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1 Regularity

1.1 Curves

Definition 1.1.1. Let I C R be an interval. A parametrized curve (or simply curve) is a continuous function
a:l—R™

Definition 1.1.2. A curve « is termed regular if a € C! and o/(t) # 0 for all ¢.

Proposition 1.1.3. A curve is expressed a(t) = (a1 (t), aa(t), ..., a,(t)). The first derivative o/ (t) exists if
and only if o (t) exists for all 1 < i < n,

Definition 1.1.4. The vector ¢/ (t) is termed the velocity vector of v at ¢. Its length, denoted s'(t) = ||/ (¥)]l,
is termed the speed.

Definition 1.1.5. Given a regular parametrized curve o : I — R3, define:

o
|a

the unit tangent vector: T :=

the principal normal vector: P := ng

the binormal vector: B:=T x P

The curvature x of the curve is defined to be

AT
sl

The torsion 7 of the curve is the unique function 7 such that
B =—-§'Pr
The set (T, P, B, k,T) is then called the Frenet frame.

Remark 1.1.6. The Frenet equations may be rewritten as:

d T 0 k 0 T
pn Pl=§|-k 0 1| |P
tB 0 —r 0| |B

Definition 1.1.7. A parametrized curve o : I — R3 is said to have arc-length parametrization iff for any
to € I and s given by s(t) := fti o/ (2)||dz, we have s(t) =t — tog. That is, ||o/|] = 1.

- Note that the length of an interval I is given by [, ds, where ds = [|a/(t)||dt. Moreover, to integrate a
quantity f over a curve a, we write [ fds = f; fa(t))]|e (t)]|dt for o running from a to b.
Theorem 1.1.8. The Frenet frame, the curvature and torsion depend only on the image and orientation

of the curve. More precisely, for a curve a : I — R? with associated Frenet frame (T, P, B, K, 7), if for a
monotonic function ¢ : I — I the curve = a o ¢ has a Frenet frame (T, P, B, %, 7), then

T(t) ==+T(p(t))

P(t) = P(p(t) s e
B(t) ==+B(p(t)) where =+= { Iy
M) = r(t) 7 - ife' <0
7(t) ==+7(a(t)



Theorem 1.1.9. [FUNDAMENTAL THEOREM OF SPACE CURVES IN R3]
For k, 7 C! functions on an interval J > 0, there exists a unique curve, up to rigid motions, « : I — R? with
curvature x and torsion 7, for I C J an interval with 0 € I.

Definition 1.1.10. A curve is termed closed iff it may be parametrized by a piecewise regular function
a: a,b] = R™ with a(a) = a(b).

Theorem 1.1.11. [FENCHEL]
Let C be a regular closed space curve. Then

/sts>27r
c

Equality holds iff C' is a convex plane curve.

Remark 1.1.12. If C is a regular plane curve, then fc Kk ds € 2mN.
Theorem 1.1.13. [FREY, MILNOR]

If C is a knot, then [ x ds > 4.

1.2 Surfaces

Definition 1.2.1. An n-dimensional smooth manifold is a Hausdorff topological space M equipped with a
collection of charts ¢; : U; — V; covering M for U; C M open and V; C R™ open, and ¢; continuous and
bijective with smooth transfer functions ¢; o cp;l.

Definition 1.2.2. A parametrized surface of class C” is a subset S C R?® with some C” maps X, : U; — R?
for U; C R? such that for all p € S, there is some U; with p € V C R? open and X;(U;) =V N S.

Definition 1.2.3. A vector v € R? is tangent to a surface S at p if there exists o : (—¢,¢) — R3 for € > 0
such that

a(t) € S for all ¢
a(0) =p

a'(0)=v
Lemma 1.2.4. If v is tangent to a surface S at p, then so is Av for all A € R.

Definition 1.2.5. If the set of tangent vectors of a surface S at a point p form a 2-dimensional vector space,
it is then termed a tangent space or tangent plane and denoted T,(S).

Proposition 1.2.6. Suppose that a surface S is given in the form S = {(z,y,2) | f(x,y, z) = 0} for some
f. Then the tangent plane to S at (zo, yo, 20) € S is given by

fz(%0, Y0, 20)(x — 0) + fy(T0, Y0, 20)(Y — Yo) + f=(T0, Y0, 20)(2 — 20) =0

Definition 1.2.7. A function f : S — R3 is termed a tangent vector field if f(p) € T,(9).

