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1 Preliminaries

Definition 1.0.1. For p € C and r € R with r > 0, the (open) disk of center p and radius r is given by
Dy(r)={2€C||z—p| <r}.

Definition 1.0.2. A set Q € C is termed open if for every p € Q, there exists r > 0 such that D,(r) C Q.

Remark 1.0.3. These are some common geometric shapes:
- An annulus: A= {z|r <|z—p| <R} with0<r < R< o0
- A half-plane: H = {z + iy |z > 0}

Definition 1.0.4. For f: Q — C and p € C, we have that f(z) — w as z — p if for every € > 0 there exists
d > 0 such that |f(z) —w| < e when 0 < |z — p| < ¢ and z € C.

Definition 1.0.5. If a function f : C — C is such that for all real scalars ¢, f(cz) = cf(z), then f is R-linear.
If this holds for all complex scalars ¢, then f is C-linear.

Remark 1.0.6. A differentiable function f : Q — C compared with f : Q — R? for © an open subset of C
and R? respectively, is stronger in the first case, due to complex linearity.

2 Complex differentiability

2.1 Derivatives

Definition 2.1.1. If f: I — R is a function defined on an open interval I with p € I, then f is (complex)
differentiable at p with derivative m provided %g(p) — m as x — p. This function is then holomorphic.

Definition 2.1.2. A function is entire if it is holomorphic on the whole complex plane.

Remark 2.1.3. Now let f:Q — R? and p€ Q. Then we say that f is real differentiable at p = (f)
with derivative [24] provided for e >0 there exists § >0 such that if 0<|(y)—(§)] <4, then

1A G = A G = [ea] G2) < el (G211

Proposition 2.1.4. Let f:Q — C be a function. Then f has complex derivative w = a + ib at some
p =s+it € Q provided f has a real derivative at p of the type [¢ -]

ou ou

dz dy
Remark 2.1.5. If f : Q — R? is real differentiable at p € €2, then its derivative at pis [2¢ )] = ai b 8Z P
This is termed the Jacobian, with f = u + iv. ozlp oy,

Proposition 2.1.6. x [CAUCHY-RIEMANN]
Let f:Q — C be a function such that f is complex differentiable at p = s 4 it with complex derivative
w = a + ib. Then the partial derivative of u and v exist with

du | _ Ov
Ox |lp — Oy

u
dy

v

and __%p

p p

Remark 2.1.7. If f: Q) — C is differentiable at p € ), then f is continuous at p.

Proposition 2.1.8. If for f = u+ v : Q@ — C all partials of v and v exist and are continuous and the
Cauchy-Riemann equations hold on €2, then f is complex differentiable on 2.

Proposition 2.1.9. [CHAIN RULE]
Let ,T be open sets in C with f : @ - Cand g : T' — C. For p € Q if f/(p) and ¢'(f(p)) exist, then
go f:Q — C is differentiable at p with (go f)(p) = ¢'(f(p))f' (p).



2.2 Exponentials and logarithms

Definition 2.2.1. The exponential function on 2 is given below. Its range is 2\ {0}.
f(2) = f(z +iy) = e® cos(y) + ie”sin(y) = " = ¢*

Remark 2.2.2. Every complex number z # 0, z = x + iy is of the form z = e*T% for some s,6 € R.
s=1In(z? +y?)
6 =tan~! (¥)

In this case, there is exactly one 6 € (—7/2,7/2) such that z = es*%

2.3 Curves and regions
Definition 2.3.1. A curve in © is a continuous function « : [a, b] — €.
Definition 2.3.2. The trajectory of a curve « is the image set of the function, and is denoted by a*.

Definition 2.3.3. Given two curves « : [a,b] — Q running from p to ¢, and 8 : [¢,d] —  running from ¢
to r, replace 8 with « : [b,e] — Q that also runs from ¢ to r and has the same trajectory as f.

a(t) tela,b]

() telbe

Definition 2.3.4. A curve o = x + iy : [a,b] — Q is termed smooth whenever its complex derivative
o/ (t) = o'(t) + iy (t) exists and is continuous on [a, b].

Then a splice of the two curves is the curve 0 : [a, e] — Q where §(t) = {

Proposition 2.3.5. If « : [a,b] — Q is smooth and f : & — C is holomorphic, then for all ¢t € [a,b],
(foa)(t) = f'(alt)a'(t).

Definition 2.3.6. Then curve « : [a,b] — Q is termed piecewise-smooth if there exists a partition of
[a,b] :a=ap < a1 < --- < a, = b such that « is smooth on each of [a;_1,a,] for all j ={1,...,n}.

