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1 Regularity

1.1 Curves

Definition 1.1.1. Let I ⊂ R be an interval. A parametrized curve (or simply curve) is a continuous function
α : I → Rn.

Definition 1.1.2. A curve α is termed regular if α ∈ C1 and α′(t) 6= 0 for all t.

Proposition 1.1.3. A curve is expressed α(t) = (α1(t), α2(t), . . . , αn(t)). The first derivative α′(t) exists if
and only if αi(t) exists for all 1 6 i 6 n,

Definition 1.1.4. The vector α′(t) is termed the velocity vector of α at t. Its length, denoted s′(t) = ‖α′(t)‖,
is termed the speed.

Definition 1.1.5. Given a regular parametrized curve α : I → R3, define:

the unit tangent vector: T := α′

‖α′‖

the principal normal vector: P := T ′

‖T ′‖

the binormal vector: B := T × P

The curvature κ of the curve is defined to be

κ :=
‖T ′‖
s′

=
‖T ′‖
‖α′‖

The torsion τ of the curve is the unique function τ such that

B′ = −s′Pτ

The set (T, P,B, κ, τ) is then called the Frenet frame.

Remark 1.1.6. The Frenet equations may be rewritten as:

d

dt

TP
B

 = s′

 0 κ 0
−κ 0 τ
0 −τ 0

TP
B


Definition 1.1.7. A parametrized curve α : I → R3 is said to have arc-length parametrization iff for any

t0 ∈ I and s given by s(t) :=
∫ t
t0
‖α′(z)‖dz, we have s(t) = t− t0. That is, ‖α′‖ = 1.

· Note that the length of an interval I is given by
∫
I
ds, where ds = ‖α′(t)‖dt. Moreover, to integrate a

quantity f over a curve α, we write
∫
α
fds =

∫ b
a
f(α(t))‖α′(t)‖dt for α running from a to b.

Theorem 1.1.8. The Frenet frame, the curvature and torsion depend only on the image and orientation
of the curve. More precisely, for a curve α : I → R3 with associated Frenet frame (T, P,B, κ, τ), if for a
monotonic function ϕ : I → I the curve β = α ◦ ϕ has a Frenet frame (T̃ , P̃ , B̃, κ̃, τ̃), then

T̃ (t) = ±T (ϕ(t))

P̃ (t) = P (ϕ(t))

B̃(t) = ±B(ϕ(t))
κ̃(t) = κ(t)
τ̃(t) = ±τ(α(t))

where ± =

{
+ if ϕ′ > 0

− if ϕ′ < 0

2



Theorem 1.1.9. [Fundamental theorem of Space curves in R3]
For κ, τ C1 functions on an interval J 3 0, there exists a unique curve, up to rigid motions, α : I → R3 with
curvature κ and torsion τ , for I ⊂ J an interval with 0 ∈ I.

Definition 1.1.10. A curve is termed closed iff it may be parametrized by a piecewise regular function
α : [a, b]→ Rn with α(a) = α(b).

Theorem 1.1.11. [Fenchel]
Let C be a regular closed space curve. Then ∫

C

κ ds > 2π

Equality holds iff C is a convex plane curve.

Remark 1.1.12. If C is a regular plane curve, then
∫
C
κ ds ∈ 2πN.

Theorem 1.1.13. [Frey, Milnor]
If C is a knot, then

∫
C
κ ds > 4π.

1.2 Surfaces

Definition 1.2.1. An n-dimensional smooth manifold is a Hausdorff topological space M equipped with a
collection of charts ϕi : Ui → Vi covering M for Ui ⊂ M open and Vi ⊂ Rn open, and ϕi continuous and
bijective with smooth transfer functions ϕj ◦ ϕ−1i .

Definition 1.2.2. A parametrized surface of class Cr is a subset S ⊂ R3 with some Cr maps Xi : Ui → R3

for Ui ⊂ R2 such that for all p ∈ S, there is some Ui with p ∈ V ⊂ R3 open and Xi(Ui) = V ∩ S.

Definition 1.2.3. A vector v ∈ R3 is tangent to a surface S at p if there exists α : (−ε, ε) → R3 for ε > 0
such that

α(t) ∈ S for all t

α(0) = p

α′(0) = v

Lemma 1.2.4. If v is tangent to a surface S at p, then so is λv for all λ ∈ R.

Definition 1.2.5. If the set of tangent vectors of a surface S at a point p form a 2-dimensional vector space,
it is then termed a tangent space or tangent plane and denoted Tp(S).