- Suppose X : U — S is a parametrization, and X ~!(p) = {(ug,v0)}. Then every curve in U through
(ug,vo) yields a curve in S through p. Let (u(0),v(0)) = (ug,vo). Then if v(t) = (u(t),v(t)), we have

V() = Xu(ult), v(t)u (t) + Xo (u(t), v(t))v'(t)

Therefore span{ (X, (o, vo), Xy (uo,v0)} C Tp(S). Moreover, if X, x X, # 0, then span{X,, X,,} = T,(s).



Definition 1.2.8. A subset S C R? is termed a regular surface if for all p € S there exists U C R?, V C R?
both open with p € V and a surjective continuous function X : U — V N S such that

1. X is C!

2. X is a homeomorphism (bijective, and inverse is continuous)

3. for all (u,v) € U, dX(y) : R? — R3 is injective

Definition 1.2.9. With respect to the above defintion, if = (x1,...,z,) € R", then

@) -
F:R" = R™ with dF, = . "
T = (fl(x)7afm(x)) ’ af,. ’ 8f.

By () - . ()

Moreover, F' is differentiable at xq if

i [F@) = Fwo) — dFyq (v — o)

z—x0 |I — x|

=0

Proposition 1.2.10. Let U C R? open with a C! function f : U — R and S = {(2,9,2) | z = f(z,y)}.
Then S is a regular surface.

Proposition 1.2.11. Let U C R? open with a C! function f : U — R. If r is a regular value of f, then
S =A{(z,y,2) | f(x,y,2z) =} is a regular surface.

Definition 1.2.12. Let f: X — Y be a function with r € im(f). Then r is termed a regular value of f iff
for all p € f=1(r), df, # 0.

Definition 1.2.13. For vectors v,w € R", define v+ := {w | v-w = 0}.

Lemma 1.2.14. If S = {(z,y,2) | f(z,y,2) = r} is a regular surface for r a regular value of f, then

1,(5) = Vf(p)l'-

Proof: Suppose v : (—e,¢) — S with v(0) = p.
Then f o~y is constant, and

(f 27)'(0) = fo(7(0))71(0) + £ (7(0))72(0) + f-(7(0))715(0) = V£(p) - 7'(0)

Since T, (S) = {¥(0) | v : (—¢,¢) — S with v(0) = p}, we have T,(S) C Vf(p)*.
Since S is regular, dim(7,(S)) = 2, and since df,, # 0 for all p € f~1(r), as r is regular, V f(p) # 0.
Therefore dim(V f(p)*) = 2 as well, and so Vf(p)*t C T,(S), and so Vf(p)+ = T,(S). ]

Proposition 1.2.15. If S > p is a regular surface and X : U — S is a regular parametrization (i.e.
rank(dX,) =2 for all ¢ € U) and X ~!(p) = {q}, then T,,(S) = Im(dX,).

Suppose that we have two parametrizations X,Y with a diffeomorphism F' : U — V. Then we have that

OF OF: OF OF:
X“ = YU aul + Y'U 8u2 8u1 81}2
op op dF = wovplxexy =
X” = YU 81}1 + Y'U 8112 6u2 81}2

So then for w = aX, + bX, € R? such that [w] = [a b] and ¢ € U = dom(X) = dom(Y),

dFy ((xu(a) %@} W) = (vi(),vo(@} ]



2 Orientability

Definition 2.0.1. Heuristically, orientability is the ability to decide on a well-defined definition of clockwise
direction on a surface in Euclidean space.

2.1 The normal vector

Definition 2.1.1. Given a regular surface S and a parametrization X : U — S in (u,v), the normal vector
to S at p = X(q) is defined to be
X, x X,
N(q) = (@)
[ X X Xo|
Moreover, if we have two parametrizations X7, Xo of S with a transition map F' such that X; = X5 0 F|
then N1(q) = sgn(det(dF,))Na(q).

Theorem 2.1.2. The following are equivalent definitions of an orientable surface S:

- It is possible to cover S with open sets R; given by the images of regular parametrizations X; : U; — R; C R3
such that if R; N R; # ), then there exists a diffeomorphism F : X;'(R; N R;) — X;l(Ri N R;) with
Xi = Xj oF.