Definition 2.3.7. An open set {2 is connected when ) is not the disjoint union of two nonempty open
subsets of C.

Proposition 2.3.8. % A set ) is connected if and only if for all p,q € §Q, there exists a piecewise-smooth
curve « that runs from p to q.

Definition 2.3.9. A region is a connected open set. Hereinafter 2 always refers to a region.
Proposition 2.3.10. For Q a region and f : Q@ — C holomorphic, if f/ =0 on 2, then f is constant on €.

Definition 2.3.11. A function f : Q — C is termed a primitive for a function g if f’ = g on Q.

2.4 Power series

Definition 2.4.1. A sequence z,, € C converges if for any € > 0 , there exists ng € N and p € C such that
|z, — p| < € for all n = ng. In this case, z, converges to p.

Definition 2.4.2. A sequence z, € C is Cauchy if for any € > 0 there exists ng € N such that |z, — z,| < €
for all n > ng.

Proposition 2.4.3. A sequence converges if and only if it is Cauchy.

oo o0
Proposition 2.4.4. If Z |z | converges in R, then Z zn, converges in C.
k=1 k=1



Proposition 2.4.5. x For any power series > ;- | a,,2", there exists R € R* (where R* = RUoo) with R >

such that the power series converges absolutely if |z| < R and diverges if |z| > R.
In this case, R = lub{r > 0| |z,|r" is bounded}.

Definition 2.4.6. The R described above is termed the radius of the sequence.

Theorem 2.4.7.x [HADAMARD]
> 1

For a series anz", if limsup |a,|*/™ is nonzero and finite, then R = ——
) b 1/
lim sup |a, |1/

k=1
Proposition 2.4.8. Let > .-, a,2" be a power series with radius R.
1
lim sup |a, '/
2. If limsup |a,|'/™ = oo, then R = 0.
3. If limsup|a,|'/" = 0, then R = co.

1. If limsup |a, |/ < oo, then R =

Theorem 2.4.9. x [DIFFERENTIATION THEOREM, PT.1]
o0

The series E anz" and and its differentiated series E nanz""! have equal radii.
n=0 n=1

Theorem 2. 4 10. [DIFFERENTIATION THEOREM, PT.2]

Let f(z Z anz" have radius R > 0. Then for every p € Do(R Z napp™ L.
n=0

Definition 2.4.11. A function is termed entire if the radius of its power series is R = co.

3 Integrability

3.1 Fundamentals
Definition 3.1.1. The integral of a curve a = z + 4y : [a,b] — C given by ¢ — x(t) 4 iy(¢) is defined as:

/a—/ dt+z/by(t)dt

Remark 3.1.2. The integration of curves has the properties of complex linearity and triangle inequality:

/ab(aiﬁ)z/abai/abﬁ and /aba </aba|

Theorem 3.1.3. The integral of a continuous function f : Q@ — C along a smooth curve v : [a, b] —  is:

[i-]  Fa)y

Proposition 3.1.4. If f: Q — C is continuous and v : [a,b] — C is smooth, then

1] <us [ o

= || f ||~ length(~)

where || f|

= max (FGO)])

Theorem 3.1.5. The series Z a, 2" and and its integrated series Z an 2" have equal radii.
n=0 +1

0



3.2 Paths

Definition 3.2.1. If v : [a,b] — C is smooth and h : [¢,d] — [a, b] has a continuous derivative and h(c) = a,
h(d) = b, then yo h: [¢,d] — C is termed a reparametrization of .

Proposition 3.2.2. If f: Q — C is continuous and o h is a reparametrization of «, then f,yoh f= fv f.

Definition 3.2.3. If 7 : [a,b] — C is smooth, then its opposite is 7 : [a,b] — C given by ¢t — ~vy(a + b —t).
Then f;yf =— f7 f for f continuous.

Definition 3.2.4. A path in Q that runs from p to ¢ is a set of smooth curves
{71 :[a1,b1] = Q72 : [a2,b2] = Q, ...y ¢ [an, by] — Q}
with y(b;—1) = v(a;) for all 4, and y(a1) = p, v(an) = q.
Proposition 3.2.5. If f : Q — C is continuous and f has a primitive on 2 and - is a path from p to ¢ in Q:

/f=ﬂ®—ﬂm

for g the primitive of f on .

Definition 3.2.6. The integrals of f : 2 — C continuous are termed path independent if for any two paths
v, B € Q, both running from p to ¢ in , fv f= fﬁ f.

Proposition 3.2.7. Suppose f :  — C is continuous and f,y f =0 for all closed paths v in 2. Then f has
path independent integrals.

