
Compact course notes

Pure Math 432/632, Winter 2012
First order logic and Computability

Professor: B. Csima
transcribed by: J. Lazovskis

University of Waterloo
April 9, 2012

Contents
1 First-order logic syntax 2

1.1 Definitions . 2
1.2 Meaning . 3
1.3 Validity . 4

2 Sequent calculus 6
2.1 Consistency . 6
2.2 Completeness . 6
2.3 Ideas of Leopold Lowenheim and Thoralf Skolem . 8
2.4 Elementary classes . 8
2.5 Abstraction and simplification . 9

3 Programming logic 11
3.1 Heuristic . 11
3.2 Formal . 12

4 The limits of first-order logic 13
4.1 Undecidability . 13
4.2 Axiomatization . 16
4.3 Representation . 18
4.4 Incompleteness . 19

5 Elementary equivalence revisited 21
5.1 Partial and finite isomorphisms . 21
5.2 Dense orderings . 22

6 Computability 27
6.1 Turing machines . 27
6.2 Turing reducibility . 29
6.3 Special non-computable sets . 30

Note: Not all theorems are proved that are presented.

1 First-order logic syntax
For the purposes of this course, we use naive set theory and assume the Axiom of Choice.

1.1 Definitions
Definition 1.1.1. An alphabet A is a non-empty set of symbols.

¨ A string or word a over an alphabet A is a finite sequence of symbols from A.
¨ The length of a word a is the total number of symbols in a, counting repetitions.

Remark 1.1.2. We use the following notation for readability:
¨ A˚ denotes the set of all possible words over A
¨ l denotes the empty word, i.e. the word of no symbols

Definition 1.1.3. The alphabet of a first-order language A contains the following symbols:
a. v0, v1, v2, . . . variables
b. ,^,_,Ñ,Ø not, and, or, implies, if and only if
c. @, D for all, there exists
d. ” equality
e. p, q parentheses

Accompanying A is a (possibly empty) set S being the union of the following sets:

f. For every n P N, a set of n-ary relation symbols
g. For every n P N, a set of n-ary function symbols
h. A finite set of constant symbols

Therefore the symbol set S determines a first-order language, and AS “ AY S is its alphabet

Example 1.1.4. The symbol set of groups is Sgr :“ t0, eu.

Definition 1.1.5. The arity of relations and functions refers to the number of symbols they state a relation
about or act on, and is denoted in the superscript, such as Rn or fn. Irrespective of the arity, a function
always outputs a single symbol.

Definition 1.1.6. The following words in A˚S are termed S-terms:
T1. every variable in A
T2. every constant symbol in S
T3. ft1 . . . tn for f an n-ary function and t1, . . . , tn all S-terms

The set of all S-terms is denoted by TS .

Definition 1.1.7. The following words in A˚S are termed S-formulae:
F1. t1 ” t2 for t1, t2 S-terms
F2. Rt1 . . . tn for R an n-ary relation symbol and t1, . . . , tn S-terms
F3. ϕ for ϕ an S-formula
F4. pϕ^ ψq, pϕ_ ψq, pϕÑ ψq, pϕØ ψq for ϕ,ψ S-formulae
F5. @xϕ and Dxϕ for ϕ an S-formula and x a variable

The set of all S-formulae of length n is denoted by LS .

Remark 1.1.8. If S is at most countable, then TS and LS are at most countable also.

Definition 1.1.9. The function var acts on an S-term and outputs the set of variables occuring in this
term. Thus, if x is a variable, c is a constant, f is an n-ary relation and t1, . . . , tn are S-terms, then

varpxq :“ txu

varpcq :“ H

varpft1 . . . tnq :“ varpt1q Y ¨ ¨ ¨ Y varptnq

2

Definition 1.1.10. The function SF assigns to each formula the set of its subformulae, and is defined by:

SF pt1 “ t2q :“ tt1 “ t2u

SF pRt1 . . . tnq :“ tRt1 . . . tnu

SF p ϕq :“ t ϕu Y SF pϕq

SF ppϕ ˚ ψqq :“ tpϕ ˚ ψqu Y SF pϕq Y SF pψq

SF pQxϕq :“ tQxϕu Y SF pϕq

where ˚ P t_,^,Ñ,Øu and Q P t@, Du.

Definition 1.1.11. Given an S-formula ϕ, each of the variables in varpϕq are either bound or free. The
function free, that produces the set of free variables of an S-formula, is defined as follows:

freept1 “ t2q :“ varpt1q Y varpt2q
freepRt1 . . . tnq :“ varpt1q Y ¨ ¨ ¨ Y varptnq

freep ϕq :“ freepϕq
freeppϕ ˚ ψqq :“ freepϕq Y freepψq

freepQxϕq :“ freepϕqztxu

Example 1.1.12. In @xRxyz, the variable x is bound and y, z are free

1.2 Meaning
Definition 1.2.1. Let ϕ be an S-formula. If freepϕq “ H, then ϕ is termed a sentence.

Definition 1.2.2. Define LS0 to be the set of S-sentences. In general,

LSn :“ tϕ
 ϕ is an S-formula and |freepϕq| “ nu

Definition 1.2.3. An S-structure is a pair A “ pA, aq of a set A and an assignment a on S such that
1. A is non-empty
2. a is defined by the following rules:

i. apRq “ RA “ RA is an n-ary relation on A
ii. apfq “ fA “ fA is an n-ary function on A
iii. apcq “ cA “ cA is an element of A

Remark 1.2.4. If β is an assignment in an S-structure A with a P A and x is a variable, then define the
assignment

β ax pyq :“

"

βpyq if y ‰ x
a if y “ x

Definition 1.2.5. An S-interpretation is a pair I “ pA, βq of an S-structure A and an assignment β in A,
that acts on S-terms, such that

1. Iax “ pA, β
a
x q

2. the action of I is defined by the following rules:
i. Ipxq “ βpxq for x a variable
ii. Ipcq “ cA for c a constant
iii. Ipft1 . . . tnq “ fApIpt1q, . . . ,Iptnqq for t1, . . . , tn S-terms

Definition 1.2.6. Given a formula ϕ, an interpretation I is termed a model of ϕ (written I (ϕ, pronounced
“I satisfies ϕ") when the following conditions are satisfied:

3

I (t1 ” t2 if and only if Ipt1q “ Ipt2q
I (Rt1 . . . tn if and only if RApIpt1q, . . . ,Iptnqq holds
I (ϕ if and only if not pI (ϕq
I (pϕ ˚ ψq if and only if pI (ϕq ˚ pI (ψq
˚ P t^,_,Ñ,Øu ˚ P tand, or, implies, if and only ifu

I (Qxϕ if and only if Qa P A Iax (ϕ
Q P t@, Du Q P tfor all, there existsu

Definition 1.2.7. Let Φ be a possibly infinite set of S-formulae. Then for an S-interpretation I, we say
I (Φ iff I (ϕ for all ϕ P Φ.

Definition 1.2.8. Let Φ be a set of formulae and ϕ a formula. Then we write Φ (ϕ (pronounced “ϕ is a
consequence of Φ") iff for every interpretation I with I (Φ, the expression I (ϕ holds.

1.3 Validity
Definition 1.3.1. A formula ϕ is termed valid iff H (ϕ, that is, when for all interpretations I, I (ϕ.

Definition 1.3.2. A formula ϕ is termed satisfiable (written Satpϕq) if there exists an interpretation which
is a model of ϕ. A set of formulas Φ is satsifiable if there exists an interpretation which is a model for every
ϕ in Φ.

Lemma 1.3.3. For all Φ and all ϕ, Φ (ϕ iff not SatpΦY t ϕuq.

Definition 1.3.4. Two formulae ϕ,ψ are termed equivalent (written ϕ)(ψ) iff ϕ (ψ and ψ (ϕ.
Therefore we may eliminate some symbols:

ϕ^ ψ)(p ϕ_ ψq

ϕÑ ψ)(ϕ_ ψ

ϕØ ψ)(pϕ_ ψq _ p ϕ_ ψq

@xϕ)(Dx ϕ

So the connectives ^,Ñ,Ø and the quantifier @ are superfluous. We no longer consider them in our language,
but we continue to employ them as shorthand.

Lemma 1.3.5. [Coincidence lemma]
Let I1 “ pA1, β1q be an S1-interpretation and I2 “ pA2, β2q be an S2-interpretation, with S “ S1 X S2 and
t an S-term and ϕ an S-formula.

