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1 Preliminaries

Definition 1.0.1. For p ∈ C and r ∈ R with r > 0, the (open) disk of center p and radius r is given by

Dp(r) = {z ∈ C
|z − p| < r}.

Definition 1.0.2. A set Ω ∈ C is termed open if for every p ∈ Ω, there exists r > 0 such that Dp(r) ⊆ Ω.

Remark 1.0.3. These are some common geometric shapes:
· An annulus: A = {z

r < |z − p| < R} with 0 6 r < R 6∞
· A half-plane: H = {x+ iy

x > 0}

Definition 1.0.4. For f : Ω→ C and p ∈ C, we have that f(z)→ w as z → p if for every ε > 0 there exists
δ > 0 such that |f(z)− w| < ε when 0 < |z − p| < δ and z ∈ C.

Definition 1.0.5. If a function f : C→ C is such that for all real scalars c, f(cz) = cf(z), then f is R-linear.
If this holds for all complex scalars c, then f is C-linear.

Remark 1.0.6. A differentiable function f : Ω→ C compared with f : Ω→ R2 for Ω an open subset of C
and R2 respectively, is stronger in the first case, due to complex linearity.

2 Complex differentiability

2.1 Derivatives

Definition 2.1.1. If f : I → R is a function defined on an open interval I with p ∈ I, then f is (complex)

differentiable at p with derivative m provided f(x)−f(p)
x−p → m as x→ p. This function is then holomorphic.

Definition 2.1.2. A function is entire if it is holomorphic on the whole complex plane.

Remark 2.1.3. Now let f : Ω→ R2 and p ∈ Ω. Then we say that f is real differentiable at p =
(
s
t

)
with derivative

[
a b
c d

]
provided for ε > 0 there exists δ > 0 such that if 0 6 ‖ ( xy )− ( st ) ‖ < δ, then

‖f (( xy ))− f (( st ))−
[
a b
c d

] (
x−s
y−t
)
‖ < ε‖

(
x−s
y−t
)
‖.

Proposition 2.1.4. Let f : Ω→ C be a function. Then f has complex derivative w = a+ ib at some
p = s+ it ∈ Ω provided f has a real derivative at p of the type

[
a −b
b a

]
Remark 2.1.5. If f : Ω→ R2 is real differentiable at p ∈ Ω, then its derivative at p is

[
a b
c d

]
=

 ∂u
∂x


p

∂u
∂y


p

∂v
∂x


p

∂v
∂y


p


This is termed the Jacobian, with f = u+ iv.

Proposition 2.1.6. ∗ [Cauchy-Riemann]
Let f : Ω→ C be a function such that f is complex differentiable at p = s+ it with complex derivative
w = a+ ib. Then the partial derivative of u and v exist with

∂u
∂x


p

= ∂v
∂y


p

and ∂u
∂y


p

= − ∂v
∂x


p

Remark 2.1.7. If f : Ω→ C is differentiable at p ∈ Ω, then f is continuous at p.

Proposition 2.1.8. If for f = u + iv : Ω → C all partials of u and v exist and are continuous and the
Cauchy-Riemann equations hold on Ω, then f is complex differentiable on Ω.

Proposition 2.1.9. [Chain rule]
Let Ω,Γ be open sets in C with f : Ω → C and g : Γ → C. For p ∈ Ω if f ′(p) and g′(f(p)) exist, then
g ◦ f : Ω→ C is differentiable at p with (g ◦ f)′(p) = g′(f(p))f ′(p).
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2.2 Exponentials and logarithms

Definition 2.2.1. The exponential function on Ω is given below. Its range is Ω \ {0}.

f(z) = f(x+ iy) = ex cos(y) + iex sin(y) = ex+iy = ez

Remark 2.2.2. Every complex number z 6= 0, z = x+ iy is of the form z = es+iθ for some s, θ ∈ R.
s = 1

2 ln(x2 + y2)
θ = tan−1

(
y
x

)
In this case, there is exactly one θ ∈ (−π/2, π/2) such that z = es+iθ

2.3 Curves and regions

Definition 2.3.1. A curve in Ω is a continuous function α : [a, b]→ Ω.

Definition 2.3.2. The trajectory of a curve α is the image set of the function, and is denoted by α∗.

Definition 2.3.3. Given two curves α : [a, b] → Ω running from p to q, and β : [c, d] → Ω running from q
to r, replace β with γ : [b, e]→ Ω that also runs from q to r and has the same trajectory as β.

Then a splice of the two curves is the curve δ : [a, e]→ Ω where δ(t) =

{
α(t) t ∈ [a, b]
γ(t) t ∈ [b, e]

Definition 2.3.4. A curve α = x + iy : [a, b] → Ω is termed smooth whenever its complex derivative
α′(t) = x′(t) + iy′(t) exists and is continuous on [a, b].

Proposition 2.3.5. If α : [a, b] → Ω is smooth and f : Ω → C is holomorphic, then for all t ∈ [a, b],
(f ◦ α)′(t) = f ′(α(t))α′(t).

Definition 2.3.6. Then curve α : [a, b] → Ω is termed piecewise-smooth if there exists a partition of
[a, b] : a = a0 < a1 < · · · < an = b such that α is smooth on each of [aj−1, aj ] for all j = {1, . . . , n}.

Definition 2.3.7. An open set Ω is connected when Ω is not the disjoint union of two nonempty open
subsets of C.