3.3 Cauchy

Proposition 3.3.1.x If f : QO — C is continuous with fv f = 0 for all closed paths v € €2, then f has a
primitive in €.

Remark 3.3.2. The line from p to ¢ is denoted by pg. Explicitly, pg : [0,1] — C is defined by t — (1—¢)p+tq.
Definition 3.3.3. For points p, ¢, r, the set of lines pq, g7, 7p is termed a triangle, denoted by 9 A (p, q,r).

Theorem 3.3.4. [CAUCHY-(GOURSAT]
If f is holomorphic on a region €2 and A is any triangle completely inside €, then fBA f=0.

Theorem 3.3.5. If f is holomorphic on a region €, except (possibly) on a finite set of points, on which f
remains continuous, and A is any triangle inside €2, then | an f=0.

Definition 3.3.6. A region is convex from a point p in Q if for all z € €, the segment pz is in 2.

Theorem 3.3.7. x If Q is convex from a point p, and f :  — C is holomorphic except (possibly) at a single
point, then f has a primitive on (2, or equivalently, f,y f =0 for all closed paths ~ in €.

Theorem 3.3.8. [CAUCHY INTEGRAL FORMULA]
If the following hold:
Q is convex from a point p

Visa closed pa.th in © then f(2) ds — f(p) dx
f is holomorphic on v Z—D v Z—D
pEN\Y

Definition 3.3.9. If 7 is a closed path in C and w ¢ v*, define the index of v around w to be

. 1 1
ind, (w) = %/ z—wdz
v




Theorem 3.3.10. If v is a closed path in C, then ind,(w) € Z for all w ¢ +*.
Theorem 3.3.11. The function ind, : C\ v* — Z is continuous.
Proposition 3.3.12. On the unbounded component of C\ v*, ind, = 0.

Theorem 3.3.13. If the following hold:
v is a closed path in Q2

ind,(w) =0V w¢N ) 1 7
; iesﬁfgo\lorforphic on O then ind,(2)f(z) = o [{ = Zd(
z Y

3.4 Implications of the Cauchy integral formula

Definition 3.4.1. A sequence of functions f, : A — C tends to a function f : A — C uniformly on A if
lfn— flla — 0 as n — oo.

Remark 3.4.2. If f, : A — C are continuous for all n and f,, — f uniformly, then f is continuous.

Remark 3.4.3. If v is a path in Q and f,,, f are defined and continuous on v* for all n € N, and if f,, — f
uniformly as n — co on v*, then f7 frn — f,y f asn — oo.

Theorem 3.4.4. [WEIERSTRASS M-TEST] o0
Let A C C and f, : A — C be a sequence of functions. Let M, > 0 with Z M, a convergent series and

n=1

Ifnlla < M, for all n. Then Z fn converges uniformly on A.

n=1
Theorem 3.4.5. x If f is holomorphic on 2 and R > 0 with D,(R) C Q for some p € , then for all
z € D,(R) there exists a power series Z an(z —p)" = f(2).
n=0
Corollary 3.4.6. A holomorphic function is equivalent to an analytic function.

Corollary 3.4.7. If f is holomorphic on 2 and D,(r) C Q with v : [0,27] — D,(r) the circle of radius r,
fMp) 1 G

then f(")(p) exists for all n with T 27”[y W .

Corollary 3.4.8. Every holomorphic function has a primitive on some disk.

Corollary 3.4.9. For f analytic in Q and D,(R) C Q with M an upper bound for |f| on D,(R),
‘ " (p)
!

< =
n R»

‘ M
<
Theorem 3.4.10. * [LIOUVILLE]

If a function f is entire and bounded by some M on C, then f is constant on C.

Theorem 3.4.11. x [FUNDAMENTAL THEOREM OF ALGEBRA]
If f is a polynomial over C and deg(f) > 1, then f has at least one root in C.

Definition 3.4.12. A point p € A C C is termed a cluster / limit / accumulation point of A if for any ¢ > 0
there exists ¢ € D,(€) C A with ¢ # p.
Otherwise, there exists € > 0 such that D,(e) N A = {p}, and p is termed isolated.

Proposition 3.4.13. For f: Q — C non-constant and analytic, every p €  such that f(p) = 0 is isolated.

Theorem 3.4.14. [IDENTITY THEOREM]
If f,g are analytic on 2 and f(z) = g(z) for all z € A C Q with at least 1 cluster point in A, f = g on Q.



Theorem 3.4.15. x [MORERA]
If f is continuous on 2 and faA f =0 for every triangle A C €, then f is analytic on .

Definition 3.4.16. A sequence of functions f, : 2 — C is said to converge uniformly on compact sets to a
function f : 2 — C if for every compact compact set A C Q, f,, — f uniformly on A.