1. If I1 and I2 agree on the S-symbols in t and varptq, then I1ptq ” I2ptq
2. If I1 and I2 agree on the S-symbols in ϕ and freepϕq, then pI1 (ϕq)(pI2 (ϕq.

Proof: 1. will be done by induction.

I1pcq “ cA1 “ cA2 “ I2pcq

I1pxq “ β1pxq “ β2pxq “ I2pxq

I1pft1 . . . tnq “ fA1pI1pt1q . . . I1ptnqq “ fA2pI2pt1q . . . I2ptnqq

“ fA2pI2pt1q . . . I2ptnqq

“ I2pft1, . . . tnq

2. will also be done by induction.

I1 (t1 ” t2 iff I1pt1q ” I1pt2q

iff I2pt1q ” I2pt2q

iff I2 (t1 ” t2

4

Now suppose ϕ “ Dxψ.
Then I1 (Dxψ iff there exists a P A such that I1

a
x (ψ.

Note that freepψq Ă freepϕq Y txu.
Since I1, I2 agree on freepϕq, we have that I1

a
x and I2

a
x agree on freepψq.

Also, I1
a
x and I2

a
x agree on txu.

Hence they both agree on freepϕq.
Thus I1 (Dxψ iff there exists a P A such that I1

a
x (ψ

iff there exists a P A such that I2
a
x (ψ

iff I2 (Dxψ �

Remark 1.3.6. If I “ pA, βq and freepϕq “ tv0, . . . , vn´1u with βpviq “ ai P A for all i, then
1. I (ϕ is equivalent to A (ϕra0, . . . , an´1s

2. Iptq is equivalent to tAra0, . . . , an´1s

3. if ϕ is a sentence and I (ϕ, then A (ϕ

Definition 1.3.7. Let S, S1 be symbol sets with S Ă S1 and A “ pA, aq an S-structure and A1 “ pA, a1q an
S1-structure so that a, a1 agree on S. Then

¨ A is termed a reduct of A1
¨ A1 is termed an expansion of A, expressed A “ A1|S

Moreover, we note that by the coincidence lemma,

A (ϕra0, . . . , an´1s iff A1 (ϕra0, . . . , an´1s

Definition 1.3.8. Let A,B be S-structures. Then a map π : AÑ B is an isomorphism iff
1. π is a bijection between A and B
2. if R P S and a1, . . . , an P A, then pa1, . . . , anq P R

A iff pπpa1q, . . . , πpanqq P R
B

3. if f P S and a1, . . . , an P A, then πpfApa1, . . . , anqq iff fBpπpa1q, . . . , πpanqq
4. for all c P S, πpcAq “ cB

If such a π exists, then A and B are termed isomorphic, and described A – B.

Lemma 1.3.9. [Isomorphism lemma]
If A,B are isomorphic S-structures, then for all S-sentences ϕ, A (ϕ ðñ B (ϕ.

Definition 1.3.10. Let A,B be S-structures. Then A is a substructure of B iff
1. A Ă B
2. i. R P S ùñ RA “ RB XAn

ii. f P S ùñ fA “ fB|An
iii. c P S ùñ cA “ cB

This relationship is then expressed A Ă B.

Lemma 1.3.11. [Substructure lemma]
Let A,B be S-structures with A Ă B and ϕ P LSn universal. Then for all a0, . . . , an´1 P A,

B (ϕra0, . . . , an´1s implies A (ϕra0, . . . , an´1s

Proposition 1.3.12. Let A,B be S-structures with A Ă B and ϕ P LS0 existential. Then

A (ϕ implies B (ϕ

Definition 1.3.13. For arbitrary terms t0, . . . , tr and pairwise distinct variables of ϕ x0, . . . , xr, define

ϕ t0,...,tr
x0,...,xr

:“ ϕ with xi replaced by ti for all i

Lemma 1.3.14. [Substitution lemma]

1. For every term t, I
´

t t1,...,trx0,...,xr

¯

“ IIpt1q ...,Iptrq
x0,...,xr

ptq

2. For every formula ϕ, I (ϕ t1,...,tr
x0,...,xr

iff IIpt1q ...,Iptrq
x0,...,xr

(ϕ

5

2 Sequent calculus

2.1 Consistency
Definition 2.1.1. A non-empty sequence of formulae Γ is termed a sequent. A set of rules associated with
it is termed a sequent calculus S.

Definition 2.1.2. A formula ϕ is termed formally provable or derivable from a set of formulae Φ iff there are
finitely many formulae (the antecedents) ϕ1, . . . , ϕn such that given them, one may obtain ϕ (the succedent).
This is expressed Φ $ ϕ.

If ϕ1, . . . , ϕn are in a sequence of formulae Γ, then we write $ Γϕ with the same meaning.

Theorem 2.1.3. [Soundness theorem]
For a sequent Γ, if $ Γϕ, then Γ (ϕ. Moreover, if Φ $ ϕ, then there exists a sequence of formulae Γ from
Φ such that $ Γϕ.

Definition 2.1.4. A set of formulae Φ is termed consistent and denoted ConpΦq iff there is no formula ϕ
such that Φ $ ϕ and Φ $ ϕ. If this occurs, then Φ is termed inconsistent and denoted IncpΦq.

Lemma 2.1.5. IncpΦq iff for all ϕ, Φ $ ϕ.

Proof: pðq: Let ϕ “ v0 ” v0.
So Φ $ ϕ and Φ $ ϕ, so IncpΦq.

pñq: Suppose IncpΦq.
Let ϕ be arbitrary.
Then there is ψ such that Φ $ ψ and Φ $ ψ.
So there are sequents Γ1,Γ2 Ă Φ such that $ Γ1ψ and $ Γ2 ψ.
Since $ Γ1ψ, we have $ Γ1Γ2 ϕψ by (Ant).
Since $ Γ2 ψ, we have $ Γ1Γ2 ϕ ψ by (Ant).
Thus $ Γ1Γ2ϕ by (Ctr).
Since Γ1,Γ2 Ă Φ, we have Φ $ ϕ. �

Corollary 2.1.6. ConpΦq iff there is some formula that is not derivable from Φ.

Lemma 2.1.7. ConpΦq iff ConpΦ0q for all finite sets Φ0 Ă Φ.

Lemma 2.1.8. SatpΦq implies ConpΦq

Lemma 2.1.9. For all Φ and ϕ:
1. Φ $ ϕ iff IncpΦY t ϕuq
2. if ConpΦq, then either ConpΦY tϕuq or ConpΦY t ϕuq.

Lemma 2.1.10. For n P N, let Sn be symbol sets such that S0 Ă S1 Ă S2 Ă ¨ ¨ ¨ . Let Φn be a set of
Sn-formulae so that ConSnpΦnq and Φ1 Ă Φ2 Ă ¨ ¨ ¨ . Let S “

Ť

nPN Sn and Φ “
Ť

nPN Φn. Then ConSpΦq.

2.2 Completeness
Definition 2.2.1. A set of formulae Φ is termed negation complete iff for every formula ϕ, either Φ $ ϕ or
Φ $ ϕ.

Definition 2.2.2. A set of formulae Φ contains witnesses iff for every formula of the form Dxϕ, there is a
term t such that Φ $ DxϕÑ ϕ t

x .

6

Lemma 2.2.3. Suppose Φ is consistent, negation complete, and contains witnesses. Then
1. Φ $ ϕ iff not Φ $ ϕ
2. Φ $ pϕ_ ψq iff Φ $ ϕ or Φ $ ψ
3. Φ $ Dxϕ iff there is a term t such that Φ $ ϕ t

x

Definition 2.2.4. Let Φ be a set of formulae and t1, t2 terms. Then define the relation „ by

t1 „ t2 iff Φ $ t1 ” t2

Then „ is an equivalence relation.

Lemma 2.2.5. If t1 „ t11, . . . , tn „ t1n, then for an n-ary function symbol f P S, ft1 . . . tn „ ft11 . . . t
1
n.