Proposition 2.3.8. ∗ A set Ω is connected if and only if for all p, q ∈ Ω, there exists a piecewise-smooth
curve α that runs from p to q.

Definition 2.3.9. A region is a connected open set. Hereinafter Ω always refers to a region.

Proposition 2.3.10. For Ω a region and f : Ω→ C holomorphic, if f ′ = 0 on Ω, then f is constant on Ω.

Definition 2.3.11. A function f : Ω→ C is termed a primitive for a function g if f ′ = g on Ω.

2.4 Power series

Definition 2.4.1. A sequence zn ∈ C converges if for any ε > 0 , there exists n0 ∈ N and p ∈ C such that
|zn − p| < ε for all n > n0. In this case, zn converges to p.

Definition 2.4.2. A sequence zn ∈ C is Cauchy if for any ε > 0 there exists n0 ∈ N such that |zm− zn| < ε
for all n > n0.

Proposition 2.4.3. A sequence converges if and only if it is Cauchy.

Proposition 2.4.4. If

∞∑
k=1

|zn| converges in R, then

∞∑
k=1

zn converges in C.
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Proposition 2.4.5. ∗ For any power series
∑∞
k=1 anz

n, there exists R ∈ R∗ (where R∗ = R∪∞) with R > 0
such that the power series converges absolutely if |z| < R and diverges if |z| > R.

In this case, R = lub{r > 0
|zn|rn is bounded}.

Definition 2.4.6. The R described above is termed the radius of the sequence.

Theorem 2.4.7.∗ [Hadamard]

For a series

∞∑
k=1

anz
n, if lim sup |an|1/n is nonzero and finite, then R =

1

lim sup |an|1/n

Proposition 2.4.8. Let
∑∞
k=1 anz

n be a power series with radius R.

1. If lim sup |an|1/n <∞, then R =
1

lim sup |an|1/n
.

2. If lim sup |an|1/n =∞, then R = 0.
3. If lim sup |an|1/n = 0, then R =∞.

Theorem 2.4.9. ∗ [Differentiation theorem, pt.1]

The series
∞∑
n=0

anz
n and and its differentiated series

∞∑
n=1

nanz
n−1 have equal radii.

Theorem 2.4.10. [Differentiation theorem, pt.2]

Let f(z) =

∞∑
n=0

anz
n have radius R > 0. Then for every p ∈ D0(R), f ′(p) =

∞∑
n=1

nanp
n−1.

Definition 2.4.11. A function is termed entire if the radius of its power series is R =∞.

3 Integrability

3.1 Fundamentals

Definition 3.1.1. The integral of a curve α = x+ iy : [a, b]→ C given by t 7→ x(t) + iy(t) is defined as:∫ b

a

α =

∫ b

a

x(t)dt+ i

∫ b

a

y(t)dt

Remark 3.1.2. The integration of curves has the properties of complex linearity and triangle inequality:∫ b

a

(α± β) =

∫ b

a

α±
∫ b

a

β and


∫ b

a

α

 6
∫ b

a

|α|

Theorem 3.1.3. The integral of a continuous function f : Ω→ C along a smooth curve γ : [a, b]→ Ω is:∫
γ

f =

∫ b

a

f(γ(t))γ′(t)dt

Proposition 3.1.4. If f : Ω→ C is continuous and γ : [a, b]→ C is smooth, then∫
γ

f

 6 ‖f‖γ∗
∫ b

a

|γ′(t)|dt

= ‖f‖γ∗ length(γ)

where ‖f‖γ∗ = max
t∈[a,b]

{|f(γ(t))|}.

Theorem 3.1.5. The series

∞∑
n=0

anz
n and and its integrated series

∞∑
n=0

an
n+ 1

zn+1 have equal radii.
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3.2 Paths

Definition 3.2.1. If γ : [a, b]→ C is smooth and h : [c, d]→ [a, b] has a continuous derivative and h(c) = a,
h(d) = b, then γ ◦ h : [c, d]→ C is termed a reparametrization of γ.

Proposition 3.2.2. If f : Ω→ C is continuous and γ ◦ h is a reparametrization of γ, then
∫
γ◦h f =

∫
γ
f .

Definition 3.2.3. If γ : [a, b] → C is smooth, then its opposite is γ̃ : [a, b] → C given by t 7→ γ(a + b − t).
Then

∫
γ̃
f = −

∫
γ
f for f continuous.

Definition 3.2.4. A path in Ω that runs from p to q is a set of smooth curves

{γ1 : [a1, b1]→ Ω, γ2 : [a2, b2]→ Ω, . . . , γn : [an, bn]→ Ω}

with γ(bi−1) = γ(ai) for all i, and γ(a1) = p, γ(an) = q.

Proposition 3.2.5. If f : Ω→ C is continuous and f has a primitive on Ω and γ is a path from p to q in Ω:∫
γ

f = g(q)− g(p)

for g the primitive of f on Ω.

Definition 3.2.6. The integrals of f : Ω→ C continuous are termed path independent if for any two paths
γ, β ∈ Ω, both running from p to q in Ω,

∫
γ
f =

∫
β
f .

Proposition 3.2.7. Suppose f : Ω→ C is continuous and
∫
γ
f = 0 for all closed paths γ in Ω. Then f has

path independent integrals.

3.3 Cauchy

Proposition 3.3.1. ∗ If f : Ω → C is continuous with
∫
γ
f = 0 for all closed paths γ ∈ Ω, then f has a

primitive in Ω.