Proposition 1.2.6. Suppose that a surface S is given in the form S = {(x, y, z) | f(x, y, z) = 0} for some
f . Then the tangent plane to S at (x0, y0, z0) ∈ S is given by

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0

Definition 1.2.7. A function f : S → R3 is termed a tangent vector field if f(p) ∈ Tp(S).

· Suppose X : U → S is a parametrization, and X−1(p) = {(u0, v0)}. Then every curve in U through
(u0, v0) yields a curve in S through p. Let (u(0), v(0)) = (u0, v0). Then if γ(t) = (u(t), v(t)), we have

γ′(t) = Xu(u(t), v(t))u′(t) +Xv(u(t), v(t))v′(t)

Therefore span{(Xu(u0, v0), Xv(u0, v0)} ⊂ Tp(S). Moreover, if Xu ×Xv 6= 0, then span{Xu, Xv} = Tp(s).
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Definition 1.2.8. A subset S ⊂ R3 is termed a regular surface if for all p ∈ S there exists U ⊂ R2, V ⊂ R3

both open with p ∈ V and a surjective continuous function X : U → V ∩ S such that
1. X is C1

2. X is a homeomorphism (bijective, and inverse is continuous)
3. for all (u, v) ∈ U , dX(u,v) : R2 → R3 is injective

Definition 1.2.9. With respect to the above defintion, if x = (x1, . . . , xn) ∈ Rn, then

F : Rn → Rm
x 7→ (f1(x), . . . , fm(x))

with dFx =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)


Moreover, F is differentiable at x0 if

lim
x→x0

[
F (x)− F (x0)− dFx0

(x− x0)

|x− x0|

]
= 0

Proposition 1.2.10. Let U ⊂ R2 open with a C1 function f : U → R and S = {(x, y, z) | z = f(x, y)}.
Then S is a regular surface.

Proposition 1.2.11. Let U ⊂ R3 open with a C1 function f : U → R. If r is a regular value of f , then
S = {(x, y, z) | f(x, y, z) = r} is a regular surface.

Definition 1.2.12. Let f : X → Y be a function with r ∈ im(f). Then r is termed a regular value of f iff

for all p ∈ f−1(r), dfp 6= 0.

Definition 1.2.13. For vectors v, w ∈ Rn, define v⊥ := {w | v · w = 0}.

Lemma 1.2.14. If S = {(x, y, z) | f(x, y, z) = r} is a regular surface for r a regular value of f , then
Tp(S) = ∇f(p)⊥.

Proof: Suppose γ : (−ε, ε)→ S with γ(0) = p.
Then f ◦ γ is constant, and

(f ◦ γ)′(0) = fx(γ(0))γ′1(0) + fy(γ(0))γ′2(0) + fz(γ(0))γ13(0) = ∇f(p) · γ′(0)

Since Tp(S) = {γ′(0) | γ : (−ε, ε)→ S with γ(0) = p}, we have Tp(S) ⊂ ∇f(p)⊥.
Since S is regular, dim(Tp(S)) = 2, and since dfp 6= 0 for all p ∈ f−1(r), as r is regular, ∇f(p) 6= 0.
Therefore dim(∇f(p)⊥) = 2 as well, and so ∇f(p)⊥ ⊂ Tp(S), and so ∇f(p)⊥ = Tp(S). �

Proposition 1.2.15. If S 3 p is a regular surface and X : U → S is a regular parametrization (i.e.
rank(dXq) = 2 for all q ∈ U) and X−1(p) = {q}, then Tp(S) = Im(dXq).

Suppose that we have two parametrizations X,Y with a diffeomorphism F : U → V . Then we have that

Xu = Yu
∂F1

∂u + Yv
∂F2

∂u

Xv = Yu
∂F1

∂v + Yv
∂F2

∂v

dF = {Yu,Yv}I{Xu,Xv} =

∂F1

∂u
∂F2

∂v

∂F2

∂u
∂F2

∂v


So then for w = aXu + bXv ∈ R3 such that [w] = [a b] and q ∈ U = dom(X) = dom(Y ),

dFq
(
{Xu(q),Xv(q)}[w]

)
= {Yu(q),Yv(q)}[w]
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2 Orientability

Definition 2.0.1. Heuristically, orientability is the ability to decide on a well-defined definition of clockwise
direction on a surface in Euclidean space.