Theorem 3.4.17. x If f,, : Q@ — C are analytic and f,, — f uniformly on compact subsets of €2, then f is
analytic on €).

Theorem 3.4.18. [MAXIMUM MODULUS PRINCIPLE]
If f is non-constant and analytic on 2, then |f| has no local maximum on €.

Corollary 3.4.19. For f: Q — C analytic and non-constant and Q O A compact, |f| attains its maximum
over A on the boundary of A.

4 Meromorphic functions

Definition 4.0.1. A meromorphic function f : Q — C is a holomorphic function that (possibly) has non-
essential singularities on a set of measure zero S C .

4.1 Singularities

Definition 4.1.1. Define the punctured disk of radius 7 > 0 centered at p € C be described by Dj(r) =
{zeClr<|z—p|<r}.

Definition 4.1.2. If f is analytic on 2, a singularity of f at p is termed removable if lim [f(z)] exists, so

Z—p
that f*(z) = { {15121)[]‘(2)] z ig is analytic on Q.

Proposition 4.1.3. If f is analytic on  with singularity at p, and f is bounded on some Dy (r) C €, then
f has a removable singularity at p.

Definition 4.1.4. For f : ) — C holomorphic and ¢ > 0, f(D}(e)) is not dense in C if there exists w € C
and ¢ > 0 such that |f(2) —w[ > ¢ for all z € Dj(e) C Q.

Proposition 4.1.5. For f a non-constant and entire function, f(C) is dense in C.

Theorem 4.1.6. * [CASORATI-WEIERSTRASS)]

Let f be analytic on £ with non-removable singularity at p. Then only one of the following conditions hold:
i. For every Dy (e) C Q with e >0, f(D;(e)) is dense in C.
ii. There exists a positive integer m such that (z — p)™ f(z) has a removable singularity at p.

Definition 4.1.7. With respect to the above definition, in case i, p is termed an essential singularity of f.
In case ii, p is termed a pole of f.

Theorem 4.1.8. [PICARD]
For f: Q — C analytic with p € Q an essential singularity, for any € > 0 either
i f(D3() = C
ii. f(Dy(e)) =C\ {w} for some w € C
Moreover, for every y € f(D;(¢€)), there are infinitely many z € Dj (¢) such that f(z) = y.



Proposition 4.1.9. If f is analytic on 2 with a pole at p, then there exist:
i. an analytic function h(z) on QU {p}
ii. an integer m > 1

iii. scalars by, by, ..., by, with by, # 0 such that f(z) = h(z) + b b2 bm

z—p (2—p)° (z—p)"
the principal part of f at p

Definition 4.1.10. With respect to the above, by is termed the residue of f at p and is denoted res(f, p).
The integer m is termed the order of the pole p.

Theorem 4.1.11. For 7 a closed curve in 2 and p € 2 with f holomorphic on (2, / f =b12mi - ind, (p)
¥

Proposition 4.1.12. If f has a singularity at p and f is analytic on €2, then p is a pole of order 1 <~
(z —p)f(2) = b # 0 and finite. Moreover, b is the residue of f at p.

Remark 4.1.13. Let f,g: Q — C be analytic on Q\ {p} with g(p) = 0 but f(p) # 0 and ¢’(p) # 0. Then
f/g has a pole of order 1 at p with res(f/g,p) = f(p)/d'(p)-

4.2 Cauchy’s theorem
Definition 4.2.1. A chain in 2 is a finite list of closed paths 71,72, ..., 7, in Q denoted v = v1+72, 4+« - -+Vn-
n
The image of this chain is defined as v* = U V5.
i=1
Definition 4.2.2. Two chains «, 8 are homologous in  if ind, (w) = indg(w) for all w ¢ Q.
Remark 4.2.3. If  is convex from a point, then every chain in € is homologous to 0 in .

Theorem 4.2.4. [CAUCHY]
For f : Q0 — C holomorphic, a chain « is homologous to 0 on a region €2 C C if and only if

[

in which case the Cauchy integral formula holds:
1

2mi

[ L e sema, ) torevery e 2\
y z

Corollary 4.2.5. For f: Q — C analytic and chains « homologous to 3 in 2,

[i=]1

e B

Theorem 4.2.6. * [RESIDUE THEOREM]

Let f be analytic on Q and pi1,ps,...,pn be poles of f and v a chain in € that is homologous to 0 in
QU {p1,p2,---,0n} Then

/f:2m' Zind,y(pj)res(f,pj)
2l

j=1
Proposition 4.2.7. A function f at p has a pole of order n if and only if lim [(z — p)" f(2)] = b # 0 and

zZ—p
finite. Then

MﬂﬁM—hm[wllw—pWﬂ@} !

z—=p | dzn ! (n—1)!