Remark 3.3.2. The line from p to q is denoted by pq. Explicitly, pq : [0, 1]→ C is defined by t 7→ (1−t)p+tq.

Definition 3.3.3. For points p, q, r, the set of lines pq, qr, rp is termed a triangle, denoted by ∂ 4 (p, q, r).

Theorem 3.3.4. [Cauchy-Goursat]
If f is holomorphic on a region Ω and 4 is any triangle completely inside Ω, then

∫
∂4 f = 0.

Theorem 3.3.5. If f is holomorphic on a region Ω, except (possibly) on a finite set of points, on which f
remains continuous, and 4 is any triangle inside Ω, then

∫
∂4 f = 0.

Definition 3.3.6. A region is convex from a point p in Ω if for all z ∈ Ω, the segment pz is in Ω.

Theorem 3.3.7. ∗ If Ω is convex from a point p, and f : Ω→ C is holomorphic except (possibly) at a single
point, then f has a primitive on Ω, or equivalently,

∫
γ
f = 0 for all closed paths γ in Ω.

Theorem 3.3.8. [Cauchy integral formula]
If the following hold:

Ω is convex from a point p
γ is a closed path in Ω
f is holomorphic on Ω
p ∈ Ω \ γ∗

 then

∫
γ

f(z)

z − p
dz =

∫
γ

f(p)

z − p
dz

Definition 3.3.9. If γ is a closed path in C and w /∈ γ∗, define the index of γ around w to be

indγ(w) =
1

2πi

∫
γ

1

z − w
dz
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Theorem 3.3.10. If γ is a closed path in C, then indγ(w) ∈ Z for all w /∈ γ∗.

Theorem 3.3.11. The function indγ : C \ γ∗ → Z is continuous.

Proposition 3.3.12. On the unbounded component of C \ γ∗, indγ = 0.

Theorem 3.3.13. If the following hold:
γ is a closed path in Ω
indγ(w) = 0 ∀ w /∈ Ω
f is holomorphic on Ω
z ∈ Ω \ γ∗

 then indγ(z)f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

3.4 Implications of the Cauchy integral formula

Definition 3.4.1. A sequence of functions fn : A → C tends to a function f : A → C uniformly on A if
‖fn − f‖A → 0 as n→∞.

Remark 3.4.2. If fn : A→ C are continuous for all n and fn → f uniformly, then f is continuous.

Remark 3.4.3. If γ is a path in Ω and fn, f are defined and continuous on γ∗ for all n ∈ N, and if fn → f
uniformly as n→∞ on γ∗, then

∫
γ
fn →

∫
γ
f as n→∞.

Theorem 3.4.4. [Weierstrass M-test]

Let A ⊆ C and fn : A→ C be a sequence of functions. Let Mn > 0 with

∞∑
n=1

Mn a convergent series and

‖fn‖A 6Mn for all n. Then

∞∑
n=1

fn converges uniformly on A.

Theorem 3.4.5. ∗ If f is holomorphic on Ω and R > 0 with Dp(R) ⊆ Ω for some p ∈ Ω, then for all

z ∈ Dp(R) there exists a power series

∞∑
n=0

an(z − p)n = f(z).

Corollary 3.4.6. A holomorphic function is equivalent to an analytic function.

Corollary 3.4.7. If f is holomorphic on Ω and Dp(r) ⊆ Ω with γ : [0, 2π] → Dp(r) the circle of radius r,

then f (n)(p) exists for all n with
f (n)(p)

n!
=

1

2πi

∫
γ

f(z)

(z − p)n+1
dz.

Corollary 3.4.8. Every holomorphic function has a primitive on some disk.

Corollary 3.4.9. For f analytic in Ω and Dp(R) ⊆ Ω with M an upper bound for |f | on Dp(R),f (n)(p)n!

 6
M

Rn

Theorem 3.4.10. ∗ [Liouville]
If a function f is entire and bounded by some M on C, then f is constant on C.

Theorem 3.4.11. ∗ [Fundamental theorem of algebra]
If f is a polynomial over C and deg(f) > 1, then f has at least one root in C.

Definition 3.4.12. A point p ∈ A ⊆ C is termed a cluster / limit / accumulation point of A if for any ε > 0
there exists q ∈ Dp(ε) ⊆ A with q 6= p.

Otherwise, there exists ε > 0 such that Dp(ε) ∩A = {p}, and p is termed isolated.

Proposition 3.4.13. For f : Ω→ C non-constant and analytic, every p ∈ Ω such that f(p) = 0 is isolated.

Theorem 3.4.14. [Identity theorem]
If f, g are analytic on Ω and f(z) = g(z) for all z ∈ A ⊆ Ω with at least 1 cluster point in A, f = g on Ω.
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Theorem 3.4.15. ∗ [Morera]
If f is continuous on Ω and

∫
∂4 f = 0 for every triangle 4 ⊂ Ω, then f is analytic on Ω.

Definition 3.4.16. A sequence of functions fn : Ω→ C is said to converge uniformly on compact sets to a
function f : Ω→ C if for every compact compact set A ⊆ Ω, fn → f uniformly on A.

Theorem 3.4.17. ∗ If fn : Ω → C are analytic and fn → f uniformly on compact subsets of Ω, then f is
analytic on Ω.

Theorem 3.4.18. [Maximum modulus principle]
If f is non-constant and analytic on Ω, then |f | has no local maximum on Ω.