2.1 The normal vector

Definition 2.1.1. Given a regular surface S and a parametrization X : U → S in (u, v), the normal vector
to S at p = X(q) is defined to be

N(q) :=
Xu ×Xv

‖Xu ×Xv‖
(q)

Moreover, if we have two parametrizations X1, X2 of S with a transition map F such that X1 = X2 ◦ F ,
then N1(q) = sgn(det(dFq))N2(q).

Theorem 2.1.2. The following are equivalent definitions of an orientable surface S:

· It is possible to cover S with open sets Ri given by the images of regular parametrizations Xi : Ui → Ri ⊂ R3

such that if Ri ∩ Rj 6= ∅, then there exists a diffeomorphism F : X−1i (Ri ∩ Rj) → X−1j (Ri ∩ Rj) with
Xi = Xj ◦ F .

· It is possible to cover S with open sets Ri given by the images of regular parametrizations Xi : Ui → Ri ⊂ R3

such that for Ni(q) =
Xiu×Xiv

‖Xiu×Xiv‖
(q), we have Ni(qi) = Nj(qj) if p ∈ Ri ∩Rj for Xi(qi) = Xj(pj) = p.

· There exists a continuous function n : S → S2 such that n(p)⊥ = Tp(S).

Corollary 2.1.3. If S is a regular surface and X : U → R ⊂ R3 parametrizes S 3 p smoothly around p, so
that X(u0, v0) = p, then around p

n ◦X = ±N
This n is termed the Gauss map of S.

2.2 The first fundamental form

Definition 2.2.1. An inner product on a vector space V over F is a map 〈 , 〉 : V × V → F that is
1. bilinear
2. symmetric
3. positive definite

Theorem 2.2.2. If W ⊂ V for vector spaces and 〈 , 〉 is an inner product on V , then 〈 , 〉|W×W is an inner
product on W .

Proposition 2.2.3. Let B = {v1, . . . , vn} be an ordered basis for a vector space V over F, and 〈 , 〉 an inner
product on V . Then there exists g ∈Mn×n such that for all u,w ∈ V , we have

〈u,w〉 = B[u]T g B[w] = B[u]T
[
〈vi, vj〉

]
B[w]

Definition 2.2.4. The metric tensor, or first fundamental form, in the coordinates (u, v) is given by

g =

[
Xu ·Xu Xu ·Xv

Xv ·Xu Xv ·Xv

]
· The metric on the xy-plane is unique, but its matrix representation depends on choice of parametrization.

Theorem 2.2.5. Let S be a regular surface in R3 with X : U → R ⊂ R3 injective parametrizing a part of
S. Let Q ⊂ U be compact. Suppose X|Q◦ is a homeomorphism on its image and is such that its differential
has everywhere maximal rank. Then

area(X(Q)) =

∫∫
Q

√
det(g) du dv
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Remark 2.2.6. With respect to the above, if γ : [a, b]→ S is a curve on S such that X ◦ β = γ, then

length(γ) =

∫ b

a

√
(β′)T gβ′ dt

Remark 2.2.7. With respect to the above, if f : S → R, then∫∫
X(Q)

f dS =

∫∫
Q

(f ◦X)
√

det(g) du dv

· We will see that g is a tensor, as gij =
∂xi
∂xk

∂xj
∂x`

gk`.

Remark 2.2.8. Given q ∈ U and p = X(q) ∈ S, we have a basis {Xu(q), Xv(q)} of Tp(S).

Proposition 2.2.9. Suppose for a regular surface S we have parametrizations X : U → R ⊂ S and
X̃ : Ũ → R̃ ⊂ S with R ∩ R̃ 6= 0 as illustrated below.

Then the 2-tensors g, g̃ are related by

gij =

2∑
k,`=1

∂x̃k
∂xi

∂x̃`
∂xj

g̃k`

Definition 2.2.10. For a regular surface and p ∈ S, the differential of the Gauss map n is the map

dnp : Tp(S)→ Tn(p)(S2)

This map is defined as follows: if there exists α : (−ε, ε)→ R3 for ε > 0 such that

α(t) ∈ S for all t

α(0) = p

α′(0) = v

and n ◦ α is a path in S2, then (n ◦ α)(0) = n(p) implies dnp(v) = (n ◦ α)′(0).

Definition 2.2.11. Given a regular surgface S and a regular parametrization X with X(q) = p satisfying
the conditions of 1.2.8, for another regular surface M ⊂ R3, a function f : S →M is termed smooth at p if
f ◦X is smooth at q.