- It is possible to cover S with open sets R; given by the images of regular parametrizations X; : U; — R; C R3
such that for N;(q) = %(q), we have N;(¢;) = N;(g;) if p € R; N R; for X,(q;) = X;(p;) = p.

- There exists a continuous function n : S — S? such that n(p)* = T,(9).

Corollary 2.1.3. If S is a regular surface and X : U — R C R? parametrizes S 3 p smoothly around p, so
that X (ug,vg) = p, then around p
noX =+N

This n is termed the Gauss map of S.

2.2 The first fundamental form

Definition 2.2.1. An inner product on a vector space V over F is amap (, ): V x V — F that is
1. bilinear
2. symmetric
3. positive definite

Theorem 2.2.2. If W C V for vector spaces and (, ) is an inner product on V, then (, )|wxw is an inner
product on W.

Proposition 2.2.3. Let B = {vy,...,v,} be an ordered basis for a vector space V over IF, and (, ) an inner
product on V. Then there exists g € M, x, such that for all u,w € V', we have

w,w) = sl g slw] = sl [(v3,07)] slw]
Definition 2.2.4. The metric tensor, or first fundamental form, in the coordinates (u,v) is given by

O [Xy Xy Xu-X,
971X, X, X, X,

- The metric on the zy-plane is unique, but its matrix representation depends on choice of parametrization.

Theorem 2.2.5. Let S be a regular surface in R? with X : U — R C R? injective parametrizing a part of
S. Let @ C U be compact. Suppose X|geo is a homeomorphism on its image and is such that its differential
has everywhere maximal rank. Then

area(X(Q)) = / /Q Vdet(g) du dv



Remark 2.2.6. With respect to the above, if v : [a,b] — S is a curve on S such that X o § =+, then

length(n) = / NCX

Remark 2.2.7. With respect to the above, if f: S — R, then

//X(Q)f 45 = //Q(fOX)\/m du dv

Oi Ox;
8xk 8:Eg Gkt

Remark 2.2.8. Given ¢ € U and p = X(q) € S, we have a basis {X,(q), X,(q)} of T;,(S).

- We will see that g is a tensor, as g;; =

Proposition 2.2.9. Suppose for a regular surface S we have parametrizations X : U — R C S and
X :U — RC S with RN R # 0 as illustrated below.

Then the 2-tensors g, g are related by

2 9iy, Oy

gij =

. 9ke
) Ox; Ox;

Definition 2.2.10. For a regular surface and p € S, the differential of the Gauss map n is the map
dny : Tp(S) = Ty (S?)
This map is defined as follows: if there exists a : (—¢,¢) — R3 for € > 0 such that

a(t) € S for all ¢
a(0) =p
a'(0)=v
and n o « is a path in S, then (n o «)(0) = n(p) implies dn,(v) = (no«a)’(0).

Definition 2.2.11. Given a regular surgface S and a regular parametrization X with X (¢) = p satisfying
the conditions of [1.2.8] for another regular surface M C R?, a function f : S — M is termed smooth at p if
f o X is smooth at q.

Definition 2.2.12. Given an oriented surface in R® with n: S — S2, as T}, (S?) = T,(S), define the map
—dny : T,(S) — T,(5)

to be the the shape operator, and denote it by S,. Later we will find out that this map is self-adjoint
(symmetric), and thus diagonalizable. Moreover, for a parametrization X : U — S such that X (q) = p,

dng(Xu(q)) = Nu(q) dng(Xo(q)) = Nu(q)



2.3 The second fundamental form

Definition 2.3.1. Given a regular surface S C R3 oriented by n : S — S?, define the first and second
fundamental forms by

L: T,8) xT,(S) — R II,: T,(8)xT,(S) — R
(a,b) — a-b (a,b) — —dny(a)-b

Lemma 2.3.2. I], is a symmetric bilinear form.

Proof: Let a = a1 X1 + a2 X5 and b = b1 X1 + ba X», elements in T,(.5).

Then
IIp(a, b) = 7d’rlp (Z a,X7) Z ijj
= > ai(—dn, (X;)X;)b,
i,
_ [a a] N-Xy1 N-Xio| |by
UIIN Xy N Xopof [bo

= (a1 CLQ)L(bl bQ)T

Since the matrix representation L of 11, in the basis X;, X is symmetric, the result follows. |

Lemma 2.3.3. If B = {Xi(q), X2(¢)} is a basis for T,,(S), then g[—dn,|p = g ' L.