Definition 4.2.8. A region ) is simply connected if ind, (w) = 0 for every closed path v € Q and all w ¢ .

Proposition 4.2.9. If f: Q2 — C is holomorphic for Q simply connected, then f has a primitive on €.



4.3 Fourier series

Definition 4.3.1. For f: R — R continuous and w € R, the Fourier transform of f is

w) = /_O:O f(z)e™?dx

= lim [ _7" f(z) cos(wz)dx + i ' f(z) sin(wz)dz

T—00

—r

Proposition 4.3.2. For f analytic on Q = C\ {p1,p2,...,pm} and poles p; of f with Im(p;) # 0 for all ¢,
if |2f(2)] < M when |z| > R for some values M, R, then f(w) exists for all w > 0 and

= 27i Z res(f(2)e™?, p;)

Im(PL)>0

Proposition 4.3.3. Let f be analytic on Q = C\ {p1,pa,...,pm} where the p;’s are the poles of f. Then
if |2|*|f(2)| < M for some M and A > 1 and all z € Q with |z| > |20| for some |z| large enough, then

/WN f(z)w(;i?((:z)) dz—0 as N —=o0

where «yy is the rectangular path of width 2N + 1 and height 2V centered at the origin for N € N.

Moreover, in this case
S “ cos(wz)
Z f(n) Z res < sm(7rz) ’pi)

n=—oo i=1
n#p;

4.4 Rouché

Proposition 4.4.1. Let f: Q — C be analytic and non-constant. Then f’/f has poles at the zeros of f. If
p € Q is a zero of f of multiplicity m > 1, then res(f'/f,p) = m.

Definition 4.4.2. A path v has interior of for all w ¢ v*, ind,(w) € {0,1}.
Then the interior is defined to be the set {w |ind,(w) = 1}.

Remark 4.4.3. A path with interior is equivalent to a simple closed path.

Proposition 4.4.4. If the following hold:
f is analytic and non-constant on 2

~ is a simple closed path in Q 1 L’ _
~ is homologous to 0 in Then omi ), f = ; res(f'/f,p) ; mp
p € £ is a zero of f with multiplicity m,, indy (=1 inds (p)=1

Proposition 4.4.5. % Let «, 5 : [0,1] — C be closed paths such that |a(t) — 8(t)] < |8(¢)| for all t € [0, 1].
Then ind, (0) = indg(0).

Theorem 4.4.6. [ROUCHE]

If the following hold:
f, g are analytic on
v :[0,1] — Q is a simple closed path Then f and g have the same number of zeros in the interior
~ is homologous to 0 in 2 of v, counting multiplicities.

9(2) = f(2) < |f(z)| for all z € v*
Theorem 4.4.7. For f: Q — C analytic and non-constant, f(T") is open for every open set I' C .



4.5 Laurent

Definition 4.5.1. The annulus around p € C is the set of points in the open set between an inner radius r
and outer radius R, denoted A,(r, R) := {z|r < |z —p| < R}, with 0 <7 < R < 0.

Definition 4.5.2. The Laurent series of a function f defined on an annulus A,(r, R) is the series of coeffi-
cients for integer powers of z — p, when f is expressed as

oo bn oo .
f(z) —;w+mz_:oam(2—p)

Proposition 4.5.3. Suppose f has a Laurent expansion in a region {2, and p € (1 is a singularity of f. Then
1. pis removable <= b; =0 for all 4
2. pis a pole <= b; = 0 for infinitely many
3. pis essential <= b; =0 for finitely many ¢

Theorem 4.5.4. [LAURENT]
If f is analytic on A,(r, R), then f has a Laurent expansion on A4,(r, R).

Remark 4.5.5. Note that Laurent expansions are unique.

4.6 Univalency

Definition 4.6.1. Let f : 2 — C be analytic and one-to-one. Then f is termed univalent.
This is equivalent to stating that f(z1) = f(22) <= 21 = 29 for all a;, 29 € Q.

Theorem 4.6.2. Let f : Q — C be univalent, and let f(2) = I'. Then I is an open region also, and the
inverse function g : I' —  is also analytic. Moreover, if p € Q with f(p) = ¢, then

10



5 Selected proofs
Proposition 2.1.6. [CAUCHY-RIEMANN] Let f : Q — C be a function such that f is complex differentiable
at p = s + it with complex derivative w = a + ib. Then the partial derivatives of v and v exist with

Ou
ox

)

— oy
» Y

and

p

oy T oz

p p

Proof: Suppose that f = u + v is complex differentiable at p with derivative w.
Let p=s+it, z =x + iy, w = a + ib.