Definition 2.2.12. Given an oriented surface in R3 with n : S → S2, as Tn(p)(S2) ∼= Tp(S), define the map

−dnp : Tp(S)→ Tp(S)

to be the the shape operator, and denote it by Sp. Later we will find out that this map is self-adjoint
(symmetric), and thus diagonalizable. Moreover, for a parametrization X : U → S such that X(q) = p,

dnq(Xu(q)) = Nu(q) dnq(Xv(q)) = Nv(q)
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2.3 The second fundamental form

Definition 2.3.1. Given a regular surface S ⊂ R3 oriented by n : S → S2, define the first and second
fundamental forms by

Ip : Tp(S)× Tp(S) → R IIp : Tp(S)× Tp(S) → R
(a, b) 7→ a · b (a, b) 7→ −dnp(a) · b

Lemma 2.3.2. IIp is a symmetric bilinear form.

Proof: Let a = a1X1 + a2X2 and b = b1X1 + b2X2, elements in Tp(S).
Then

IIp(a, b) = −dnp
(∑

aiXi

)∑
bjXj

=
∑
i,j

ai(−dnp(Xi)Xj)bj

=
[
a1 a2

] [N ·X11 N ·X12

N ·X21 N ·X22

] [
b1
b2

]
= (a1 a2)L(b1 b2)T

Since the matrix representation L of IIp in the basis X1, X2 is symmetric, the result follows. �

Lemma 2.3.3. If B = {X1(q), X2(q)} is a basis for Tp(S), then B [−dnp]B = g−1L.

Definition 2.3.4. We use the above results to compute the

mean curvature: H = 1
2 tr(−dnp)

Gauss curvature: κ = det(−dnp)

Lemma 2.3.5. Suppose T : V → V is a linear map, and B = {v1, . . . , vn} is a basis of V and 〈 , 〉 is an
inner product on V . Then for

g = [〈vi, vj〉]16i,j,6n
L = [〈Tvj , vi〉]16i,j,6n
A =B [T ]B

we may relate them all together by A = g−1L.

Proof: First note T (vi) =
∑
k Akivk, so

T (vi) · vj =
∑
k

Akivk · vj

=
∑
k

Akigkj

=
∑
k

gjkAki

= (gA)ji

Therefore L = gA and so A = g−1L. �
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3 The Gauss curvature

3.1 Principal curvatures

Definition 3.1.1. Let S be an oriented regular surface in R3 and γ : I → S a parametrized curve. Then
the normal curvature of S along γ is defined as

κn(t) =
1

s′(t)
T ′(t) · n(γ(t)) = κP (t) · (n ◦ γ)(t) = κP (t) ·N(t)

where T is the unit tangent vector, as defined earlier above.

Proposition 3.1.2. Let p ∈ S and γ : I → S with γ(0) = p and γ′(0) = w where ‖w‖ = 1. Then
κn(0) = IIp(w,w).

Proof: Since the image of γ is in S and γ′(t) ∈ Tγ(t)(S) for all t, γ′ · (n ◦ γ) = 0 and T · (n ◦ γ) = 0,

T ′ · (n ◦ γ) + T · (n ◦ γ)′ = 0

Then at t = 0, we have that

κn(0) =
1

s′(0)
T ′(0) · (n ◦ γ)(0)

=
−1

s′(0)
T (0) · dnγ(0)(γ′(0))

=
−1

‖w‖
w

‖w‖
· dnp(w)

=
−dnp(w) · w
‖w‖2

= IIp

(
w

‖w‖
,
w

‖w‖

)
�

Corollary 3.1.3. [Meusnier]
The normal curvature of S at p depends only on the direction, not on the curves through p.

Definition 3.1.4. The quantities

k1 = max
‖w‖=1

{IIp(w,w)} k2 = min
‖w‖=1

{IIp(w,w)}

are termed the principal curvatures of S at p. Their corresponding directions are termed the principal directions.

Proposition 3.1.5. Let S be a regular surface with p ∈ S. Then there exists {c1, c2} a basis of Tp(S) such
that dnp(ci) = −kici for i = 1, 2. Thus the principal curvatures are eigenvalues of the shape operator.

The above demontrates a common phenomenon - if T : V → V is a self-adjoint linear operator, then

max
‖v‖=1

{〈T (v), v〉} min
‖v‖=1

{〈T (v), v〉}

are the largest and smallest eigenvalues, respectively, when they exist. Recall that an operator is self-adjoint
iff it is equal to its conjugate transpose.