Moreover, for an n-ary relation symbol R P S,

Φ $ Rt1 . . . tn iff Φ $ Rt11 . . . t
1
n

Definition 2.2.6. Define the following symbols:

TS :“ tt
 t is an S-termu

t :“ tt1 P TS
 t „ t1u

TΦ :“ tt
 t P TSu

And the S-structure TΦ over TS such that

for n-ary R P S, RTΦ

t1 . . . tn iff Φ (Rt1, . . . tn

for n-ary f P S, fT
Φ

pt1 . . . tnq “ ft1, . . . tn

for c P S, cT
Φ

“ c

And for an assignment β, let
βΦpxq “ x

Therefore we have constructed IΦ “ pTΦ, βΦq, the term interpretation associated with Φ.

Theorem 2.2.7. Let Φ be a consistent set of formulae which is negation complete and contains witnesses.
Then Φ is satisfiable.

Lemma 2.2.8. Let S be at most countable with Φ Ă LS consistent and freepΦq finite. Then there exists
Θ Ą Φ which is consistent, negation complete, and contains witnesses. Moreover, this implies that Θ and Φ
are satisfiable.

Definition 2.2.9. Let S be an arbitrary symbol set. To each ϕ P LS associate a constant cϕ such that
cϕ “ cψ iff ϕ ” ψ. Then define

S˚ :“ S Y tcDxϕ
 Dxϕ P LSu

W pSq :“ tpDxϕÑ ϕ
cDxϕ
x q

 Dxϕ P LSu
Lemma 2.2.10. For Φ Ă LS , if ConSpΦq, then ConS˚pΦYW pSqq.

Definition 2.2.11. Let M be a set and U a non-empty set of subsets of M . Then a non-empty set D Ă U
is termed a chain of U iff for all V1, V2 P D, either V1 Ă V2 or V2 Ă V1.

Lemma 2.2.12. [Zorn]
If
Ť

V PD V P U for every chain D Ă U , then U has a maximal element. That is, there is some U0 P U such
that there does not exist U1 P U with U0 Ĺ U1.

Theorem 2.2.13. [Completeness]

Φ (ϕ iff Φ $ ϕ

SatpΦq iff ConpΦq

7

2.3 Ideas of Leopold Lowenheim and Thoralf Skolem
Theorem 2.3.1. [Lowenheim, Skolem]
Every satisfiable and at most countable set of formulae is satisfiable over a domain which is at most countable.

Proof: Let Φ be an at most countable set of S-sentences which is satisfiable and hence consistent.
There are at most countably many S-symbols in Φ, as every S-formula contains finitely many symbols.
Therefore WLOG S is at most countable.
By previous knowledge, there exists an interpretation I that satisfies Φ with terms ranging over TS .
Since TS is at most countable, A is at most countable. �

Corollary 2.3.2. Every at most countable set of formulae that is satisfiable over an infinite domain is
satisfiable over a countable domain.

Theorem 2.3.3. [Compactness]
We combine a previous theorem with a new one, together for the clear analogy:

1a. ConpΦq iff ConpΦ0q for all finite Φ0 Ă Φ
1b. Φ $ ϕ iff Φ0 $ ϕ for some finite Φ0 Ă Φ

2a. SatpΦq iff SatpΦ0q for all finite Φ0 Ă Φ
2b. Φ (ϕ iff Φ0 (ϕ for some finite Φ0 Ă Φ

Theorem 2.3.4. Let Φ be a set of formulae which is satisfiable over arbitrarily large finite domains. Then
Φ is also satisfiable over an infinite domain.

Theorem 2.3.5. [Lowenheim, Skolem - “downward" variant]
Let Φ Ă LS be satisfiable. Then Φ is satisfiable over a domain of cardinality at most |LS |.

Theorem 2.3.6. [Lowenheim, Skolem - “upward" variant]
Let Φ Ă LS be satisfiable over an infinite domain. Then for every set A there is a model of Φ which contains
at least as many elements as A.

Theorem 2.3.7. [Lowenheim, Skolem, Tarski]
Let Φ Ă LS be satisfiable over an infinite domain. Then for any κ ě |Φ|, Φ has a model of cardinality κ.

2.4 Elementary classes
Definition 2.4.1. Let Φ be a set of S-sentences. Define the class of models of Φ by

ModSpΦq :“ tA
 A is an S-structure, A (Φu

Definition 2.4.2. Let K be a class of S-structures. Then
1. K is termed elementary iff there is an S-sentence ϕ such that K “ModSpϕq
2. K is termed ∆-elementary iff there is a set Φ of S-sentences such that K “ModSpΦq

Remark 2.4.3. Any elementary class is ∆-elementary. Moreover, a ∆-elementary class may be described
as the intersection of elementary classes.

¨ The class of fields is elementary.

¨ The class of fields with characteristic p prime is elementary.

Definition 2.4.4. Let A,B be S-structures. Then A and B are termed elementarily equivalent, denoted
A ” B, iff for every S-sentence ϕ, A (ϕ iff B (ϕ.

Definition 2.4.5. A set Φ of S-sentences is termed independent iff there is no ϕ P Φ such that Φztϕu $ ϕ.

8

Definition 2.4.6. Let A be an S-structure. Then define the theory of A to be

ThpAq “ tϕ P LS0
 A (ϕu

Lemma 2.4.7. Let A,B be S-structures. Then B ” A iff B (ThpAq.

¨ Note that by the isomorphism lemma, tB
 B – Au Ă tB

 B ” Au.

Theorem 2.4.8. Let A be an S-structure. Then
1. if A is infinite, then tB

 B – Au is not ∆-elementary
2. tB

 B ” Au is ∆-elementary
Moreover, tB

 B ” Au is the smallest ∆-elementary class containing A.

Definition 2.4.9. Consider Sar :“ p`, ¨, 0, 1q and N :“ pN,`N, ¨N, 0N, 1Nq. A structure which is elementarily
equivalent but not ismorphic to N is termed a non-standard model of arithmeric.

In general, A is a non-standard model of B iff A ” B and A fl B.

Theorem 2.4.10. There exists a countable non-standard model of arithmetic.

Proof: Let Ψ “ThpNq Y t x ” 0, x ” 1, x ” 2, . . . u.
Let Φ Ă Ψ be finite.
So there exists m P N such that for all n ě m, x ” m R Φ.
Then pN, βq is a model for Φ if βpxq “ n.
By the completeness theorem, there is a model of Ψ, so by Lowenheim-Skolem, since Ψ is countable, Ψ

has an at most countable model, say pA, βq.
Observe that A is elementarily equivalent to N, since A (ThpNq.
Also note that A fl N, since an ismorphism must map n to nA, but there is nothing to map βpxq to. �

Note that above we have used the convention n :“ 1` 1` ¨ ¨ ¨ ` 1
loooooooomoooooooon

n times

“ ff ¨ ¨ ¨ f
looomooon

n times

1 for f the successor function.

2.5 Abstraction and simplification
Definition 2.5.1. An S-formula ϕ is termed term-reduced iff its atomic subformulae have one of the following
forms, where y, x, x1, . . . , xn are variables and c is a constant.

Rx1 . . . xn x ” y
fx1 . . . xn ” x c ” x

Theorem 2.5.2. For every S-formula ϕ there is a logically equivalent term-reduced formula ϕ˚.

Note that freepϕq “ freepϕ˚q.

Definition 2.5.3. A symbol set S is termed relational iff it contains only relation symbols.

Definition 2.5.4. To every symbol set S associate a relational symbol set Sr containing:
¨ all relation symbols in S
¨ for every n-ary function symbol f P S, an pn` 1q-ary relation symbol F
¨ for every constant symbol c P S, a unary relation symbol C

To every S-structure A associate an Sr structure Ar by:
¨ RA “ RA

¨ FAr “ the graph of fA
¨ CAr “ the graph of cA

Theorem 2.5.5. For S-structures A,B, A ” B iff Ar ” Br.

9

Definition 2.5.6. A formula which is the disjunction of conjunctions of atomic and negated atomic formulae
is termed a formula in disjunctive normal form. Similarly, a formula which is the conjunction of disjunctions
of atomic and negated atomic formulae is termed a formula in conjunctive normal form.

Theorem 2.5.7. If ϕ is quantifier-free, then ϕ is logically equivalent to a formula ϕ0 in disjunctive normal
form and ϕ1 in conjunctive normal form.

Proof: We prove only that ϕ)(ϕ0 here.
Suppose ϕ P LSr .
Let tϕ0, . . . , ϕnu be the atomic formulae appearing in ϕ.
For an S-structure A and ā “ pa1, . . . , arq P A

r, let ψpA,āq “ ψ0 ^ ¨ ¨ ¨ ^ ψn, where

ψi “

"

ϕi if A (ϕirās
 ϕi if A (ϕirās

Note that A (ψpA,āqrās, and there are at most 2n`1 formulae of the form ψpA,āq.
Let χ :“

Ž

tψpA,āq
 A is an S-structure, ā P Ar and A (ϕrāsu.