Corollary 3.4.19. For f : Ω→ C analytic and non-constant and Ω ⊇ A compact, |f | attains its maximum
over A on the boundary of A.

4 Meromorphic functions

Definition 4.0.1. A meromorphic function f : Ω → C is a holomorphic function that (possibly) has non-
essential singularities on a set of measure zero S ⊂ Ω.

4.1 Singularities

Definition 4.1.1. Define the punctured disk of radius r > 0 centered at p ∈ C be described by D∗p(r) =

{z ∈ C
r < |z − p| < r}.

Definition 4.1.2. If f is analytic on Ω, a singularity of f at p is termed removable if lim
z→p

[f(z)] exists, so

that f∗(z) =

{
f(z) z 6= p
lim
z→p

[f(z)] z = p is analytic on Ω.

Proposition 4.1.3. If f is analytic on Ω with singularity at p, and f is bounded on some D∗p(r) ⊆ Ω, then
f has a removable singularity at p.

Definition 4.1.4. For f : Ω→ C holomorphic and ε > 0 , f(D∗p(ε)) is not dense in C if there exists w ∈ C
and δ > 0 such that |f(z)− w| > δ for all z ∈ D∗p(ε) ⊆ Ω.

Proposition 4.1.5. For f a non-constant and entire function, f(C) is dense in C.

Theorem 4.1.6. ∗ [Casorati-Weierstrass]
Let f be analytic on Ω with non-removable singularity at p. Then only one of the following conditions hold:

i. For every D∗p(ε) ⊆ Ω with ε > 0 , f(D∗p(ε)) is dense in C.
ii. There exists a positive integer m such that (z − p)mf(z) has a removable singularity at p.

Definition 4.1.7. With respect to the above definition, in case i, p is termed an essential singularity of f .
In case ii, p is termed a pole of f .

Theorem 4.1.8. [Picard]
For f : Ω→ C analytic with p ∈ Ω an essential singularity, for any ε > 0 either

i. f(D∗p(ε)) = C
ii. f(D∗p(ε)) = C \ {w} for some w ∈ C

Moreover, for every y ∈ f(D∗p(ε)), there are infinitely many z ∈ D∗p(ε) such that f(z) = y.
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Proposition 4.1.9. If f is analytic on Ω with a pole at p, then there exist:
i. an analytic function h(z) on Ω ∪ {p}
ii. an integer m > 1

iii. scalars b1, b2, . . . , bm with bm 6= 0 such that f(z) = h(z) +
b1

z − p
+

b2
(z − p)2

+ · · ·+ bm
(z − p)m︸ ︷︷ ︸

the principal part of f at p

Definition 4.1.10. With respect to the above, b1 is termed the residue of f at p and is denoted res(f, p).
The integer m is termed the order of the pole p.

Theorem 4.1.11. For γ a closed curve in Ω and p ∈ Ω with f holomorphic on Ω,

∫
γ

f = b12πi · indγ(p)

Proposition 4.1.12. If f has a singularity at p and f is analytic on Ω, then p is a pole of order 1 ⇐⇒
(z − p)f(z)→ b 6= 0 and finite. Moreover, b is the residue of f at p.

Remark 4.1.13. Let f, g : Ω→ C be analytic on Ω \ {p} with g(p) = 0 but f(p) 6= 0 and g′(p) 6= 0. Then
f/g has a pole of order 1 at p with res(f/g, p) = f(p)/g′(p).

4.2 Cauchy’s theorem

Definition 4.2.1. A chain in Ω is a finite list of closed paths γ1, γ2, . . . , γn in Ω denoted γ = γ1+γ2,+ · · ·+γn.

The image of this chain is defined as γ∗ =

n⋃
i=1

γ∗i .

Definition 4.2.2. Two chains α, β are homologous in Ω if indα(w) = indβ(w) for all w /∈ Ω.

Remark 4.2.3. If Ω is convex from a point, then every chain in Ω is homologous to 0 in Ω.

Theorem 4.2.4. [Cauchy]
For f : Ω→ C holomorphic, a chain γ is homologous to 0 on a region Ω ⊆ C if and only if∫

γ

f = 0

in which case the Cauchy integral formula holds:

1

2πi

∫
γ

f(ζ)

ζ − z
dζ = f(z)indγ(z) for every z ∈ Ω \ γ∗

Corollary 4.2.5. For f : Ω→ C analytic and chains α homologous to β in Ω,∫
α

f =

∫
β

f

Theorem 4.2.6. ∗ [Residue theorem]
Let f be analytic on Ω and p1, p2, . . . , pn be poles of f and γ a chain in Ω that is homologous to 0 in
Ω ∪ {p1, p2, . . . , pn}. Then ∫

γ

f = 2πi

 n∑
j=1

indγ(pj)res(f, pj)


Proposition 4.2.7. A function f at p has a pole of order n if and only if lim

z→p
[(z − p)nf(z)] = b 6= 0 and

finite. Then

res(f, p) = lim
z→p

[
dn−1

dzn−1
(z − p)nf(z)

]
1

(n− 1)!

Definition 4.2.8. A region Ω is simply connected if indγ(w) = 0 for every closed path γ ∈ Ω and all w /∈ Ω.