Definition 3.1.6. For S a regular surface, if all directions at p ∈ S are principal, then p is termed umbilical.
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Proposition 3.1.7. Let S be a regular connected surface with all points p ∈ S umbilical. Then either S is
contained in a plane or on the surface of S2.

Proof: Let λ : S → R be the principal curvature function.
Let X : U → S 3 p be a parametrization with X(q) = p for U connected.
Recall that dn · dX = dN , in particular dn(Xu) = Nu and dn(Xv) = Nv.
For scalars a, b, consider aXu + bXv ∈ Tp(S), so then

dn(aXu + bXv) = aNu + bNv or λaXu − λbXv = aNu + bNv

Which means that

(a, b) = (1, 0) =⇒ Nu = −λXu

(a, b) = (0, 1) =⇒ Nv = −λXv

This allows us to state that
Nu + λXu = Nv + λXv = 0

Differentiation gives us that

0 =
∂

∂v
(Nu + λXu) = Nuv + λvXu + λXuv

0 =
∂

∂u
(Nv + λXv) = Nvu + λuXv + λXvu

Directly implying
λvXu − λuXv = 0

Since Xu, Xv are linearly independent, λu = λv = 0.
Therefore λ is locally constant.
Since U is connected, S is connected, and so λ is constant.

If λ = 0, then Nu = Nv = 0, and N is locally constant, so S ⊂ plane.
If λ 6= 0, then for Y = X+ 1

λN , we have Yu = Yv = 0, so ‖X−Y ‖ = 1
|λ| , and thus S ⊂ S2 with radius 1

|λ| . �

Lemma 3.1.8. The Gauss curvature is the unique function κ satisfying, for any parametrization X,

Nu ×Nv = (κ ◦X)(Xu ·Xv)

for every parametrization X of a regular surface S.

Theorem 3.1.9. Let S 3 p be a regular surface oriented by n and Vε = S ∩ {x | |x− p| < ε}. Then

|κ(p)| = lim
ε→0

[
area(n(Vε))

area(Vε)

]

3.2 Surfaces of revolution

Definition 3.2.1. Let f = (g(u), h(u)) be a curve parametrized in R×R. Then the surface of revolution S
of f in R3 around the x1-axis is parametrized by

X(u, v) = (g(u), h(u) cos(v), h(u) sin(v))

for (u, v) ∈ U = R× [0, 2π). The first and second fundamental forms of S are

g =

[
(g′)2 + (h′)2 0

0 h2

]
L =

1√
(g′)2 + (h′)2

[
h′g′′ − g′h′′ 0

0 g′h

]
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The shape operator is given by

g−1L =
1√

(g′)2 + (h′)2

[
h′g′′−g′h′′
(g′)2+(h′)2 0

0 g′

h

]
=

[
kµ 0
0 kπ

]
Since Xu(Xv) is an eigenvector, the lines on S where u(v) is constant are termed parallels (meridians) and
curvature along that line is kπ(kµ).

· From above, we have that κ = kµkπ.

Definition 3.2.2. An asymptotic direction at a point p ∈ S for S a regular surface is a direction with
normal curvature 0. An asymptotic curve is a curve tangent everywhere to an asymptotic dicection.

For example, the curves
v 7→ (a, b cos(v), b sin(v))
v 7→ (−a, b cos(v), b sin(v))

are asymptotic curves on a torus parametrized byX(u, v) = (a cos(u), (b+a sin(u)) cos(v), (b+a sin(u)) sin(v)).

3.3 Intrinsicity

Definition 3.3.1. An oriented surface S with Gauss map n is termed minimal if H = 1
2 tr(−dn) = 0.

Proposition 3.3.2. If the area is minimized on S, that is, for all h : U → R the variation Sh of S is such
that Area(Sh) > Area(S), then H = 0.

Proof: Fix a parametrization X and a map h.