Definition 2.3.4. We use the above results to compute the

mean curvature: H = Jtr(—dn,)
Gauss curvature: x = det(—dn,)

Lemma 2.3.5. Suppose T': V — V is a linear map, and B = {v1,...,v,} is a basis of V and ( , ) is an
inner product on V. Then for

= [<Ui»”j>]1<i,j,<n
[(Tv;, Ui>]1<i,j,<n

5 TB

9
L
A

we may relate them all together by A = g~ !'L.

Proof: First note T'(v;) = Y, AkiVk, s0
T(U,‘) * U = ZAkiUk * Uy
k
= Akigr;
k
= gikA
k

= (94);i

Therefore L = gA and so A = g~ 'L. |



3 The Gauss curvature

3.1 Principal curvatures

Definition 3.1.1. Let S be an oriented regular surface in R® and 7 : I — S a parametrized curve. Then
the normal curvature of S along «y is defined as

where T is the unit tangent vector, as defined earlier above.

Proposition 3.1.2. Let p € S and v : I — S with 4(0) = p and +/(0) = w where ||w| = 1. Then
kn(0) = I (w, w).

Proof: Since the image of 7 is in S and 7/(t) € T4)(S) for all ¢, 7' - (noy) =0and T'- (no~y) =0,
T'-(no7)+T:(nov) =0

Then at ¢ = 0, we have that

1,
wn(0) = S5y 7 (0) - (o m)(0)
_ 57(3)“0) dn 0y (7 (0))
-1 w
- mm - dny,(w)
_ _dnp( ) - w
w2

w w
=1 <)
SN

Corollary 3.1.3. [MEUSNIER]
The normal curvature of S at p depends only on the direction, not on the curves through p.

Definition 3.1.4. The quantities

k1 = max {II,(w,w)} ky = min {I,(w,w)}

[lwll=1 flwll=1

are termed the principal curvatures of S at p. Their corresponding directions are termed the principal directions.

Proposition 3.1.5. Let S be a regular surface with p € S. Then there exists {c1,c2} a basis of T),(S) such
that dnp(c;) = —kic; for i = 1,2. Thus the principal curvatures are eigenvalues of the shape operator.

The above demontrates a common phenomenon - if T': V' — V is a self-adjoint linear operator, then

max {(T'(v),v)} Hrvrhigl{@(v), v)}

llvl=1

are the largest and smallest eigenvalues, respectively, when they exist. Recall that an operator is self-adjoint
iff it is equal to its conjugate transpose.

Definition 3.1.6. For S a regular surface, if all directions at p € S are principal, then p is termed umbilical.



Proposition 3.1.7. Let S be a regular connected surface with all points p € S umbilical. Then either S is
contained in a plane or on the surface of S2.

Proof: Let X : S — R be the principal curvature function.
Let X : U — S 2 p be a parametrization with X (q) = p for U connected.
Recall that dn - dX = dN, in particular dn(X,) = N,, and dn(X,) = N,.
For scalars a, b, consider aX,, + bX, € T,(S5), so then

dn(aX, + bX,) = aN, + bN, or xaX, — \bX, =aN, + DN,

Which means that

This allows us to state that
N, + XX, =N,+2X, =0

Differentiation gives us that

0
0= 71) (Nu + /\Xu) = Nuv + >\1)Xu + /\Xuv
0= 62 (Nv + AXU) = Nvu + )\uXv + A)(vu
u

Directly implying
A Xy — A Xy, =0

Since X, X, are linearly independent, A\, = A\, = 0.
Therefore A is locally constant.
Since U is connected, S is connected, and so A is constant.

If \=0, then N, = N, =0, and N is locally constant, so S C plane.

IfX # 0, thenfor Y = X+5N, wehave Y, = Y, = 0,50 | X~V = 15, and thus § C S with radius 3;. B

Lemma 3.1.8. The Gauss curvature is the unique function s satisfying, for any parametrization X,
Ny x Ny = (’i o X)(Xu : X’U)

for every parametrization X of a regular surface S.