Proposition 4.2.9. If f : Ω→ C is holomorphic for Ω simply connected, then f has a primitive on Ω.
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4.3 Fourier series

Definition 4.3.1. For f : R→ R continuous and ω ∈ R, the Fourier transform of f is

f̂(ω) =

∫ ∞
−∞

f(x)eiωxdx

= lim
r→∞

[∫ r

−r
f(x) cos(ωx)dx+ i

∫ r

−r
f(x) sin(ωx)dx

]

Proposition 4.3.2. For f analytic on Ω = C \ {p1, p2, . . . , pm} and poles pi of f with Im(pi) 6= 0 for all i,

if |zf(z)| 6M when |z| > R for some values M,R, then f̂(ω) exists for all ω > 0 and

f̂(ω) = 2πi

m∑
i=1

Im(pi)>0

res(f(z)eiωz, pi)

Proposition 4.3.3. Let f be analytic on Ω = C \ {p1, p2, . . . , pm} where the pi’s are the poles of f . Then
if |z|λ|f(z)| 6M for some M and λ > 1 and all z ∈ Ω with |z| > |z0| for some |z0| large enough, then∫

γN

f(z)π
cos(πz)

sin(πz)
dz → 0 as N →∞

where γN is the rectangular path of width 2N + 1 and height 2N centered at the origin for N ∈ N.
Moreover, in this case

∞∑
n=−∞
n 6=pi

f(n) = −
m∑
i=1

res

(
f(z)π

cos(πz)

sin(πz)
, pi

)

4.4 Rouché

Proposition 4.4.1. Let f : Ω→ C be analytic and non-constant. Then f ′/f has poles at the zeros of f . If
p ∈ Ω is a zero of f of multiplicity m > 1, then res(f ′/f, p) = m.

Definition 4.4.2. A path γ has interior of for all w /∈ γ∗, indγ(w) ∈ {0, 1}.
Then the interior is defined to be the set {w

indγ(w) = 1}.

Remark 4.4.3. A path with interior is equivalent to a simple closed path.

Proposition 4.4.4. If the following hold:
f is analytic and non-constant on Ω
γ is a simple closed path in Ω
γ is homologous to 0 in Ω
p ∈ Ω is a zero of f with multiplicity mp

 Then
1

2πi

∫
γ

f ′

f
=
∑
all p

indγ (p)=1

res(f ′/f, p) =
∑
all p

indγ (p)=1

mp

Proposition 4.4.5. ∗ Let α, β : [0, 1] → C be closed paths such that |α(t) − β(t)| < |β(t)| for all t ∈ [0, 1].
Then indα(0) = indβ(0).

Theorem 4.4.6. [Rouché]
If the following hold:

f, g are analytic on Ω
γ : [0, 1]→ Ω is a simple closed path
γ is homologous to 0 in Ω
|g(z)− f(z)| < |f(z)| for all z ∈ γ∗

 Then f and g have the same number of zeros in the interior
of γ, counting multiplicities.

Theorem 4.4.7. For f : Ω→ C analytic and non-constant, f(Γ) is open for every open set Γ ⊆ Ω.
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4.5 Laurent

Definition 4.5.1. The annulus around p ∈ C is the set of points in the open set between an inner radius r
and outer radius R, denoted Ap(r,R) := {z

r < |z − p| < R}, with 0 6 r < R 6∞.

Definition 4.5.2. The Laurent series of a function f defined on an annulus Ap(r,R) is the series of coeffi-
cients for integer powers of z − p, when f is expressed as

f(z) =

∞∑
n=1

bn
(z − p)n

+

∞∑
m=0

am(z − p)m

Proposition 4.5.3. Suppose f has a Laurent expansion in a region Ω, and p ∈ Ω is a singularity of f . Then
1. p is removable ⇐⇒ bi = 0 for all i
2. p is a pole ⇐⇒ bi = 0 for infinitely many i
3. p is essential ⇐⇒ bi = 0 for finitely many i

Theorem 4.5.4. [Laurent]
If f is analytic on Ap(r,R), then f has a Laurent expansion on Ap(r,R).

Remark 4.5.5. Note that Laurent expansions are unique.

4.6 Univalency

Definition 4.6.1. Let f : Ω→ C be analytic and one-to-one. Then f is termed univalent.
This is equivalent to stating that f(z1) = f(z2) ⇐⇒ z1 = z2 for all a1, z2 ∈ Ω.

Theorem 4.6.2. Let f : Ω → C be univalent, and let f(Ω) = Γ. Then Γ is an open region also, and the
inverse function g : Γ→ Ω is also analytic. Moreover, if p ∈ Ω with f(p) = q, then

g′(q) =
1

f ′(p)

10



5 Selected proofs

Proposition 2.1.6. [Cauchy-Riemann] Let f : Ω→ C be a function such that f is complex differentiable
at p = s+ it with complex derivative w = a+ ib. Then the partial derivatives of u and v exist with

∂u
∂x


p

= ∂v
∂y


p

and ∂u
∂y


p

= − ∂v
∂x


p

Proof: Suppose that f = u+ iv is complex differentiable at p with derivative w.
Let p = s+ it, z = x+ iy, w = a+ ib.

Then f(z)−f(p)
z−p → w as z → p.