Let Zt = X + thN for t ∈ R, so Zt parametrizes, for each t, a surface St near S, and Z0 parametrizes S.
For Ah(t) the area of St, we want to prove that A′h(0) = 0 if H = 0, so we will have a critical point.
Now consider

Ztu = Xu + thuN + thNu Ztv = Xv + thvN + thNv

Zti ·Ztj = (Xi + thiN + thNi)+(Xj + thjN + thNj) = Xi ·Xj+Xi ·thNj+Xj ·thNi+t2h2Ni ·Nj + t2hi · hj︸ ︷︷ ︸
F

If gt is a metric for Zt, then

gt = g + th (Xi ·Nj +Xj ·Ni) + F

= g − th (Xij ·N +Xji ·N) + F

= g − 2thXij ·N + F

= g + 2thL+ F

Recall that

Ah(t) =

∫∫
U

√
det(gt) du dv

=

∫∫
U

√
det(g) det(g−1gt) du dv

=

∫∫
U

√
det (1 + 2thg−1L+ g−1F )

√
det(g) du dv

A′h(t) =

∫∫
U

tr(2hg−1L) +O(t)

2(· · · · · · )
√

det(g) du dv

A′h(0) =

∫∫
U

tr(g−1L)h
√

det(g) du dv
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Above we showed that if H = 0, then A′h(0) = 0.
It is also clear from the calculations that if A′h(0) = 0 for all h, then H = 0. �

Theorem 3.3.3. The equation for a critical point of an area functional is H = 0.

Theorem 3.3.4. [Cristoffel]
Let X : U → S parametrize part of a smooth surface S ⊂ R3. Then for i, j = u, v

Xij = Lij ·N + Γ1
ijX1 + Γ2

ijX2

where Γkij is termed the Cristoffel symbol and is given explicitly by

Γkij =
1

2

2∑
`=1

(g−1)k`

(
∂gi`
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
= Γkji

Corollary 3.3.5. With respect to the definitions above,

Γkij =
∑
`

(g−1)k`(Xij ·X`)

Theorem 3.3.6. [Codazzi]
With respect to the definitions above, the Codazzi equations,

∂Lij
∂x`

−
∑
k

Γki`Lkj =
∂Li`
∂xj

−
∑
k

ΓkijLk`

for any choice of i, j, ` ∈ {1, 2}, are satisfied.

Theorem 3.3.7. If g, L : U → Sym(2) satisfy the Codazzi equations, then there exists a map X : U → R3

that parametrizes a surface for which g is the 1st fundamental form and L is the second fundamental form.

Theorem 3.3.8. [Theorema Egregium - Gauss]
The Gaussian curvature, under isometry, is an intrinsic property of a surface. That is, it only depends on
the metric g and its derivatives.

Corollary 3.3.9. If surfaces S1, S2 are isometric via f : S1 → S2, then κ(f(p)) = f(p) for all p ∈ S1.

Definition 3.3.10. A surface S1 is termed isometric to another surface S2 if there exists an isometry
f : S1 → S2. Such a map f is termed an isometry iff:

1. f is a diffeomorphism
2. the map dfp : Tp(S1)→ Tp(S2) is a vector-space isometry

Given two vector spaces V1, V2 with associated inner products 〈 , 〉1 and 〈 , 〉2, a map L : (V1, 〈 , 〉1) →
(V2, 〈 , 〉2) is termed a vector space isometry iff for all u, v ∈ V1,

〈u, v〉1 = 〈Lu,Lv〉2

4 The Gauss-Bonnet theorem

4.1 Geodesics

Definition 4.1.1. A closed path γ on S2 is termed a great circle iff for every point p on γ there exists p′ on
γ that is antipodal to p.
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Definition 4.1.2. Given a parametrized curve γ : [a, b]→ S, we define the length of γ on S by the induced

norm on R3 to be

`(γ) :=

∫ b

a

‖γ′(t)‖ dt

Definition 4.1.3. Given a surface S, define a distance function d on S by

d : S × S → R
(p, q) 7→ inf

γ
{`(γ) | γ : [0, 1]→ S is piecewise smooth, γ(0) = p, γ(1) = q}

Definition 4.1.4. Given a surface S, heuristically a geodesic curve on S is a curve γ that minimizes length
locally. With T, P,B from the Frenet frame and N = n ◦ γ the normal vector, define the geodesic curvature
of γ on S to be

κg :=
1

‖γ′‖
T ′ · (N × T )

Formally, a curve γ is a geodesic iff κg = 0 for the curve.