Theorem 3.1.9. Let S 3 p be a regular surface oriented by n and V. = SN {z | |z —p| < e}. Then

[area(n(Va))}

() = | =tV

e—0

3.2 Surfaces of revolution

Definition 3.2.1. Let f = (g(u), h(u)) be a curve parametrized in R x R. Then the surface of revolution S
of f in R? around the z-axis is parametrized by

X (u,v) = (g(u), h(u) cos(v), h(u) sin(v))
for (u,v) € U =R x [0,27). The first and second fundamental forms of S are

. (g/)2 + (h/)Z 0 1 h/g// _ g/h// 0
o (@P+mel 0 b



The shape operator is given by
h/ //7 /hII
L=t | O [’fﬂ 0}
(97 + W) 0k

o
Since X, (X,) is an eigenvector, the lines on S where u(v) is constant are termed parallels (meridians) and
curvature along that line is k. (k).

- From above, we have that k = k, k.

Definition 3.2.2. An asymptotic direction at a point p € S for S a regular surface is a direction with
normal curvature 0. An asymptotic curve is a curve tangent everywhere to an asymptotic dicection.

For example, the curves
v (a,bcos(v), bsin(v))
v = (—a,bcos(v), bsin(v))

are asymptotic curves on a torus parametrized by X (u,v) = (a cos(u), (b+asin(u)) cos(v), (b+asin(u)) sin(v)).

3.3 Intrinsicity
Definition 3.3.1. An oriented surface S with Gauss map n is termed minimal if H = 1tr(—dn) = 0.

Proposition 3.3.2. If the area is minimized on S, that is, for all h : U — R the variation S, of S is such
that Area(Sp) > Area(S), then H = 0.

Proof: Fix a parametrization X and a map h.
Let Z! = X +thN for t € R, so Z! parametrizes, for each t, a surface S* near S, and Z° parametrizes S.
For A (t) the area of S*, we want to prove that A} (0) =0 if H = 0, so we will have a critical point.
Now consider

Z! = X, + thyN + thN, Z! = X, + thyN +thN,
Z1-Z = (Xi + thiN + thN;) + (X + thiN + thN;) = X;- X;+ X; thN; + X; - thN; + *h*>N; - Nj + t*h; - h;

F

If ¢g' is a metric for Z¢, then

g =g+th(X;-Nj+X;-N)+ F
=g—th(Xy-N+Xji-N)+F
=g—2thX;;-N+F
=g+ 2thL+ F

Recall that

Ap(t) = //U v/det(g*) du dv
= //U V/det(g) det(g—1gt) du dv
= // V/det (14 2thg=1L + g=—1F)+/det(g) du dv
U
(2ha—1
A (t) = //U : (2th( L)—’_)O(t) Vdet(g) du dv
A3(0) = //U tr(g ' L)hy/det(g) du dv

10



Above we showed that if H = 0, then A} (0) = 0.
It is also clear from the calculations that if A} (0) = 0 for all h, then H = 0. [ ]

Theorem 3.3.3. The equation for a critical point of an area functional is H = 0.

Theorem 3.3.4. [CRISTOFFEL]
Let X : U — S parametrize part of a smooth surface S C R3. Then for 4, j = u,v

Xij = Lij - N+T X1 + T}, X,

where Ffj is termed the Cristoffel symbol and is given explicitly by

2

1 _ O0gic  O0ge;  0gij
[ —— L J _ JU ) 1k
i 2 Zz:;(g )ké (6% + 69@ 8:54 i

Corollary 3.3.5. With respect to the definitions above,

Iy = 2(971)]%()% - Xo)
L

Theorem 3.3.6. [CODAZZI]
With respect to the definitions above, the Codazzi equations,

8Lij k 0L, k
S kL = 3 TThL
Oxy - sk O0x;j - ikt

for any choice of i, j,£ € {1,2}, are satisfied.

Theorem 3.3.7. If g, L : U — Sym(2) satisfy the Codazzi equations, then there exists a map X : U — R?
that parametrizes a surface for which g is the 1st fundamental form and L is the second fundamental form.

Theorem 3.3.8. [THEOREMA EGREGIUM - GAUSS]
The Gaussian curvature, under isometry, is an intrinsic property of a surface. That is, it only depends on
the metric g and its derivatives.

Corollary 3.3.9. If surfaces S7, Sy are isometric via f : S7 — Sa, then x(f(p)) = f(p) for all p € S;.

