - w) - w| = t|z - w| < \delta$. For $\mu = w + t(z - w)$, we get $|f(\mu) - f(w)| < \epsilon$. That is, $||f - f(w)||_{\gamma} \to 0$ as $z \to w$.

Theorem 3.3.7. If Ω is convex from a point p, and $f: \Omega \to \mathbb{C}$ is holomorphic except (possibly) at a single point, then f has a primitive on Ω , or equivalently, $\int_{\gamma} f = 0$ for all closed paths γ in Ω .

Proof: Let Ω be convex from a point p.

Define $g(w) = \int_{\overline{nw}} f$ for all $w \in \Omega$.

Take r > 0 such that $D_w(r) \subseteq \Omega$.

For every $z \in D_w(r)$, the triangle $\triangle(p, w, z) \subset \Omega$, since Ω is convex from p. From Cauchy-Goursat, we have that

$$\int_{\partial \triangle(p,w,z)} f = \int_{\overline{pw}} f + \int_{\overline{wz}} f + \int_{\overline{zp}} f = 0$$

Reversing path endpoints and rearranging,

$$\int_{\overline{pz}} f - \int_{\overline{pw}} f = \int_{\overline{wz}} f$$

Then for every $z \in D_w(r)$,

$$\begin{split} g(z) - g(w) - f(w)(z - w) &| = \left| \int_{\overline{pz}} f - \int_{\overline{pw}} f - f(w)(z - w) \right| \\ &= \left| \int_{\overline{wz}} f - f(w)(z - w) \right| \\ &= \left| \int_{\overline{wz}} f(\zeta) - f(w) d\zeta \right| \\ &\leq \|f - f(w)\|_{\overline{wz}} |z - w| \\ &\left| \frac{g(z) - g(w)}{z - w} - f(w) \right| \leq \|f - f(z)\|_{\overline{wz}} \end{split}$$

Since the right hand size goes to zero as $z \to w$, so does the left hand side. Thus g is the primitive of f on Ω .

Theorem 3.4.5. If f is holomorphic on Ω and R > 0 with $D_p(R) \subseteq \Omega$ for some $p \in \Omega$, then for all $z \in D_p(R)$ there exists a power series $\sum_{n=0}^{\infty} a_n (z-p)^n = f(z).$

Proof: Pick 0 < r < R.

Let $\gamma : [0, 2\pi] \to D_p(R)$ be given by $t \mapsto p + re^{it}$. By the Cauchy integral theorem, for every $z \in D_p(r)$ we have $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$ For $\zeta \in \gamma^*$ and $z \in D_p(r)$,

$$\frac{f(\zeta)}{\zeta-z} = \frac{f(\zeta)}{\zeta-p-(z-p)} = \frac{1}{\zeta-p} \left(\frac{f(\zeta)}{1-\left(\frac{z-p}{\zeta-p}\right)}\right) = \frac{f(\zeta)}{\zeta-p} \sum_{n=0}^{\infty} \left(\frac{z-p}{\zeta-p}\right)^n = \sum_{n=0}^{\infty} \frac{(z-p)^n}{(\zeta-p)^{n+1}} f(\zeta)$$

The above summation is correct, as $|z - p| < |\zeta - p|$ for all $z \in D_p(r)$. Observe that

$$\left\|\frac{(z-p)^n}{(\zeta-p)^{n+1}}f(\zeta)\right\|_{\zeta\in\gamma^*} = \frac{|z-p|^n}{r^n}\cdot\frac{\|f\|_{\gamma^*}}{r}$$

 $\text{Then } \sum_{n=0}^{\infty} \left(\frac{|z-p|}{r} \right)^n \frac{\|f\|_{\gamma^*}}{r} \text{ converges, as } \frac{|z-p|}{r} < 1.$ By the Weierstrass M-test, $\sum_{n=0}^{\infty} \frac{(z-p)^n}{(\zeta-p)^{n+1}} f(\zeta)$ converges uniformly on γ^* . Due to this, the integral can be passed on to the series terms to get

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - p)^{n+1}} d\zeta (z - p)^n$$

Notice that $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - p)^{n+1}} d\zeta$ does not depend on $z \in D_p(r)$.

Moreover,
$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - p)^{n+1}} d\zeta = \frac{f^{(n)}(p)}{n!}.$$

Thus the integrals do not depend on r.