Note that χ P LSr is in disjunctive normal form.
Claim: χ is logically equivalent to ϕ.

Proof of claim: Suppose B (ϕrb̄s.
Then ψpB,b̄q is the disjunct of χ, and since B (ψpB,b̄qrb̄s, we have B (χrb̄s.
Now suppose B (χrb̄s.
Then there is some S-structure A and some ā P Ar with A (ϕrās such that B (ψpA,āqrb̄s.
Then for each atmoic formula ϕi appearing in ϕ, B (ϕirb̄s iff A (ϕirās.
Since ϕ is obtained from the ϕi using only _ and , we have that B (ϕrb̄s iff A (ϕrās.
So since A (ϕrās, we have B (ϕrb̄s. �

Definition 2.5.8. A formula which has the from ϕ “ Q1x1 . . . Qnxnϕ for Qi P tD,@u for all i and ϕ quantifier
free is termed a formula in prenex normal form.

¨ Q1x1 . . . Qnxn is termed the prefix of ϕ
¨ ϕ0 is termed the matrix of ϕ

Theorem 2.5.9. Every formula ϕ is logically equivalent to a formula ψ in prenex normal form with freepϕq “
freepψq.

Proof: Let ϕ „̈ψ denote ϕ)(ψ.
We note that:

1. ϕ „̈

ψ implies ϕ „̈

 ψ
2. ϕ0

„̈ψ0 and ϕ1

„̈ψ1 implies pϕ0 _ ϕ1q

„̈

pψ0 _ ψ1q

3. ϕ „̈ψ implies Qxϕ „̈Qxψ
4. Qxϕ „̈Q´1x ϕ
5. x R freepϕq implies pqxϕ_ ψq „̈Qxpϕ_ ψq and pψ _Qxϕq „̈Qxpψ _ ϕq
6. ϕ_ ψ „̈

ψ _ ϕ
For ϕ P LS , let qnpϕq be the number of quantifiers occuring in ϕ.
We prove the theorem by induction on n.
Let P pnq be the statement “For ϕ with qnpnq ď n, there is ψ P LS in prenex normal form such that

ϕ „̈ψ, freepϕq “ freepψq and qnpϕq “ qnpψq".
n “ 0: If qnpϕq “ 0, we can set ψ “ ϕ.
n ą 0: Suppose ϕ “ ϕ1.

Then qnpϕ1q “ qnpϕq and freepϕ1q “ freepϕq.
By the induction hypothesis, there is a formula Qxχ that is a prenex normal form for ϕ with

qnpQxχq “ qnpϕ1q and freepQxχq “ freepϕ1q.

10

Then ϕ1 „̈

Qxχ implies ϕ ” ϕ1 „̈

 Qxχ by 1. above.
Further, Qxχ „̈

Q´1x χ by 4. above.
Note freep χq “ freepχq and qnp χq “ qnpχq “ qnpϕq ´ 1 ď n´ 1
Since P pn´1q holds, there is a prenex normal form ψ for χ with qnpψq “ qnpχq and freepψq “ freepχq.
Thus Q´1xψ is the desired prenex normal form for ϕ by 3. above.

Suppose ϕ “ pϕ1 _ ϕ2q and qnpϕq ą 0.
WLOG assume qnpϕ1q ą 0.
By the induction hypothesis, there is a formula Qxχ that is a prenex normal form for ϕ1 with

freepQxχq “ freepϕ1q and qnpQxχq “ qnpϕ1q.
Let y be a variable which does not occur in Qxχ or ϕ2.
Then Qxχ „̈Qyχ yx .
So by 2. and 5. above,

ϕ “ pϕ1 _ ϕ2q „̈

pQyχ yx _ ϕ
2q

„̈Qypχ yx _ ϕ
2q

So qnpχ yx _ ϕ
2q “ qnpϕq ´ 1 ď n´ 1.

Since P pn ´ 1q holds, there is a prenex normal form ψ for χ yx _ ϕ2 with qnpψq “ qnpχ yx _ ϕ2q and
freepψq “ freepχ yx _ ϕ

2q.
Then Qyψ is the desired prenex normal form for ϕ.
We also note that

freepQyψq “ freepχ yx _ ϕ
2qztyu

Ă freepχqztxu Y freepϕ2q
“ freepQxχq Y freepϕ2q
“ freepϕ1q Y freepϕ2q
“ freepϕq

Suppose ϕ “ Dxϕ1.
Since qnpϕ1q ď n ´ 1, there is a prenex normal form ψ with ϕ1 „̈ψ and freepψq “ freepϕ1q and

qnpψq “ qnpϕ1q.
So Dxψ is the desired prenex normal form for ϕ. �

Remark 2.5.10. A countably infinite symbol set may be viewed as being defined over a finite alphabet.

3 Programming logic

3.1 Heuristic
Definition 3.1.1. A procedure P may run on inputs of words over a language. It may have an output and
it may halt.

Definition 3.1.2. Let A be an alphabet, W Ă A˚ and P a procedure. Then
1. P is a decision procedure forW iff for every input ξ P A˚, P eventually stops, having (before stopping)

given exactly one output η such that
η “ l iff ξ PW
η ‰ l iff ξ RW

2. P is an enumeration procedure for W if P , having been initiated, yields eventually as output any
word in in W , in any order, with possible repetition.
Then we may describe W by saying that

i. W is decideable iff there exists a decision procedure for W
ii. W is enumerable iff there exists an enumeration procedure for W

11

Remark 3.1.3. If A is a finite alphabet, then A˚ is enumerable.

Remark 3.1.4. The set tϕ P LS80

 (ϕu is enumerable.

Proof: By the completeness theorem, we need to enumerate all S8-sentences such that $ ϕ.
We may list all words over the language, checking if each word is a formula.
For each n P N, form all the (finite) combinations of the first n formulae in the list.
Check, for each combination, if it is a derivation ending with a sentence ϕ.
If so, list ϕ. �

Theorem 3.1.5. Every decideable set is enumerable.

Theorem 3.1.6. A subset W Ă A˚ is decideable iff W and A˚zW are enumerable.

Proof: pñq Clearly a decision procedure P for W can be made into a decision procedure P 1 for A˚zW .
By the above theorem, A and A˚zW are both enumerable.

pðq Suppose W and A˚zW are enumerable by P and P 1.
To decide whether ξ PW , run P and P 1 until one lists ξ.
Exactly one will list ξ, as W XA˚zW “ H, and W YA˚zW “ A˚. �

Definition 3.1.7. A computable function f : A˚ Ñ B˚ is a function for which there is a procedure P that
with input ξ P A˚ halts with output fpξq P B˚.

3.2 Formal
Definition 3.2.1. A register R is an indefinitely large unit of memory in which a word may be stored. We
assume that an indefinite amount of register machines are avilable for use.

Definition 3.2.2. Fix an alphabet A “ ta0, . . . , anu. A register program P over an alphabet A is a finite
sequence α0, . . . , αk of instructions of the type below.

1 LET Ri “ Ri ` aj [add-instruction]
2 LET Ri “ Ri ´ aj [sub-instruction] if aj is not last in Ri, do nothing
3 IF Ri “ l THEN L1 ELSE L0 OR ¨ ¨ ¨ OR Lr [jump-instruction] if aj is last, do Lj
4 PRINT [print-instruction] output the word in R0

5 HALT [halt-instruction] stop the procedure

Above we assume 0 ď j ď n, i P N, and R1, R2, . . . are register machines.

We assume certain properties of register machines:
1. αi has label i
2. every jump-instruction refers to labels ď k
3. only the last line, αk, is a halt-instruction

Definition 3.2.3. A program P is started with the a word ξ P A˚ if P begins the computation with ξ in
R0 and l in the remaining registers.

¨ If P started with ξ and reaches the halt-instruction, we write P : ξÑ HALT. Otherwise, write P : ξÑ8.
¨ If P started with ξ and prints exactly one word η and later halts, we write P : ξÑ η.