Proposition 4.1.5. A curve α may be expressed as

α′ = vT

α′′ = v′T + v2κnN + v2κg (N × T )

Lemma 4.1.6.
κg = κP (N × T )

Suppose that we have a curve α(t) = X(u(t), v(t)) with arc-length parametrization, i.e. ‖α′‖ = 1. Then

α′ = Xuu
′ +Xvv

′

α′′ = Xuu (u′)
2

+Xuvu
′v′ +Xuu

′′ +Xvuv
′u′ +Xvv (v′)

2
+Xvv

′′

Moreover, if α is a geodesic, then α′′(t) has no components tangent to Tα(t)(S). This means that Xu and
Xv have no effect on α′′, meaning that

Γ1
11 (u′)

2
+ 2Γ1

12u
′v′ + u′′ + Γ1

22 (u′)
2

= 0

Γ2
11 (u′)

2
+ 2Γ2

12u
′v′ + v′′ + Γ2

22 (v′)
2

= 0

Theorem 4.1.7. Let S 3 p be a regular surface, and fix u ∈ Tp(S) such that ‖u‖ = 1. Then there exists a
unique geodesic in S through p in the direction of u.

Proof: Let X : U → S be a regular parametrization of a neighborhood of S.
Consider the following ODE system:

x′1 = v1 v′1 = −Γ1
11v

2
1 − 2Γ1

12v1v2 − Γ1
22v

2
2

x′2 = v2 v′2 = −Γ2
11v

2
1 − 2Γ2

12v1v2 − Γ2
22v

2
2

with initial conditions:
(x1(0), x2(0)) = X−1(p)
(v1(0), v2(0)) = dX−1(x1(0),x2(0))

u

Above we have X(u, v) = X(x1(u), x2(v)).
First-order ODEs with initial conditions have unique solutions for t ∈ (−ε, ε) for ε sufficiently small.
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It is left to verify that we have arc length parametrization (else we do not have a geodesic).
Define a function

f =
(
g11(x′1)2 + 2g12x

′
1x
′
2 + g22(x′2)2

)
· (x1, x2)

By design, f(0) = 1 and we have left to prove that f ′ = 0.
Consider the derivative:

f ′ = g11,1(x′1)3 + g11,2(x′1)2 + 2g11x
′
1x
′′
1 + · · ·

Using the geodesic equations, we replace x′′1 by −
∑
j,k

Γijkxjxk.

Employing the equality

Γkij =
1

2

∑
`

(g−1)k`(gi`,j + g`j,i − gij,`)

we simplify to get that f ′ = 0. �

4.2 A topological approach

Lemma 4.2.1. For a curve α(t) = X(u(t), v(t)), recalling that ‖α′‖ = s′, we have that

(s′)
3
κg√

det(g)
= (u′)

3
Γ2
11 − (u′)

2
v′Γ1

11 + 2 (u′)
2
v′Γ2

12 − 2u′ (v′)
2

Γ1
12 − v′u′′ + u′v′′ + u′ (v′)

2
Γ2
22 − (v′)

3
Γ1
22

Lemma 4.2.2. Suppose that a parametrization X is orthogonal, i.e. Xu ·Xv = 0. Then

Γ2
11g22 + Γ1

12g11 = 0

Γ2
12g22 + Γ1

22g11 = 0

Theorem 4.2.3. [Liouville]
Let S be a regular surface with X : U → S a parametrization with Xu · Xv = 0. Consider a curve
γ(t) = X(u(t), v(t)) with arc-length parametrization. Let θ(t) be the angle between γ′(t) and Xu(u(t), v(t)).
Let κ(u) and κ(v) be geodesic curvatures of u-curves and v-curves, respectively. Then the geodesic curvature
is given by

κg =
∂θ

∂t
+ κ(u) cos(θ) + κ(v) sin(θ)

The proof involves the previous two lemmas and some other facts, including

κ(u) =

√
det(g) Γ2

11

g
3/2
11

κ(v) = −
√

det(g) Γ1
22

g
3/2
22

cos(θ) =
√
g11 u

′ sin(θ) =
√
g22 v

′

Theorem 4.2.4. [Green]
Let C be a positively oriented closed piecewise regular plane curve with interior R. Then∫∫

R

(P dx+Q dy) =

∫∫
R

(
∂Q

∂x
+
∂P

∂y

)
dx dy

Lemma 4.2.5. Suppose that X : U → S is an orthogonal parametrization. Let R ⊂ U be closed and
bounded with X(R) = S′, such that ∂R is continuous and piecewise smooth, parametrized by γ : [a, b]→ S′
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with ‖γ′‖ = 1, having discontinuities at {t1, . . . , tk} ⊂ [a, b]. Then∫
∂S′

κg ds =

∫ b

a

κg(t)‖γ′(t)‖ dt

=

∫ b

a

(
dθ

dt
+

1
√
g11

∂
√
g22

∂u

dv

dt
− 1
√
g22

∂
√
g11

∂v

dv

dt

)
dt

=

k∑
i=1

(
θ+i − θ

−
i

)
+

∫∫
R′

1√
det(g)