Equivalently: for every ε > 0 , there exists δ > 0 such that if z ∈ Ω and 0 < |z − p| < δ, then

|f(z)− f(p)− w(z − p)| < ε|z − p|

Equivalently: for ε > 0 , there exists δ > 0 such that if x+ iy ∈ Ω and 0 < |(x+ iy)− (s+ it)| < δ, then

|f(x+ iy)− f(s+ it)− (a+ ib)((x− s) + i(y − t))| < ε|(x− s) + i(y − t)|

Equivalently: for ε > 0 , there is δ > 0 such that if
(
x
y

)
∈ Ω and 0 6

www(xy)− (st)www < δ, thenwwwwf(xy
)
− f

(
s

t

)
−
[
a −b
b a

](
x− s
y − t

)wwww < ε

wwww(xy
)
−
(
s

t

)wwww
Then the derivative of f at p is

[
a −b
b a

]
.

For f = u+ iv with u, v real functions, the derivative of f at p is given by the 2-dimensional Jacobian,∂u∂x

p

∂u
∂y


p

∂v
∂x


p

∂v
∂y


p


Since the two matrices must be equal, we have

∂u
∂x


p

= a = ∂v
∂y


p

and ∂u
∂y


p

= −b = − ∂v
∂x


p

”

Proposition 2.3.8. A set Ω is connected if and only if for all p, q ∈ Ω, there exists a piecewise-smooth
curve α that runs from p to q.

Proof: Suppose that there does not exist a piecewise-smooth curve from p to q in Ω.
Let A = {z

∃ a pw-sc in Ω from p to z } and B = {z
@ a pw-sc in Ω from p to z }.

Clearly p ∈ A, q ∈ B and A ∩B = ∅ with A ∪B = Ω, a disjoint union.
———————

Pick w ∈ A and take r > 0 such that Dw(r) ⊆ Ω.
Then there exists a pw-sc α in Ω from p to w.
For each z ∈ Dw(r) there exists a pw-sc β to w in Dw(r) and hence in Ω.
Splice α with β to get a pw-sc from p to z inside Ω.
Therefore A is open.

———————
Take w ∈ B and r > 0 such that Dw(r) ⊆ Ω.
Suppose that Dw(r) 6⊆ B and there exists z ∈ Dw(r) with z ∈ A.
Then there exists a pw-sc α from p to z in Ω.
Note there also exists a pw-sc β from z to w in Dw(r) and hence in Ω.
Splice α with β to get a pw-sc from p to w in Ω.
Then w /∈ B, a contradiction.
Therefore Dw(r) ⊆ B and B is open.
Thus Ω is the disjoint union of non-empty open sets. ”
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Proposition 2.4.5. For any power series
∑∞
k=1 anz

n, there exists R ∈ R∗ (where R∗ = R∪∞) with R > 0
such that the power series converges absolutely if |z| < R and diverges if |z| > R.

Proof: Consider B = {r > 0
|an|rn is a bounded sequence }.

Let R = lub{S}.
If |z| > R, then |anzn| = |an‖zn| = |an‖z|n is not bounded.
If |z| < R, then there exists r ∈ B such that |z| < r < R.
Hence all |an|rn 6 some bound M .
Then |anzn| = |an|rn

 zn
rn

 6M
 z
r

n and
 z
r

 < 1.

Then by the geometric series test,
∑
M
 z
r

n converges.
By the comparison test,

∑
anz

n also converges. ”

Theorem 2.4.7. [Hadamard]

For a series
∑∞
k=1 anz

n, if lim sup |an|1/n is nonzero and finite, then R =
1

lim sup |an|1/n

Proof: Suppose that 0 < L = lim sup |an|1/n <∞.
It will be shown that |an|rn is bounded when r < 1

L and unbounded when r > 1
L .

Then 0 < r < 1
L =⇒ 0 < L < 1

r

=⇒ |an|1/n < 1
r eventually

=⇒ |an|1/n < 1 eventually
=⇒ |an|rn is bounded

Next, let 0 < 1
L < r =⇒ 0 < 1

r < L
=⇒ ∃ s such that 1

r < s < L

=⇒ 1
r < s < |an|1/n infinitely often

=⇒ 1 < (sr)n < |an|rn infinitely often
=⇒ |an|rn is unbounded.

Therefore the radius of the series is 1
L . ”

Theorem 2.4.9. [Differentiation theorem, pt.1]

The series

∞∑
n=0

anz
n and and its differentiated series

∞∑
n=1

nanz
n−1 have equal radii.

Proof: The former series has radius
1

lim sup |an|1/n
.

The latter series has radius
1

lim sup |nan|1/n
=

1

lim sup |n|1/n|an|1/n

=
1

lim sup |n|1/n lim sup |an|1/n

=
1

lim sup |an|1/n

Therefore the two series have equal radii. ”

Proposition 3.3.1. If f : Ω → C is continuous with
∫
γ
f = 0 for all closed paths γ ∈ Ω, then f has a

primitive in Ω.

Proof: Pick p ∈ Ω.
For z ∈ Ω, let g(z) =

∫
γ
f where γ is any path that runs from p to z.