Definition 3.2.4. To abbreviate a special instance of rule 3. we equivalently say:

IF R0 “ l THEN L1 ELSE L1 OR ¨ ¨ ¨ OR L1

õ

GOTO L1

12

Definition 3.2.5. Let W Ă A˚. A program P decides W iff for all ξ P A˚

P : ξÑ l iff ξ PW
P : ξÑ η iff ξ RW and η ‰ l

Then W is termed register decidable iff there is a program P that decides W .

Definition 3.2.6. Let W Ă A˚.
¨ A program P enumerates W iff P started with l and prints exactly all the words in W , with possible

repetitions, and in any order.
¨ W is register enumerable iff there exists a program that enumerates W .

Definition 3.2.7. Let A,B be alphabets and F : A˚ Ñ B˚.
¨ A program P over AYB computes F iff for all ξ P A˚, P : ξÑ F pξq.
¨ F is register-computable iff there is a program that computes F .

Remark 3.2.8. The left column comes from the definitions above. Church conjectures the right column.

R-decidable ùñ decidable decidable ùñ R-decidable
R-enumerable ùñ enumerable enumerable ùñ R-enumerable
R-computable ùñ computable computable ùñ R-computable

4 The limits of first-order logic

4.1 Undecidability
Let A “ ta0, . . . , aru. Let B “ A Y tA, B, . . . , Zu Y t0, 1, . . . , 9u Y t“,`,´,l, §u. Then to every program P
we associate a unique word over B. For example,

0 LET R1 “ R1 ` a0

1 PRINT ùñ 0LETR1=R2+a0§1PRINT§2HALT
2 HALT

Consider a lexicographic ordering of B˚. Then for a program P over A, we can find its equivalent under
association in this ordering, say it is at position n. Then define ξP “ a0 . . . a0

looomooon

n times

to be the Godel number of P .

Lemma 4.1.1. Let Π “ tξP
 P is a program over Au. Then Π is deciedable.

Proof: Given a word in A˚, check whether it is of the form a0 . . . a0
looomooon

n times

.
If not, then it is not in Π.
If yes, loon at the nth word in the ordering of B˚.
Check whether this codes a program over A.
Since the word is of finite length, we can check it. �

Theorem 4.1.2. [Undecidability of the halting problem]
a. The set Π1HALT “ tξP

 P is a program over A and P : ξP Ñ HALTu is not R-decidable
b. The set ΠHALT “ tξP

 P is a program over A and P : l Ñ HALTu is not R-decidable

Proof: (a.) Suppose there exists a program P0 that decides Π1HALT.
Then for all P ,

P0 : ξP Ñ l iff P : ξP Ñ HALT
P0 : ξP Ñ η iff P : ξP Ñ8 for η ‰ l

From P0 we obtain a program P1 by making the substitution

k HALT ùñ k IF R0 “ l THEN k ELSE k ` 1 OR ¨ ¨ ¨ OR k ` 1

13

And adding the line
k ` 1 HALT

Then for this program P1 we have that

P1 : ξP Ñ8 iff P : ξP Ñ HALT
P1 : ξP Ñ HALT iff P : ξP Ñ8

But then P1 has a Godel number, so P1 : ξP1
Ñ8 iff P1 : ξP1

Ñ HALT.
This is a contradiction.

(b.) We design a procedure, that produces P` from P such that ξP P Π1HALT iff ξP` P ΠHALT.
Given P , compute ξP with n instances of a0.
Let P` be the program that begins with

0 LET R0 “ R0 ` a0

...
n´ 1 LET R0 “ R0 ` a0

followed by the lines of P , all incremented by n.
Clearly, P : ξP Ñ HALT iff P` : l Ñ HALT.
Now the result follows from (a.). �

Lemma 4.1.3. ΠHALT is enumerable.

Proof: For every n P N, get the finitely many programs with Godel number ď n.
Start each program with l, run for n steps, print the Godel number of the programs that halt. �

Corollary 4.1.4. A˚zΠHALT is not enumerable.

Definition 4.1.5. Let P be a program with instructions α0, . . . , αk and let n P N be the maximal index of
registers appearing in P . Then an pn` 2q-tuple of rational numbers

pL,m0, . . . ,mnq

with 0 ď L ď k is termed the configuration of P after s steps if P started with l, runs for at least s steps
and after s steps L is to be executed next while the registers R0, . . . , Rn contain the numbers m0, . . . ,mn,
respectively.

In the above circumstances, the pn` 1q-tuple p0, . . . , 0q is termed the initial configuration of P .

Remark 4.1.6. Since S8 has countably many function, relation, and constant symbols of each arity, we
enumerate them and denote them by writing

Rnm for the mth n-ary relation symbol
fk` for the `th k-ary function symbol
cj for the jth constant symbol

Theorem 4.1.7. [Undecidability of first order logic]
The set tϕ P LS80

 (ϕu of valid S8 sentences is undecidable.

Proof: Let A “ t1u, and identify words over A with natural numbers.
We assign to every program P in an effective way an S8 sentence ϕP such that (ϕP iff P : l Ñ HALT.
This will show that Π “ tϕ P LSar0

 (ϕu is undecidable.

14

Suppose the contrary.
Let ξ P A˚ decide if ξ P Π.
If not, ξ R ΠHALT.
If yes, compute P so that ξ “ ηP .
Compute ϕP .
Use the decision procedure to decide whether (ϕ.
If yes, ξ P ΠHALT.
If no, ξ R ΠHALT.
So we have a decision procedure for ΠHALT.
This is a contradiction.

Now we define ϕP .
Let P be a program with instructions α0, . . . , αk.
Compute the smallest n P N such that the registers occuring in P are among R0, . . . , Rn.
Since αk is the only halt-instruction, P : l Ñ HALT iff there exist s,m0, . . . ,mn P N such that

pk,m0, . . . ,mnq is the configuration of P after s steps.
Let R “ Rn`3

0 and ă“ R2
0 and f “ f1

0 and c “ c0, all in S8.
Let S “ tR,ă, f, cu Ă S8.
We associate to P an S-structure AP that describes P .
Set AP “ N and interpretă byăN, c by 0, f by the successor function, R by tps, L,m0, . . . ,mnq

 pL,m0, . . . ,mnq

is the configuratiton of P after s stepsu.

Now we define an S-sentence ψP that will appear in ϕP .
We want ψP to have the following properties:

(a). Ap (ψP
(b). if A is an S-structure with A (ψP and RsLm0 . . .mn, then A (RsLm0, . . . ,mn.

Let ψ0 be the sentence describing that f, c,ă work as desired.

ψ0 :“ “ă is an ordering"^ @xpc ă x_ c ” xq ^ @xpx ă fxq ^ @x@zpx ă z Ñ pfx ă z _ fx ” zqq

For α “ α0, . . . , αk´1 we define ψα by the following rules:
¨ If α is “L LET Ri “ Ri ` 1” then

ψα “ @x@y0 . . .@ynpRxLy0 . . . yn Ñ RfxL` 1y0 . . . yi´1fyiyi`1 . . . ynq

¨ If α is “L LET Ri “ Ri ´ 1” then

ψα “ @x@y0 . . .@ynpRxLy0 . . . yn Ñ ppyi ” 0^RfxLy0 . . . ynq_p yi ” 0^Dupfu “ yi^RfxL` 1y0 . . . yi´1uyi`1 . . . ynqqqq

¨ If α is “L IF Ri “ l THEN L1 ELSE L0” then

ψα “ @x@y0 . . .@ynpRxLy0 . . . yn Ñ ppyi ” 0^RfxL1y0 . . . ynq _ p yi ” 0^RfxL0y0 . . . ynqqq

¨ If α is “L PRINT” then

ψα “ @x@y0 . . .@ynpRxLy0 . . . yn Ñ RfxL` 1y0 . . . ynq

Let ψP “ ψ0 ^R00 ¨ ¨ ¨ 0^ ψα0 ^ ¨ ¨ ¨ ^ ψαk´1
.

Then ψP satisfies (a). and (b). by induction.
Let ϕP “ ψP Ñ DxDyo . . . DynRxLy0 . . . yn.

Now we claim that ϕP is valid iff P : l Ñ HALT.
Suppose (ϕP .
Then AP (ϕP .
Thus AP (DxDy0 . . . DynRxLy0 . . . yn.

15

So there are s,m0, . . . ,mn P AP such that ps, k,m0, . . . ,mnq P R.
In other words, the program P reaches the halt-configuration after s steps.
Thus P : l Ñ HALT.