Thenmﬁwaszﬁp.

z—p

Equivalently: for every € > 0 , there exists § > 0 such that if z € Q and 0 < |z — p| < J, then
£ (2) = f(p) — w(z —p)| < €|z —p|
Equivalently: for e > 0, there exists 6 > 0 such that if v +iy € Q and 0 < |(z + iy) — (s +it)| < J, then
[f(@+iy) — f(s+it) = (a+ib)((x —5) +ily — )| <el(x—s)+i(y — 1)

v () — )
Then the derivative of f at p is {a

G-l 1G] =

—b

Equivalently: for e > 0 , there is § > 0 such that if ( ) €N and 0 < ‘

‘ < 4, then

G)-C)l

For f = u 4+ iv with u, v real functions, the derivative of f at p is given by the 2-dimensional Jacobian,

du du
ox » oy »
ov v
ox P oy p
Since the two matrices must be equal, we have
ou| _ = Ov Ou _ _ov
oz =a= Oy and oy =-b= ox
P P ]

Proposition 2.3.8. A set 2 is connected if and only if for all p,q € €2, there exists a piecewise-smooth
curve « that runs from p to gq.

Proof: Suppose that there does not exist a piecewise-smooth curve from p to ¢ in Q.
Let A= {z|3 a pw-sc in Q from p to z } and B = {z|# a pw-sc in 2 from p to z }.
Clearly pe A, g € Band AN B = () with AU B = Q, a disjoint union.

Pick w € A and take r > 0 such that D, (r) C Q.

Then there exists a pw-sc « in €2 from p to w.

For each z € D,,(r) there exists a pw-sc 5 to w in D,,(r) and hence in .
Splice a with g to get a pw-sc from p to z inside €.

Therefore A is open.

Take w € B and r > 0 such that D, (r) C Q.

Suppose that D,,(r) € B and there exists z € D,,(r) with z € A.

Then there exists a pw-sc « from p to z in Q.

Note there also exists a pw-sc § from z to w in Dy, (r) and hence in Q.

Splice o with 5 to get a pw-sc from p to w in Q.

Then w ¢ B, a contradiction.

Therefore D,,(r) C B and B is open.

Thus € is the disjoint union of non-empty open sets. n
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Proposition 2.4.5. For any power series Y ;- | a,z", there exists R € R* (where R* = RUoco) with R >0
such that the power series converges absolutely if |z| < R and diverges if |z| > R.

Proof: Consider B = {r > 0||a,|r" is a bounded sequence }.
Let R = lub{S}.
If |z| > R, then |a,2"| = |ay||2"| = |an||2|™ is not bounded.
If |z| < R, then there exists r € B such that |z| < r < R.
Hence all |a,|r™ < some bound M.
Then |a,2"| = |an|r" | %4 | <M [2|" and | 2] < L.

Then by the geometric series test, > M | = | " converges.

By the comparison test, Y a,z™ also converges. [ |
Theorem 2.4.7. [HADAMARD]
For a series Y po; a,2", if limsup lan|*/™ is nonzero and finite, then R = m
Proof: Suppose that 0 < L = limsup |a,|"/" < occ.
It will be shown that |a,|r™ is bounded when r < % and unbounded when r > %
Then0<r<%:>O<L<%
= |an|'/™ < 1 eventually
= |a, "™ < 1 eventually
= |an|r™ is bounded
Next, let 0 < + <r=0<1<L
=3 ssuchthat%<s<L
= 1 < s < a,|"/" infinitely often
= 1 < (s7)™ < |an|r™ infinitely often
= |a,|r" is unbounded.
Therefore the radius of the series is % [ |
Theorem 2.4.9. [DIFFERENTIATION THEOREM, PT.1]
oo o0
The series Z anz" and and its differentiated series Z na,z" ! have equal radii.
n=0 n=1
. . 1
Proof: The former series has radius —————.
lim sup |a,|*/™
. . 1 1
The latter series has radius - = =
lim sup |na,|[*/"  limsup [n|/"|a, /"
_ 1
~ limsup |n|}/" limsup |a, |2/
_ 1
~ limsup |a, |/
[ ]

Therefore the two series have equal radii.

Proposition 3.3.1. If f : Q — C is continuous with f,yf = 0 for all closed paths v € €, then f has a
primitive in €.
Proof: Pick p € Q.

For z € Q, let g(z) = fv f where ~ is any path that runs from p to z.

Note that all such v from p to z give the same value for g(z).