Definition 3.3.10. A surface S is termed isometric to another surface S, if there exists an isometry
f:51 — S5. Such a map f is termed an isometry iff:

1. f is a diffeomorphism
2. the map df, : T,(S1) — T, (S2) is a vector-space isometry

Given two vector spaces Vi, Vo with associated inner products ( , )1 and (, )2, amap L : (V4,(, 1) —
(Va, (', )2) is termed a vector space isometry iff for all u,v € Vi,

(u,v)1 = (Lu, Lv)s

4 The Gauss-Bonnet theorem

4.1 Geodesics

Definition 4.1.1. A closed path v on S? is termed a great circle iff for every point p on v there exists p’ on
~ that is antipodal to p.

11



Definition 4.1.2. Given a parametrized curve v : [a,b] — S, we define the length of v on S by the induced
norm on R? to be

()= [ Il a

Definition 4.1.3. Given a surface S, define a distance function d on S by

d: Sx8 —= R
(p,q) +— inf{l(y)|~:]0,1] — S is piecewise smooth, v(0) =p, ¥(1) = ¢}
B!

Definition 4.1.4. Given a surface S, heuristically a geodesic curve on S is a curve - that minimizes length
locally. With T, P, B from the Frenet frame and N = n o~ the normal vector, define the geodesic curvature
of vy on S to be

1
kg = —=T" (N xT)
Il
Formally, a curve v is a geodesic iff £y = 0 for the curve.
Proposition 4.1.5. A curve « may be expressed as
o =T
o =v'T +v*k, N + vy (N x T)

Lemma 4.1.6.
kg = KkP(N xT)

Suppose that we have a curve a(t) = X (u(¢),v(t)) with arc-length parametrization, i.e. ||@'|| = 1. Then
o = X + X v
o’ = X (u’)2 + XtV + X" + Xput'v' + X (v')2 + X"

Moreover, if « is a geodesic, then o’ (t) has no components tangent to T+ (S). This means that X, and
X, have no effect on o”, meaning that

ry (u’)2 + 2bu'v' 4+ u” + T, (u’)2 =0
2 (u’)2 + 22,0/ v + 0" + T3, (v')2 =0

Theorem 4.1.7. Let S 3 p be a regular surface, and fix v € T,,(S) such that ||u| = 1. Then there exists a
unique geodesic in S through p in the direction of u.

Proof: Let X : U — S be a regular parametrization of a neighborhood of S.

Consider the following ODE system:

Ty = v = —T'10f — 2T v — [3503
x'2 = ’()/2 = —F%l'l)% — 21_‘%27)1’02 - ]-—%2”%
with initial conditions:
(21(0).22(0)) = X~'(p)
(v1(0),v2(0)) = dX( (0 2a(0)) ¥

Above we have X (u,v) = X (x1(u), z2(v)).
First-order ODEs with initial conditions have unique solutions for ¢ € (—¢,¢) for ¢ sufficiently small.

12



Tt is left to verify that we have arc length parametrization (else we do not have a geodesic).
Define a function

f= (911(1‘/1)2 + 2g122 75 + 922($§)2) (z1,72)

By design, f(0) = 1 and we have left to prove that f’ = 0.
Consider the derivative:

= g1 + g112(2))? + 2911052 + - -

Using the geodesic equations, we replace 7 by — Z I R Tk
7.k
Employing the equality
1 _
ry = B > (97 InelGie + 9010 — 9ijie)
¢

we simplify to get that f’ = 0. |

4.2 A topological approach
Lemma 4.2.1. For a curve a(t) = X (u(t), v(t)), recalling that ||o/|| = ¢’, we have that

(5/)3 Kg

o = 0T = ()" 2T = 20 () Ty = el ()T = (1) T,

Lemma 4.2.2. Suppose that a parametrization X is orthogonal, i.e. X, - X, = 0. Then

I} 922 + Tlog11 =0
75922 + 30011 =0

Theorem 4.2.3. [LIOUVILLE]

Let S be a regular surface with X : U — S a parametrization with X, - X,, = 0. Consider a curve
~(t) = X (u(t),v(t)) with arc-length parametrization. Let 6(t) be the angle between +'(t) and X, (u(t), v(t)).
Let k(u) and k(,) be geodesic curvatures of u-curves and v-curves, respectively. Then the geodesic curvature

is given by
00

ot
The proof involves the previous two lemmas and some other facts, including

_ /det(g) T _ y/det(g) Ty,

Ruw) = 3/2 Rw) = — 3/2
91{ 924

cos(0) = /g11 v sin(0) = \/gaz v’