Suppose P : l Ñ HALT, so P has a halt-configuration ps, k,m0, . . . ,mnq.
Let A be an arbitrary S-structure.
If A ­(ψP , then A (ϕP , as any result follows from a false statement.
If A (ψP , then by (b). we have A (Rskm0, . . . ,mn.
So A (DxDy0 . . . DynRxky0 . . . yn.
So then A (ϕP .
Since A was arbitrary, ϕP is valid. �

Definition 4.1.8. A set T Ă LS0 is termed a theory iff SatpT q and T is closed under logical consequence,
i.e. T “ tϕ

 T (ϕu. We define associated sets for general Φ Ă LS .

Φ(:“ tϕ P LS
 Φ (ϕu

Φ$:“ tϕ P LS
 Φ $ ϕu

By the completeness theorem, we know that these two sets are equal.

4.2 Axiomatization
Definition 4.2.1. Let ΦPA consist of the following Sar sentences:

@x x` 1 ” 0
@xx` 0 ” x
@xx ¨ 0 ” 0
@x@ypx` 1 ” y ` 1 Ñ x ” yq
@x@yx` py ` 1q ” px` yq ` 1
@x@yxpy ` 1q ” x ¨ y ` x

And for all x1, . . . , xn, y and all ϕ P LSar such that freepϕq Ă tx1, . . . xnu, the sentence

@x1 . . .@xn

´´

ϕ 0
y ^ @y

´

ϕÑ ϕy`1
y

¯¯

Ñ @yϕ
¯

Then ΦPA is termed the set of first-order Peano axioms.

¨ We note that N (ΦPA, or equivalently, Φ(PA Ă ThpNq.

Definition 4.2.2. A theory T is termed R-axiomatizable if there is an R-decidable set Φ such that T “ Φ(.
A theory T is termed finitely axiomatizable if there is a finite set Φ such that T “ Φ(.

Theorem 4.2.3. An R-axiomatizable theory is R-enumerable.

Proof: Let T be a theory.
Let Φ be an R-decidable (or enumerable) set of S-sentences such that T “ Φ(.
Generate systematically all derivable sequents.
Check for each whether the members of the antecedent belong to Φ.
If yes, and the succedent is a sentence, list the succedent. �

Definition 4.2.4. A theory T Ă LS0 is termed complete iff for every S-sentence ϕ we have ϕ P T or ϕ P T .
As a special case, for structures A, the theory ThpAq is always complete.

16

Theorem 4.2.5.
i. Every R-axiomatizable, complete theory is R-decidable.
ii. Every R-enumerable, complete theory is R-decidable.

Proof: (i.) Since R-axiomatizable implies R-enumerable, a proof of ii. will suffice.
(ii.) Execute the enumeration of T until either ϕ or ϕ is enumerated.
If ϕ is enumerated, then ϕ P T .
If ϕ is enumerated, then ϕ R T , since T is satisfiable. �

The folowing two lemmas will be used to prove the subsequent theorem.

Lemma 4.2.6. [β-function lemma]
There is a function β : N3 Ñ N such that

1. for every sequence pa0, . . . , arq over N there are t, p P N such that for all 0 ď i ď r, βpt, p, iq “ ai
2. β is definable in LSar - there is an Sar-formula ϕβpt, p, i, aq such that N (ϕβrt, p, i, as iff βpt, p, iq “ a

Lemma 4.2.7. [χP -lemma]
Given a program P , one may effectively associate to it a formula χP pv0, . . . , v2n`2q such that for all
`0, . . . , `n, L,m0, . . . ,mn P N we have N (χP r`o, . . . , `n, L,m0, . . . ,mns iff P , beginning with the config-
uration p0, `0, . . . , `nq after finitely many steps reaches the configuration pL,m0, . . . ,mnq.

Proof: We would like χP px0, . . . , xn, z, y0, . . . , ynq to formalize the folowing:
$

’

’

’

’

’

’

’

’

’

’

%

There is s P N and a sequence of configurations pciqsi“0 such that:
c0 “ p0, x0, . . . , xnq
cs “ pz, y0, . . . , ynq

and for all 0 ď i ă s, we have ci
P
ÝÝÑ ci`1

,

/

/

/

/

/

/

/

/

/

/

-

Equivalently this may be stated as:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

There is s P N and a sequence
a0, . . . , an`1
loooooomoooooon

c0

, an`2, . . . , apn`2q`pn`1q
looooooooooooomooooooooooooon

c1

, , aspn`2q, . . . , aspn`2q`pn`1q
loooooooooooooooomoooooooooooooooon

cs

such that
a0 “ 0, a1 “ x0, . . . , an`1 “ xn, , aspn`2q “ z, aspn`2q`1 “ y0, . . . , aspn`2q`pn`1q “ yn

and for all 0 ď i ă s,
`

aipn`1q, . . . , aipn`2q`pn`1q

˘ P
ÝÝÑ

`

api`1qpn`1q, . . . , api`1qpn`2q`pn`1q

˘

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Using β from above, we complete the construction by setting

χP px0, . . . , xn, z, y0, . . . , ynq “ DsDpDt
´

ϕβpt, p, 0, 0q ^ ϕβpt, p, 1, x0q ^ ¨ ¨ ¨ ^ ϕβpt, p, n` 1xnq ^ ϕβpt, p, spn` 2q, zq ^ ¨ ¨ ¨

¨ ¨ ¨ ^ ϕβpt, p, spn` 2q ` pn` 1q, ynq
˘

^ @i
´

i ă sÑ @u@u0 ¨ ¨ ¨ @un@u
1@u10 ¨ ¨ ¨ @u

1
n

´

ϕβpt, p, ipn` 2q, uq ^ ¨ ¨ ¨

¨ ¨ ¨ ^ ϕβpt, p, ipn` 2q ` pn` 1q, unq ^ ϕβpt, p, pi` 1qpn` 2q, u1q ^ ¨ ¨ ¨

¨ ¨ ¨ ^ ϕβpt, p, pi` 1qpn` 2q ` pn` 1q, u1nq Ñ "pu, u0, . . . , unq
P
ÝÝÑ pu1, u10, . . . , u

1
nq"

¯¯

�

Theorem 4.2.8. ThpNq (commonly termed arithmetic) is not R-decidable.

17

Proof: We effectively assign to every register program P over A “ t1u an Sar-sentence ϕP .
This ϕP is such that N (ϕP iff P : l Ñ HALT.
Then ThpNq will be undecidable, since ΠHALT is undecidable.
As before, given P , we may compute its list of instructions α0, . . . , αk (for only αk the HALT-instruction),

and n the least number such that all registers by P used are among R0, . . . , Rn.
Using the χP -lemma, we have χP that describes how P operates, and we set

ϕP “ Dv0 . . . DvnχP p 0, . . . , 0
loomoon

n`1 zeros

, k, v0, . . . , vnq

Then we will have that

N (ϕP iff N (χP r0, . . . , 0, k,m0, . . . ,mns for some m0, . . . ,mn P N
iff P beginning with the configuration p0, . . . , 0q after finitely many steps

reaches configuration pk,m0, . . . ,mnq

iff P : l Ñ HALT

This completes the proof. �

Corollary 4.2.9. Arithmetic is neither R-axiomatizable nor R-enumerable. Therefore, with respect to a
previous statement, Φ(PA Ĺ Th(Nq.

4.3 Representation
Theorem 4.3.1.

i. Given an n-ary decidable relation R over N, there exists an Sar-formula ϕpv0, . . . , vn´1q such that for
all `0, . . . , `n´1 P N

R`0 . . . `n´1 iff N (ϕ
“

`0, . . . , `n´1

‰

ii. Given an n-ary computable function f : N Ñ N, there is an Sar-formula ϕpv0, . . . , vnq such that for
all p`0, . . . , `nq

fp`0, . . . , `n´1q “ `n iff N (ϕ
“

`0, . . . `n
‰

Proof: The required functions are conjunctions of χP at each stage of a program P that decides R (and f). �

Definition 4.3.2. Let Φ Ă LSar0 . An r-ary relation R on N is termed representable in Φ iff there is an
Sar-formula ϕpv0, . . . , vr´1q such that for all n0, . . . nr´1 P N

if Rn0 . . . nr´1, then Φ $ ϕr n0, . . . , nr´1 s

if Rn0 . . . nr´1, then Φ $ ϕr n0, . . . , nr´1 s.