Check that ¢'(w) = f(w) for all w € Q.
It will be shown that for z arbitrarily close to w, there exists a function ¢(z) with

12



9(2) — gw) — f(w)(z — w)| < p(2)]z — w| with p(z) = 0 as = — p

Pick r > 0 so that D,,(r) C .

For z € D, (r), let £ be the straight line from w to z.
Take any path v € © from p to w.

Then v+ ¢ is a path in £ from p to z.

Then

g(Z)g(w)f(w)(zw)/Mf/ff(w)(zw)

=/7f+/€f—/7f—f(w)(z—w)

- /Zf—f(w)(z—w)
- /Z (f — f(w))
= [ = rw)in

14

So then | [,(f — f(w))| < If = f(w)]elz — wl.

Now check that ||f — f(w)]| = 0 as z = w.

Let € > 0.

Need 6 > 0 such that || f — f(w)]l¢ < € when |z — w| < 4.

So we need ¢ > 0 such that |f(w + t(z — w)) — f(w)| < € for all ¢t € [0, 1] when |z — w| < d.
Since f is continuous at w, we get § > 0 such that |z —w| < § = |f(2) — f(w)| < e.

In particular, for every ¢ € [0,1] and |z — w| < §, |w + t(z — w) —w| = t|]z —w| < 4.

For pp = w+t(z — w), we get | f(u) — f(w)| < e.

That is, || f — f(w)||ly — 0 as z — w.

13



Theorem 3.3.7. If Q is convex from a point p, and f :  — C is holomorphic except (possibly) at a single
point, then f has a primitive on 2, or equivalently, f,y f =0 for all closed paths ~y in €.

Proof: Let Q be convex from a point p.
Define g(w) = [ f for all w € Q.

pw
Take r > 0 such that D,,(r) C Q.

For every z € D,,(r), the triangle A(p,w, z) C £, since § is convex from p.
From Cauchy-Goursat, we have that

/BA(p,w,z)f:/pwf*/Wf+ | 1=0

Reversing path endpoints and rearranging,

/pzf—/pwf - /mf

96) = a(w) ~ el = | [ 1= [ 7 st w)

Pz pw

Then for every z € Dy (r),

| [ £ 1w w)

wz

—| [ 10~ swac|
<If = Fa)loalz — ul
9(z) ~ 9(w) —f(w)‘ <If = (e

z—w
Since the right hand size goes to zero as z — w, so does the left hand side.
Thus g is the primitive of f on (. |

Theorem 3.4.5. If f is holomorphic on Q and R > 0 with D,(R) C € for some p € Q, then for all z € D,(R)

there exists a power series Z an(z —p)" = f(2).
n=0
Proof: Pick 0 <r < R.
Let 7 : [0,27] — D,(R) be given by t — p + re'. 1 £(0)
By the Cauchy integral theorem, for every z € D,(r) we have f(z) = —/ ——d(
For ¢ € v* and z € D,(r), gl

= (z—p)"
=2 =/ ©

n=0

fQ) f(©) o1 f(€) Q) = (2—p\"
(—z (-p—(z2—p) (-p 1_(%) _CPZ(C£>

n=0

The above summation is correct, as |z — p| < |( — p| for all z € Dy(r).
Observe that

H (== p)" f@‘ =l Ul
(C - p)n+1 Cev* rn r
Then Z <2p|) w converges, as \z%p\ < 1.
o T r
v the Weierstrass M-test, Z = f(¢) converges uniformly on ~v*.

n=0
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Due to this, the integral can be passed on to the series terms to get
1 f(Q) o 1 / f(Q)
= — d¢ = _ TS VA _ n
) 2m’LC—zC ;27”' L (C—p)tt Cz=»)

Notice that a,, = / C—p) n+1 ——2——d( does not depend on z € D,(r).

1 ©) ™ (p)
Moreover, 2—/ C—ph d¢ = PR
Thus the integrals do not depend on 7.
So for any z € D,(R), pick r such that 0 < [z—p| <7 < R to get f(z Z an(z—p)" for all z € D,(R).
n=0 ]

Theorem 3.4.10. [LIOUVILLE]
If a function f is entire and bounded by some M on C, then f is constant on C.

Proof: Let M be a bound for |f| over C.

RTL

Then f has a power series representation Z anz" with |a,| =
n=0

This is from the Cauchy derivative estimates for any R > 0.

As R — o0, a, =0 for all n € N.

Thus f(z) =0 for all z € C. ]

n!

Theorem 3.4.11. [FUNDAMENTAL THEOREM OF ALGEBRA]
If f is a polynomial over C and deg(f) > 1, then f has at least one root in C.