(
∂

∂u

(
1
√
g11

∂
√
g22

∂u

)
+

∂

∂v

(
1
√
g22

∂
√
g11

∂v

))√
det(g) du dv

= ±2π +

k∑
i=1

θi −
∫∫

R′
k
√

det(g) du dv

Where

θ±i = the angle between γ′(t±i ) = lim
t→t±i

[
γ(t)− γ(ti)

t− ti

]
and Xu

θi = θ+i − θ
−
i −

(
1
2 + (−1)pi

2

)
2π

pi =

{
0 if γ′(t−i ) is above Xu

1 if γ′(t−i ) is below Xu

Definition 4.2.6. Given a piecewise smooth continuous curve α : (−ε, ε) → S with α′(0+) 6= α1(0−), we
say that the curve has a vertex at 0, and the exterior angle at 0 is the angle θ ∈ [−π, π] swept from α′(0−)
to α′(0+).

The following example demonstrates this definition. Here the curve α is a polygon, and is directed in a
clockwise direction. The vertices are at t1, t2, t3, with corresponding exterior angles θ1, θ2, θ3.

u-direction−−−−−−−−−−−−−−−−−−−−−−−−−→

θ1 = θ+1 − θ
−
1 − 2π

θ2 = θ+1 − θ
−
1

Lemma 4.2.7. It is always possible to find an orthogonal parametrization for any surface S.

Theorem 4.2.8. [Gauss, Bonnet - local version]
Given a simply connected surface S with boundary ∂S positively oriented with a fuinite number of vertices
with exterior angles, ∫∫

S

k ds = −
∫
∂S

κg ds+

k∑
i=1

θi − 2π

Definition 4.2.9. Given a decomposition D in polygons of a closed surface S, the Euler characteristic is
defined as

χ(S,D) = V − E + F

where the decomposition D has V vertices, E edges, and F faces.
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Theorem 4.2.10. The Euler characteristic is independent of the decomposition D.

Theorem 4.2.11. [Gauss, Bonnet]
Suppose S is a closed compact orientable surface. Then∫∫

S

k ds = 2πχ(S)

Proof: Decompose S into polygons appropriate for orthogonal parametrization, say S =
⋃
Si.

Label positively oriented (counter-clockwise) edges Cij and exterior angles θij of polygons Si, so then

∫∫
S

k ds =
∑
i

∫∫
Si

k ds = −
∑
i,j

∫
Cij

κg ds+
∑
i

2π −
∑
j

θij


Since each edge Cij appears twice in the first term, with opposite orientation, the first term vanishes.
As for the second term, we have that∑

i

2π = 2πF

−
∑
ij

θij =
∑
ij

(
π − θ′ij

)
= 2πV − π

∑
vertices

deg(vertex) = 2πV − 2πE

Here θ′ij = π − θij are the oppositely directed internal angles.
Combining the terms gives the desired result. �

Corollary 4.2.12. It is impossible to have a metric on S2 with k 6 0.

Theorem 4.2.13. By embedding a surface with g handles in Rn for n ∈ N, it is possible to get

k equal to


1 with g = 0

0 with g = 1

−1 with g > 1
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5 Handy tables

5.1 Common parametrized curves

These are all maps α : I → R3 for I = [0, 1] ⊂ R.

Curve Parametrization Curvature Torsion

circle of radius r (r sin(t), r cos(t), 0) 1
r

helix with radii a, b (a cos(t), a sin(t), bt) a
a2+b2

−b√
a2+b2

trefoil knot ((3 + cos(3t)) cos(2t), (3 + cos(3t)) sin(2t), sin(3t))

5.2 Common parametrized surfaces

These are all maps X : U → R3 for U ⊂ R2.

Surface Parametrization Induced metric κ

plane through p spanned by a, b (x, y, ax+ by + p)

[
1 0
0 1

]

sphere of radius r (r cos(θ) sin(ϕ), r sin(θ) sin(ϕ), r cos(ϕ))

[
sin2(ϕ) 0

0 1

]
1
r2

cylinder of radius a (a cos(u), a sin(u), v)

[
a2 0
0 1

]
ellipsoid of radii a, b 1

ab

torus of radii a, b (a cos(u), (b+ a sin(u)) cos(v), (b+ a sin(u)) sin(v)) sin(u)
b+a sin(v)
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