In this case, we say that ϕ represents R in Φ.

Definition 4.3.3. An r-ary function f on N is termed representable in Φ Ă LSar0 iff there is an Sar-formula
ϕpv0, . . . , vrq such that for all n0, . . . , nr P N, then

if fpn0, . . . , nr´1q “ nr, then Φ $ ϕr n0, . . . , nr s
if fpn0, . . . , nr´1q ‰ nr, then Φ $ ϕr n0, . . . , nr s

In this case, we say that ϕ represents f in Φ.

Remark 4.3.4. If Φ “ ThpNq, then we call the set of representable functions and relations in Φ arithmetic.

18

Lemma 4.3.5.
i. If Φ is inconsistent, then every function and relation over N is representable in Φ.
ii. If Φ Ă Φ1 Ă LSar0 , then all functions and relations representable in Φ are representable in Φ1.
iii. Let Φ be consistent. If Φ is R-decidable, then every relation representable in Φ is R-decidable, and

every function representable in Φ is R-computable.

Definition 4.3.6. Let φ Ă LSarr . Then Φ allows representations if all R-decidable relations and all R-
computable functions over N are representable in Φ.

Theorem 4.3.7. ThpNq allows representations.

Theorem 4.3.8. ΦPA allows representations.

4.4 Incompleteness
Definition 4.4.1. Let S be a symbol set. If LS is enumerable, then we define the Godel number of some
S-formula ϕ to be the position that ϕ appears in in some numbering of LS , and denote it by nϕ.

Theorem 4.4.2. [Fixed point theorem]
Suppose that Φ allows representations. Then for every ψ P LSar1 there is a ϕ P LSar0 such that Φ $ ϕØ ψpnϕq.

Proof: Suppose that Φ allows representations and ψ P LSar1 .
Define a computable function F : N2 Ñ N by

F pn,mq “

"

nχpmq if n “ nχ for some χ P LSar1

0 else

Thus we have that if χ P LSar1 , then F pnχ,mq “ nχpmq.
Since Φ allows representations, there is an α P LSar3 such that for all m,n, k P N,

F pn,mq “ k ùñ Φ $ αpn,m, kq
F pn,mq ‰ k ùñ Φ $ αpn,m, kq

Let βpxq “ @zpαpx, x, zq Ñ ψpzqq and let ϕ “ βpnβq “ @zpαpnβ , nβ , zq Ñ ψpzqq.
We claim that Φ $ ϕØ ψpnϕq.
Proof of claim: Note that β P LSar1 , so F pnβ , nβq “ nβpnβq.

However, βpnβq “ ϕ, so F pnβ , nβq “ nϕ.
Thus Φ $ αpnβ , nβ , nϕq. By definition of ϕ, we have ΦY tϕu $ αpnβ , nβ , nϕq Ñ ψpnϕq.
Therefore Φ $ ϕÑ ψpnϕq.

By above, Φ $ D“1zαpnβ , nβ , zq and so Φ $ @zpαpnβ , nβ , zq Ñ z “ nϕq.
Thus Φ $ ψpnϕq Ñ p@zpαpnβ , nβ , zq Ñ ψpzqqq.
Therefore Φ $ ψpnϕq Ñ ϕ. �

Lemma 4.4.3. Suppose that Φ is consistent and allows representations. Then Φ$ is not representable in
Φ.

Proof: Suppose that χpvq represents Φ$ in Φ.
Then for any n P N,

n P Φ$ ùñ Φ $ χpnq

n R Φ$ ùñ Φ $ χpnq

In particular, if α P LSar1 , then

Φ $ α ùñ Φ $ χpnαq

Φ ­$ α ùñ Φ $ χpnαq

19

Since Φ is consistent, we must have that Φ ­$ α iff Φ $ χpnαq.
By the fixed point theorem applied to χ and Φ, there exists ϕ P LSar0 such that Φ $ ϕØ χpnϕq.
But then Φ $ ϕ iff χpnϕq iff Φ ­$ ϕ.
This is a contradiction.
Hence Φ$ is not representable in Φ. �

Theorem 4.4.4. [Tarski]
1. Suppose that Φ is consistent and allows representations. Then Φ(is not representable in Φ.
2. ThpNq is not representable in ThpNq.

Proof: (1.) By completeness, Φ$ “ Φ(.

(2.) ThpNq allows representations, and ThpNq$ “ ThpNq.
Apply the above theorem. �

Consider Φ Ă LSar0 decidable and allowing representations. Let us fix an enumeration of all Sar deriva-
tions, i.e. all sequents in the derivation calculus of Sar. Define a binary relation H by

Hnm ðñ

ˆ

the mth derivation ends with a sequent ψ0 . . . ψk´1ϕ with ψi P Φ @ i and n “ nϕ

˙

Since Φ is decidable, H is decidable, and Φ $ ϕ iff there is an m P N such that Hnϕm. Since Φ allows
representations, there is some ϕHpx, yq P LSar2 that represents H in Φ. Then we define

DerΦpxq :“ DyϕHpx, yq ConsisΦ :“ DerΦpn 0”0q

With these formulae we may encode the derivability of a formula and the consistency of a set. They will be
also used to prove the theorems below. So if x is the Godel number of some formula χ, then

ˆ

Φ derives χ

˙

iff
ˆ

Φ $ χ

˙

iff
ˆ

Φ $ DerΦpxq
˙

ˆ

Φ is consistent
˙

iff
ˆ

Φ $ ϕ iff not Φ $ ϕ

˙

iff
ˆ

Φ $ ConsisΦ
˙

Theorem 4.4.5. [First incompleteness - Godel]
Suppose that Φ is consistent, R-decidable, and allows representations. Then there is an Sar-sentence ϕ such
that neither Φ $ ϕ nor Φ $ ϕ.

Proof: Assume no such ϕ exists.
Then Φ$ is complete.
So Φ$ is consistent and R-enumerable, hence R-decidable.
Since Φ allows representations, Φ$ is not representable by Tarski.
This is a contradiction.
Hence such a ϕ exists. �

¨ For the followng lemma, we choose DerΦpv0q P L
Sar
1 , so then by the fixed point theroem we can find

ϕ P LSar0 such that Φ $ ϕØ DerΦpnϕq.

Lemma 4.4.6. If Φ is consistent, then not Φ $ ϕ.

Proof: Suppose Φ (ϕ.
Let m be such that Hnϕm.
Then Φ $ ϕHpnϕ,mq, so Φ $ DerΦpnϕq.
But Φ $ ϕØ DerΦpnϕq, so Φ $ DerΦpnϕq.

20

Therefore Φ is inconsistent. �

¨ It is technically tedious, but possible, to show that, with ϕ as above,

Φ $ ConsisΦ Ñ DerΦpnϕq

Theorem 4.4.7. [Second incompleteness - Godel]
Suppose that Φ Ą ΦPA is consistent and R-decidable. Then not Φ $ ConsisΦ.

Proof: Suppose that Φ $ ConsisΦ.
Then Φ $ DerΦpnϕq.
Since ϕ was a fixed point (i.e. Φ $ ϕØ DerΦpnϕq), we have that Φ $ ϕ.
Then by the above lemma, Φ is inconsistent. �

5 Elementary equivalence revisited

5.1 Partial and finite isomorphisms
Definition 5.1.1. Let A and B be S-structures. A map p : A Ñ B is termed a partial isomorphism from
A to B if the following conditions are satisfied:

1. p is an injective homomorphism
2. for every n-ary R P S and a1, . . . , an P A, we have RAa1 . . . an iff RBppa1q . . . ppanq
3. for every n-ary f P S and a, a1, . . . , an P A, we have fApa1, . . . , anq “ a iff fBpppa1q, . . . , ppanqq “ ppaq
4. for c P S and a P domppq, we have cA “ a iff cB “ ppaq

The set of all such isomorphisms is denoted by

PartpA,Bq :“ tp
 p : AÑ B is a partial isomorphism from A to Bu

Note that the empty map, as well as any restriction of a (partial) isomorphism is a partial isomorphism.