So for any $z \in D_p(R)$, pick r such that 0 < |z-p| < r < R to get $f(z) = \sum_{n=0}^{\infty} a_n (z-p)^n$ for all $z \in D_p(R)$.

Theorem 3.4.10. [LIOUVILLE]

If a function f is entire and bounded by some M on \mathbb{C} , then f is constant on \mathbb{C} .

Proof: Let M be a bound for |f| over \mathbb{C} . Then f has a power series representation $\sum_{n=0}^{\infty} a_n z^n$ with $|a_n| = \left| \frac{f^{(n)}(0)}{n!} \right| \leq \left| \frac{M}{R^n} \right|$ This is from the Cauchy derivative estimates for any R > 0. As $R \to \infty$, $a_n = 0$ for all $n \in \mathbb{N}$.

Thus f(z) = 0 for all $z \in \mathbb{C}$.

Theorem 3.4.11. [FUNDAMENTAL THEOREM OF ALGEBRA] If f is a polynomial over \mathbb{C} and deg $(f) \ge 1$, then f has at least one root in \mathbb{C} .

Proof: Suppose for a contradiction that f(z) has no root in \mathbb{C} , or equivalently that $\frac{1}{f(z)}$ is entire. As f is a polynomial,

$$f(z)| = |z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}|$$

$$\geqslant |z^{n}| \left(1 - \left(\frac{|a_{n-1}|}{|z|} + \frac{|a_{n-2}|}{|z^{2}|} + \dots + \frac{|a_{0}|}{|z^{n}|} \right) \right)$$

$$\to \infty \quad \text{as } |z| \to \infty$$

In particular, |f(z)| > 1 for |z| > R for some radius R. So |g(z)| < 1 for |z| > R. Since g is entire, it is also bounded on $D_0(R)$. Thus q is bounded on \mathbb{C} . By Liouville, q is constant. This is a contradiction, as $\deg(f) \ge 1$. Therefore f has at least 1 root in \mathbb{C} .

Theorem 3.4.15. [MORERA] If f is continuous on Ω and $\int_{\partial \bigtriangleup} f = 0$ for every triangle $\bigtriangleup \subset \Omega$, then f is analytic on Ω .

Proof: Take any $D_p(R) \subseteq \Omega$. From a previous proof, $g(z) = \int_{\overline{pz}} f$ is a primitive for f for all $z \in D_p(R)$. Since g' = f on $D_p(R)$, g is analytic on $D_p(R)$. By differentiation of power series, f is analytic on $D_p(R)$.

Theorem 3.4.16. If $f_n : \Omega \to \mathbb{C}$ are analytic and $f_n \to f$ uniformly on compact subsets of Ω , then f is analytic on Ω .

Proof: For every closed disk $\overline{D_p(r)} \subset \Omega$, $f_n \to f$ uniformly on $\overline{D_p(r)}$. Since the f_n are continuous on $\overline{D_p(r)}$, f is continuous on $\overline{D_p(r)}$. Hence f is continuous on Ω . Since the f_n are holomorphic, we know for every $\Delta \subset \Omega$, $\int_{\partial \Delta} f_n = 0$. Also, $\int_{\partial \Delta} f_n \to \int_{\partial \Delta} f$, as $\partial \Delta$ is compact. Hence $\int_{\partial \Delta} f = 0$. By Morera, f is analytic on Ω .

Theorem 4.1.6. [CASORATI-WEIERSTRASS]

- Let f be analytic on Ω with non-removable singularity at p. Then only one of the following conditions hold: i. For every $D_p^*(\epsilon) \subseteq \Omega$ with $\epsilon > 0$, $f(D_p^*(\epsilon))$ is dense in \mathbb{C} .
 - ii. There exists a positive integer m such that $(z-p)^m f(z)$ has a removable singularity at p.

Proof: ii. $\implies \neg$ i. Suppose that ii. holds.