Note that all such γ from p to z give the same value for g(z).
Check that g′(w) = f(w) for all w ∈ Ω.
It will be shown that for z arbitrarily close to w, there exists a function ϕ(z) with

12



|g(z)− g(w)− f(w)(z − w)| 6 ϕ(z)|z − w| with ϕ(z)→ 0 as z → p

Pick r > 0 so that Dw(r) ⊆ Ω.
For z ∈ Dw(r), let ` be the straight line from w to z.
Take any path γ ∈ Ω from p to w.
Then γ + ` is a path in Ω from p to z.
Then

g(z)− g(w)− f(w)(z − w) =

∫
γ+`

f −
∫
γ

f − f(w)(z − w)

=

∫
γ

f +

∫
`

f −
∫
γ

f − f(w)(z − w)

=

∫
`

f − f(w)(z − w)

=

∫
`

(f − f(w))

=

∫
`

(f(µ)− f(w))dµ

So then
∫

`
(f − f(w))

 6 ‖f − f(w)‖`|z − w|.
Now check that ‖f − f(w)‖` → 0 as z → w.
Let ε > 0 .
Need δ > 0 such that ‖f − f(w)‖` < ε when |z − w| < δ.
So we need δ > 0 such that |f(w + t(z − w))− f(w)| < ε for all t ∈ [0, 1] when |z − w| < δ.
Since f is continuous at w, we get δ > 0 such that |z − w| < δ =⇒ |f(z)− f(w)| < ε.
In particular, for every t ∈ [0, 1] and |z − w| < δ, |w + t(z − w)− w| = t|z − w| < δ.
For µ = w + t(z − w), we get |f(µ)− f(w)| < ε.
That is, ‖f − f(w)‖γ → 0 as z → w. ”
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Theorem 3.3.7. If Ω is convex from a point p, and f : Ω→ C is holomorphic except (possibly) at a single
point, then f has a primitive on Ω, or equivalently,

∫
γ
f = 0 for all closed paths γ in Ω.

Proof: Let Ω be convex from a point p.
Define g(w) =

∫
pw
f for all w ∈ Ω.

Take r > 0 such that Dw(r) ⊆ Ω.
For every z ∈ Dw(r), the triangle 4(p, w, z) ⊂ Ω, since Ω is convex from p.
From Cauchy-Goursat, we have that∫

∂4(p,w,z)

f =

∫
pw

f +

∫
wz

f +

∫
zp

f = 0

Reversing path endpoints and rearranging,∫
pz

f −
∫
pw

f =

∫
wz

f

Then for every z ∈ Dw(r),

|g(z)− g(w)− f(w)(z − w)| =
∫

pz

f −
∫
pw

f − f(w)(z − w)


=

∫
wz

f − f(w)(z − w)


=

∫
wz

f(ζ)− f(w)dζ


6 ‖f − f(w)‖

wz
|z − w|g(z)− g(w)

z − w
− f(w)

 6 ‖f − f(z)‖wz

Since the right hand size goes to zero as z → w, so does the left hand side.
Thus g is the primitive of f on Ω. ”

Theorem 3.4.5. If f is holomorphic on Ω and R > 0 with Dp(R) ⊆ Ω for some p ∈ Ω, then for all z ∈ Dp(R)

there exists a power series

∞∑
n=0

an(z − p)n = f(z).

Proof: Pick 0 < r < R.
Let γ : [0, 2π]→ Dp(R) be given by t 7→ p+ reit.
By the Cauchy integral theorem, for every z ∈ Dp(r) we have f(z) =

1

2πi

∫
γ

f(ζ)

ζ − z
dζ

For ζ ∈ γ∗ and z ∈ Dp(r),

f(ζ)

ζ − z
=

f(ζ)

ζ − p− (z − p)
=

1

ζ − p

 f(ζ)

1−
(
z−p
ζ−p

)
 =

f(ζ)

ζ − p

∞∑
n=0

(
z − p
ζ − p

)n
=

∞∑
n=0

(z − p)n

(ζ − p)n+1
f(ζ)

The above summation is correct, as |z − p| < |ζ − p| for all z ∈ Dp(r).
Observe that wwww (z − p)n

(ζ − p)n+1
f(ζ)

wwww
ζ∈γ∗

=
|z − p|n

rn
· ‖f‖γ

∗

r

Then

∞∑
n=0

(
|z − p|
r

)n ‖f‖γ∗
r

converges, as |z−p|r < 1.

By the Weierstrass M-test,

∞∑
n=0

(z − p)n

(ζ − p)n+1
f(ζ) converges uniformly on γ∗.
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Due to this, the integral can be passed on to the series terms to get

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ =

∞∑
n=0

1

2πi

∫
γ

f(ζ)

(ζ − p)n+1
dζ(z − p)n

Notice that an =
1

2πi

∫
γ

f(ζ)

(ζ − p)n+1
dζ does not depend on z ∈ Dp(r).

Moreover,
1

2πi

∫
γ

f(ζ)

(ζ − p)n+1
dζ =

f (n)(p)

n!
.

Thus the integrals do not depend on r.

So for any z ∈ Dp(R), pick r such that 0 < |z−p| < r < R to get f(z) =

∞∑
n=0

an(z−p)n for all z ∈ Dp(R).

”

Theorem 3.4.10. [Liouville]
If a function f is entire and bounded by some M on C, then f is constant on C.

Proof: Let M be a bound for |f | over C.

Then f has a power series representation

∞∑
n=0

anz
n with |an| =

f (n)(0)

n!

 6

MRn


This is from the Cauchy derivative estimates for any R > 0.
As R→∞, an = 0 for all n ∈ N.
Thus f(z) = 0 for all z ∈ C. ”

Theorem 3.4.11. [Fundamental theorem of algebra]
If f is a polynomial over C and deg(f) > 1, then f has at least one root in C.

Proof: Suppose for a contradiction that f(z) has no root in C, or equivalently that 1
f(z) is entire.