Proof: Suppose for a contradiction that f(z) has no root in C, or equivalently that ( ) is entire.
As f is a polynomial,

1f(2)] = 2" + an_12" "'+ -+ a1z + aol

|an—1‘ |an—2| |a’0|
> (1 - oo 190l
/'Z'< ( TR T

— 00 as|z| = o0

In particular, |f(z)| > 1 for |z| > R for some radius R.

So |g(z)] < 1 for |z| > R.

Since ¢ is entire, it is also bounded on Dy (R).

Thus g is bounded on C.

By Liouville, g is constant.

This is a contradiction, as deg(f) > 1.

Therefore f has at least 1 root in C. [ |

Theorem 3.4.15. [MORERA]|
If f is continuous on 2 and faA f =0 for every triangle A C 2, then f is analytic on €.

Proof: Take any D,(R) C Q.

From a previous proof, g(z) = / f is a primitive for f for all z € D,(R).
Pz
Since ¢’ = f on D,(R), g is analytic on D,(R).

By differentiation of power series, f is analytic on D,(R). [ |
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Theorem 3.4.16. If f, : Q@ — C are analytic and f, — f uniformly on compact subsets of €2, then f is
analytic on ).

Proof: For every closed disk D,(r) C Q, f,, — f uniformly on D, (r).
Since the f,, are continuous on D,(r), f is continuous on Dp (7).
Hence f is continuous on 2.
Since the f,, are holomorphic, we know for every A C Q, [, an fn=0.
Also, [yn fn = [ou fras OA is compact.
Hence [, f =0.
By Morera, f is analytic on €. |

Theorem 4.1.6. [CASORATI-WEIERSTRASS]

Let f be analytic on 2 with non-removable singularity at p. Then only one of the following conditions hold:
i. For every Dy (e) C Q with e >0, f(D;(¢)) is dense in C.
ii. There exists a positive integer m such that (z — p)™ f(z) has a removable singularity at p.

Proof: ii. = — i. Suppose that ii. holds.
Let m > 1 be the smallest integer such that (z — p)™ f(z) has a removable singularity at p.

Let g(z) = gim [(z) —fzg)’zlf(z)] i ii so that g is analytic on QU {p}.
z—p

Thus g(z) = ao + a1(z — p) + az(z — p)? + - -+ for all z in some D,(r) C QU {p}.

If g(p) = ap = 0, then (z — p)™ f(2) = (2 — p)(a1 + az(z —p) +---) for all z € Dy(r).

However, then (z — p)™~!f(z) has a removable singularity at p, contradicting the minimality of m.
Thus g(p) = ag # 0.

As g is continuous at p, for some € > 0 if z € D,(e) C QU {p}, then |g(z)| = B > 0 for some constant B.
Thus for z € D (e),

9(2) B
Z|=|—"-=|2—>0
O e
So f(D;(¢)) is bounded away from zero.
Thus f is not dense in C. |

Theorem 4.2.6. [RESIDUE THEOREM]
Let f be analytic on @ and p1,ps2,...,pn be poles of f and v a chain in € that is homologous to 0 in
QU {p1,p2,...,0n}. Then
/f=2m' Zindv(pj)rcs(f,pj)
y

j=1

Proof: Set ¢; = ind,(p;).
Fix r; > 0 such that Dy, (r;) € QU {p1,p2,...,pn} are non-overlapping.
Take $3; : [0,27] — Q given by t — p; + rje’cit.
Then the chain g1 4+ B2+ --- 4+ B, is homologous to v on €.

By Cauchy,
/ / = Z?m ¢ -res(f,pj) = Zmd pj)res(f,p;)
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Proposition 4.4.5. Let o, 8 : [0,1] — C be closed paths such that |a(t) — 8(¢)| < |B(¢)| for all ¢ € [0, 1].
Then ind, (0) = indg(0).
Proof: Note that 0 ¢ 5*, and also 0 ¢ o, because if a(s) = 0 for some 0 < s < 1, then

16(s)] = 10 = Bla)| = |a(s) = B(s)| < [B(s)]

For ¢ € [0,1], let y(¢) = %
Note that ,
V()

_ )
V() et (B(1))?

Then combining the above,

t)

) = 0] < |30l = | 55 1| <1= i)~ 1l <1 =20 € Da(n) ¥ ¢

Thus ind, (0) = 0.

From the parametrization of v, we get that

1 7 1
o:/idz:/ ””dt:/
+2=0 0 0

v(t)

) A
Mﬂﬁ_A 3

(t))dt:/azi()dz_/ﬁ

d
-0
Therefore ind, (0) = indg(0).
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