Theorem 4.2.4. [GREEN]
Let C be a positively oriented closed piecewise regular plane curve with interior R. Then

// (P dz +Q dy) = // (aQ—i—aP>d:vdy

Lemma 4.2.5. Suppose that X : U — S is an orthogonal parametrization. Let R C U be closed and
bounded with X (R) = 5’, such that JR is continuous and piecewise smooth, parametrized by v : [a,b] — S’

Kg = + K(u) cos(f) + K(v) sin(6)

13



with ||7'|| = 1, having discontinuities at {t1,...,tx} C [a,b]. Then

b
| wads= [ w0l a
a8’ a
/b d79_~_ 1 0ygndv 1 0gudv i@t
a dt v 11 6U dt v/ g22 (9’0 dt

ZmiGU+/HWQ@<i(£&%§ﬂ+£&ﬁ;%§ﬁ)ﬂmmmm

i=1

k
=427+ Zﬂi - // k+/det(g) du dv
i=1 ’

Where . .
0F = the angle between 7/(t) = lim {W()_FM] and X,

t—tE L=t
T (PRI
_Jo if4/(t;) is above X,
B {1 if '(¢;) is below X,

Definition 4.2.6. Given a piecewise smooth continuous curve « : (—g,&) — S with o/(07) # a1(07), we

say that the curve has a vertex at 0, and the exterior angle at 0 is the angle 6 € [—m, 7] swept from o/(07)
to o/ (07T).

The following example demonstrates this definition. Here the curve « is a polygon, and is directed in a
clockwise direction. The vertices are at t1,to, t3, with corresponding exterior angles 6, 0, 3.

u-direction

Lemma 4.2.7. It is always possible to find an orthogonal parametrization for any surface S.

Theorem 4.2.8. [GAUSS, BONNET - LOCAL VERSION]
Given a simply connected surface S with boundary 9. positively oriented with a fuinite number of vertices

with exterior angles,
k
kds:—//@ds—&— 0; — 27
Jlots= e X

i=1

Definition 4.2.9. Given a decomposition D in polygons of a closed surface S, the Euler characteristic is
defined as

(S, D)=V -—E+F

where the decomposition D has V vertices, F edges, and F' faces.

14



Theorem 4.2.10. The Euler characteristic is independent of the decomposition D.

Theorem 4.2.11. [GAUSS, BONNET]
Suppose S is a closed compact orientable surface. Then

/ /S k ds = 2m(S)

Proof: Decompose S into polygons appropriate for orthogonal parametrization, say S = |J.S;.
Label positively oriented (counter-clockwise) edges C;; and exterior angles 6;; of polygons S;, so then

//kds:Z//kds:—Z/ kg ds+ > 20— 0
S p S; i JCii p ;

Since each edge C;; appears twice in the first term, with opposite orientation, the first term vanishes.
As for the second term, we have that

Z27T =27F

— Z 0;; = Z (m—0;) =2V —7 Z deg(vertex) = 27V — 27 E
j

ij vertices

Here 923- = m — 0;; are the oppositely directed internal angles.
Combining the terms gives the desired result.

Corollary 4.2.12. It is impossible to have a metric on S? with k < 0.

Theorem 4.2.13. By embedding a surface with g handles in R™ for n € N, it is possible to get

1 with g =0
k equalto <0 with g =1
-1 withg>1
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5 Handy tables

5.1 Common parametrized curves

These are all maps o : [ — R3 for I = [0,1] C R.

Curve

Parametrization

Curvature | Torsion

circle of radius r
helix with radii a, b

trefoil knot

(rsin(t),r cos(t), 0)

(acos(t),asin(t), bt)

((3 4 cos(3t)) cos(2t), (3 + cos(3t)) sin(2t), sin(3t))

5.2 Common parametrized surfaces

These are all maps X : U — R? for U C R2.

1
T

a
a?2+b2 /a2 +b2

Surface Parametrization Induced metric K
1 0
plane through p spanned by a,b (z,y,ax + by + p) {O 1}
. . . . sin(¢) 0 1
sphere of radius r (r cos(0) sin(p), rsin(8) sin(p), r cos(p)) 0 1 =
. . . a? 0
cylinder of radius a (acos(u),asin(u),v) 0 1
ellipsoid of radii a, b %
torus of radii a,b (acos(u), (b + asin(u)) cos(v), (b + asin(u)) sin(v)) bf%%
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