Let $m \ge 1$ be the smallest integer such that $(z-p)^m f(z)$ has a removable singularity at p. Let $g(z) = \begin{cases} (z-p)^m f(z) & z \ne p \\ \lim_{z \to p} [(z-p)^m f(z)] & z = p \end{cases}$ so that g is analytic on $\Omega \cup \{p\}$. Thus $g(z) = a_0 + a_1(z-p) + a_2(z-p)^2 + \cdots$ for all z in some $D_p(r) \subseteq \Omega \cup \{p\}$. If $g(p) = a_0 = 0$, then $(z-p)^m f(z) = (z-p)(a_1 + a_2(z-p) + \cdots)$ for all $z \in D_p^*(r)$. However, then $(z-p)^{m-1}f(z)$ has a removable singularity at p, contradicting the minimality of m. Thus $g(p) = a_0 \ne 0$. As g is continuous at p, for some $\epsilon > 0$ if $z \in D_p(\epsilon) \subseteq \Omega \cup \{p\}$, then $|g(z)| \ge B > 0$ for some constant B. Thus for $z \in D_p^*(\epsilon)$,

$$|f(z)| = \left| \frac{g(z)}{(z-p)^m} \right| \ge \frac{B}{\epsilon^m} > 0$$

So $f(D_p^*(\epsilon))$ is bounded away from zero. Thus f is not dense in \mathbb{C} .

Theorem 4.2.6. [RESIDUE THEOREM]

Let f be analytic on Ω and p_1, p_2, \ldots, p_n be poles of f and γ a chain in Ω that is homologous to 0 in $\Omega \cup \{p_1, p_2, \ldots, p_n\}$. Then

$$\int_{\gamma} f = 2\pi i \left(\sum_{j=1}^{n} \operatorname{ind}_{\gamma}(p_j) \operatorname{res}(f, p_j) \right)$$

Proof: Set $c_j = \operatorname{ind}_{\gamma}(p_j)$.

Fix $r_j > 0$ such that $D_{p_j}(r_j) \subseteq \Omega \cup \{p_1, p_2, \dots, p_n\}$ are non-overlapping. Take $\beta_j : [0, 2\pi] \to \Omega$ given by $t \mapsto p_j + r_j e^{ic_j t}$. Then the chain $\beta_1 + \beta_2 + \dots + \beta_n$ is homologous to γ on Ω . By Cauchy,

$$\int_{\gamma} f = \sum_{j=1}^{n} \int_{\beta_j} f = \sum_{j=1}^{n} 2\pi i \cdot c_j \cdot \operatorname{res}(f, p_j) = 2\pi i \sum_{j=1}^{n} \operatorname{ind}_{\gamma}(p_j) \operatorname{res}(f, p_j)$$

Proposition 4.4.5. Let $\alpha, \beta : [0,1] \to \mathbb{C}$ be closed paths such that $|\alpha(t) - \beta(t)| < |\beta(t)|$ for all $t \in [0,1]$. Then $\operatorname{ind}_{\alpha}(0) = \operatorname{ind}_{\beta}(0)$.

Proof: Note that $0 \notin \beta^*$, and also $0 \notin \alpha^*$, because if $\alpha(s) = 0$ for some $0 \leqslant s \leqslant 1$, then

$$|\beta(s)| = |0 - \beta(a)| = |\alpha(s) - \beta(s)| < |\beta(s)|$$

For $t \in [0, 1]$, let $\gamma(t) = \frac{\alpha(t)}{\beta(t)}$. Note that

$$\frac{\gamma'(t)}{\gamma(t)} = \frac{\beta'(t)}{\alpha(t)} \cdot \frac{\alpha'(t)\beta(t) = \beta'(t)\alpha(t)}{(\beta(t))^2} = \frac{\alpha'(t)}{\alpha(t)} - \frac{\beta'(t)}{\beta(t)}$$

Then combining the above,

$$|\alpha(t) - \beta(t)| < |\beta(t)| \Longrightarrow \left| \frac{\alpha(t)}{\beta(t)} - 1 \right| < 1 \Longrightarrow |\gamma(t) - 1| < 1 \Longrightarrow \gamma(t) \in D_1(1) \ \forall \ t$$

Thus $\operatorname{ind}_{\gamma}(0) = 0.$

From the parametrization of γ , we get that

$$0 = \int_{\gamma} \frac{1}{z - 0} dz = \int_{0}^{1} \frac{\gamma'(t)}{\gamma(t)} dt = \int_{0}^{1} \frac{\alpha'(t)}{\alpha(t)} dt - \int_{0}^{1} \frac{\beta'(t)}{\beta(t)} dt = \int_{\alpha} \frac{1}{z - 0} dz - \int_{\beta} \frac{1}{z - 0} dz$$

Therefore $\operatorname{ind}_{\alpha}(0) = \operatorname{ind}_{\beta}(0)$.

References

Rudin, Walter. *Real and Complex analysis.* Mc-Graw Hill: 2006 Ullrich, David C. *Complex made simple.* American Mathematical Society: 2008