As f is a polynomial,

|f(z)| = |zn + an−1z
n−1 + · · ·+ a1z + a0|

> |zn|
(

1−
(
|an−1|
|z|

+
|an−2|
|z2|

+ · · ·+ |a0|
|zn|

))
→∞ as |z| → ∞

In particular, |f(z)| > 1 for |z| > R for some radius R.
So |g(z)| < 1 for |z| > R.
Since g is entire, it is also bounded on D0(R).
Thus g is bounded on C.
By Liouville, g is constant.
This is a contradiction, as deg(f) > 1.
Therefore f has at least 1 root in C. ”

Theorem 3.4.15. [Morera]
If f is continuous on Ω and

∫
∂4 f = 0 for every triangle 4 ⊂ Ω, then f is analytic on Ω.

Proof: Take any Dp(R) ⊆ Ω.

From a previous proof, g(z) =

∫
pz

f is a primitive for f for all z ∈ Dp(R).

Since g′ = f on Dp(R), g is analytic on Dp(R).
By differentiation of power series, f is analytic on Dp(R). ”
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Theorem 3.4.16. If fn : Ω → C are analytic and fn → f uniformly on compact subsets of Ω, then f is
analytic on Ω.

Proof: For every closed disk Dp(r) ⊂ Ω, fn → f uniformly on Dp(r).

Since the fn are continuous on Dp(r), f is continuous on Dp(r).
Hence f is continuous on Ω.
Since the fn are holomorphic, we know for every 4 ⊂ Ω,

∫
∂4 fn = 0.

Also,
∫
∂4 fn →

∫
∂4 f , as ∂4 is compact.

Hence
∫
∂4 f = 0.

By Morera, f is analytic on Ω. ”

Theorem 4.1.6. [Casorati-Weierstrass]
Let f be analytic on Ω with non-removable singularity at p. Then only one of the following conditions hold:

i. For every D∗p(ε) ⊆ Ω with ε > 0 , f(D∗p(ε)) is dense in C.
ii. There exists a positive integer m such that (z − p)mf(z) has a removable singularity at p.

Proof: ii. =⇒ ¬ i. Suppose that ii. holds.
Let m > 1 be the smallest integer such that (z − p)mf(z) has a removable singularity at p.

Let g(z) =

{
(z − p)mf(z) z 6= p
lim
z→p

[(z − p)mf(z)] z = p so that g is analytic on Ω ∪ {p}.

Thus g(z) = a0 + a1(z − p) + a2(z − p)2 + · · · for all z in some Dp(r) ⊆ Ω ∪ {p}.
If g(p) = a0 = 0, then (z − p)mf(z) = (z − p)(a1 + a2(z − p) + · · · ) for all z ∈ D∗p(r).
However, then (z − p)m−1f(z) has a removable singularity at p, contradicting the minimality of m.
Thus g(p) = a0 6= 0.
As g is continuous at p, for some ε > 0 if z ∈ Dp(ε) ⊆ Ω∪ {p}, then |g(z)| > B > 0 for some constant B.
Thus for z ∈ D∗p(ε),

|f(z)| =
 g(z)

(z − p)m

 >
B

εm
> 0

So f(D∗p(ε)) is bounded away from zero.
Thus f is not dense in C. ”

Theorem 4.2.6. [Residue theorem]
Let f be analytic on Ω and p1, p2, . . . , pn be poles of f and γ a chain in Ω that is homologous to 0 in
Ω ∪ {p1, p2, . . . , pn}. Then ∫

γ

f = 2πi

 n∑
j=1

indγ(pj)res(f, pj)


Proof: Set cj = indγ(pj).

Fix rj > 0 such that Dpj (rj) ⊆ Ω ∪ {p1, p2, . . . , pn} are non-overlapping.
Take βj : [0, 2π]→ Ω given by t 7→ pj + rje

icjt.
Then the chain β1 + β2 + · · ·+ βn is homologous to γ on Ω.
By Cauchy, ∫

γ

f =

n∑
j=1

∫
βj

f =

n∑
j=1

2πi · cj · res(f, pj) = 2πi

n∑
j=1

indγ(pj)res(f, pj)

”
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Proposition 4.4.5. Let α, β : [0, 1] → C be closed paths such that |α(t) − β(t)| < |β(t)| for all t ∈ [0, 1].
Then indα(0) = indβ(0).

Proof: Note that 0 /∈ β∗, and also 0 /∈ α∗, because if α(s) = 0 for some 0 6 s 6 1, then

|β(s)| = |0− β(a)| = |α(s)− β(s)| < |β(s)|

For t ∈ [0, 1], let γ(t) = α(t)
β(t) .

Note that
γ′(t)

γ(t)
=
β′(t)

α(t)
· α
′(t)β(t) = β′(t)α(t)

(β(t))2
=
α′(t)

α(t)
− β′(t)

β(t)

Then combining the above,

|α(t)− β(t)| < |β(t)| =⇒
α(t)

β(t)
− 1

 < 1 =⇒ |γ(t)− 1| < 1 =⇒ γ(t) ∈ D1(1) ∀ t

Thus indγ(0) = 0.
From the parametrization of γ, we get that

0 =

∫
γ

1

z − 0
dz =

∫ 1

0

γ′(t)

γ(t)
dt =

∫ 1

0

α′(t)

α(t)
dt−

∫ 1

0

β′(t)

β(t)
dt =

∫
α

1

z − 0
dz −

∫
β

1

z − 0
dz

Therefore indα(0) = indβ(0). ”
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