Remark 5.1.2. If S is relational, then for a1, . . . , ar P A and b1, . . . , br P B, equivalently
1. By setting ppaiq “ bi the function p determines a partial isomorphism from A to B
2. For every ϕ P LSr atomic, A (ϕra1, . . . , ars iff B (ϕrb0, . . . , brs

Proof: (1.ñ 2.) Suppose R P S is n-ary for tai1 , . . . , ainu Ă ta1, . . . , aru and R “ Rai1 . . . ain , so

A (Rra1, . . . ars iff pai1 , . . . , ainq P R
A

iff pppai1q, . . . , ppainqq P R
B

iff pbi1 , . . . , binq P R
B

iff B (Rrbi1 , . . . , bins

A (vi ” vjra0, . . . , ar´1s iff ai “ aj

iff ppaiq “ ppajq

iff bi “ bj

iff B (vi ” vjrb0, . . . , br´1s

(2.ñ 1.) Here we use injectivity.
Consider vi “ vj , so then

ai “ aj iff A (vi ” vjra0, . . . , ar´1s

iff B (vi ” vjrb0, . . . , br´1s

iff bi “ bj

21

�

Definition 5.1.3. Given maps p, q, we say that q is an extension of p iff domppq Ă dompqq and q|domppq “ p.
This relationship is expressed as p Ă q.

Definition 5.1.4. Two S-structures A,B are termed finitely isomorphic iff there exists a sequence pInq8n“1

such that every In is a non-empty set of partial isomorphisms from A to B satisfying

Forth-property: For every p P In`1 and a P A, there is q P In such that p Ă q and a P dompqq
Back-property: For every p P In`1 and b P B, there is q P In such that p Ă q and b P rangepqq

For such a sequence, we write pInq8n“1 : A –f B.

Definition 5.1.5. Two S-structures A,B are termed partially isomorphic if there exists I Ă PartpA,Bq
non-empty such that

1. for all a P A and p P I there is q P I with p Ă q and a P dompqq
2. for all b P B and p P I there is q P I with p Ă q and b P rangepqq

This relationship is expressed as A –p B.

Lemma 5.1.6.
1. If A – B, then A –p B.
2. If A –p B, then A –f B.
3. If A –f B and A is finite, then A – B.
4. If A –p B and A,B are at most countable, then A – B.

Proof: (1.) If π : A – B, then I : A –p B for I “ tπu.

(2.) If I : A –p B, then pInq8n“1 : A –f B for In “ I for all n.

(3.) Suppose that pInq8n“1 : A –f B and A “ ta1, . . . , aru.
Choose p0 P Ir`1.
Then for 0 ď i ď r, given pi P Ir`1´i, choose pi`1 P Ir´i such that pi Ă pi`1 and ai`1 P domppi`1q.
Now pr P I1 is a partial isomorphism from A to B with dompprq “ A.
So to show pr : AÑ B, it suffices to show rangepprq “ B.
Suppose there exists b P B with b R rangepprq.
Then there exists pr`1 P I1 with b P rangeppr`1q.
This is a contradiction, as dompAq “ A and pr`1 is injective.

(4.) If A or B are finite, the result follows from (2.) and (3.).
So suppose that A “ ta0, a1, . . . u and B “ tb0, b1, . . . u.
Choose p0 P I1.
For i “ 2r ` 1, choose pi P I with pi´1 Ă pi and ar P domppiq.
For i “ 2r ` 2, choose pi P I with pi´1 Ă pi and br P rangeppiq.
Then p “

Ť8

n“1 pn is an isomorphism from A to B. �

5.2 Dense orderings
Definition 5.2.1. A dense ordering is a set of formulae Φ that satisfy the following sentences.

@x x ă x
@x@y@zppx ă y ^ y ă zq Ñ x ă zq
@x@ypx ă y _ x ” y _ y ă xq
@x@ypx ă y Ñ Dzpx ă z ^ z ă yqq
@xDyx ă y
@xDyy ă x

22

This set of sentences is denoted by Φdord.

Theorem 5.2.2. Any two countable dense orderings without endpoints are isomorphic. That is, a dense
ordering without endpoints is a model of Φdord.

Proof: By the previous lemma, it suffices to show that any two countable dense linear orderings are partially
isomorphic.

Set A “ pA,ăAq and B “ pB,ăBq be countable dense linear orderings.
Claim: I : A –p B for I “ tp

 p P partpA,Bq and domppq is finiteu.
Proof of claim: Since p “ H P I, I ‰ H.
First we check that it satisfies the forth property.
For p P I, suppose domppq “ ta1, . . . , anu.
Note that A puts an order on a1, . . . , an, which is equivalent to the ordering thatB puts on ppa1q, . . . , ppanq.
So for a P A, A determines where a is relative to a1, . . . , an,
Since B is dense, there is some b P B with the same position, but with respect to ppa1q, . . . , ppanq.
So pY tpa, bqu is a finito partial isomorphism extending p with a in its domain.
The back property is proved similarly.

Since we have a partial isomorphism, we have an isomorphism. �

Definition 5.2.3. A successor ordering is a set of formulae Φ that satisfy the following sentences.

@xp x ” 0 Ø Dyσy ” xq
@x@ypσx ” σy Ñ x ” yq
@x σx ” x
@x σσx ” x
@x σσσx ” x

...

This set of sentences is denoted by Φσ, where σ is the successor function. For shorthand notation, for a P A
of A a successor structure, we let

apnq :“ σA ¨ ¨ ¨σA
loooomoooon

n times

a

Proposition 5.2.4. Any two models of Φσ are finitely isomorphic.

Proof: For every n P N, define a function dn by

dn : AˆA Ñ NY t0u

pa, a1q ÞÑ

$

’

&

’

%

m if apmq ” a1 and m ď 2n

´m if a1pmq ” a and m ď 2n

8 else

Suppose that A and B are models of Φ.
We will show that pInq8n“1 : A –f B for

In “ tp P partpA,Bq
 |domppq| ă 8, 0A P domppq, dnpa, a1q “ dnpppaq, ppa

1qq @ a, a1 P domppqu

We note that In ‰ H, as p0A, 0Bq P In.
Forth property: Suppose p P In`1 and a P A.

Case 1: There is an a1 P domppq such that dnpa, a1q ď 2n.
In this case, choose b P B such that dnpppa1q, bq “ dnpa

1, aq.

23

Let q “ pY pa, bq.
Since p P In`1, q is an isomorphism preserving distances.

Case 2: There is no such a1.
Choose b such that dnpppa1q, bq “ 8 for all a1 P domppq.
Let q “ pY pa, bq.

The back prorperty is done in a symmetrical fashion. �

Lemma 5.2.5. For a theory T Ă LS0 , the following are equivalent.
1. T is complete
2. Any two models of T are elementarily equivalent.

Proof: (1.ñ2.) Let A,B be models of T with ϕ P LS0 .
Then either ϕ P T or ϕ P T .
If ϕ P T , then A (ϕ and B (ϕ, or else A ­(ϕ and B ­(ϕ.
Therefore A ” B.

(2.ñ1.) Let ϕ P LS0 and suppose A (T .
If A (ϕ, then B (ϕ for all models B of T , and so ϕ P T .
If A ­(ϕ, then A (ϕ and B (ϕ for all models B of T , and so ϕ P T .
Therefore T is complete. �

Proposition 5.2.6.
1. The theory Φ(dord of dense orderings is complete and R-decidable.
2. The theory Φ(σ of successor structures is complete and R-decidable.

Definition 5.2.7. For a formula ϕ, define the quantifier rank to be a function that enumerates the makimum
number of nested quantifiers in ϕ.

qrpϕq :“ 0 if ϕ is atomic
qrp ϕq :“ qrpϕq

qrpϕ_ ψq :“ maxtqrpϕq, qrpψqu
qrpDxϕq :“ qrpϕq ` 1

Lemma 5.2.8. Let pInq8n“1 : A –f B. Then for every formula ϕ, if ϕ P LSr and qrpϕq ď n with p P In so
that a0, . . . , ar´1 P domppq, then A (ϕra0, . . . ar´1s iff B (ϕrppa0q, . . . , ppar´1qs.

Proof: This will be done by induction on formulae.

(i.) For ϕ atomic, this is a restatement of a remark proved earlier.

(ii.) If ϕ “ ψ for ϕ P LSr with qrpϕq ď n, and the result holds for ψ and p P In with a0, . . . , ar´1 P

domppq, then

A (ϕra0, . . . , ar´1s iff A ­(ψra0, . . . , ar´1s

iff B ­(ψrppa0q, . . . , ppar´1qs

iff B (ϕrppa0q, . . . , ppar´1qs

(iii.) If ϕ “ ψ0 _ ψ1, then qrpψ0q, qrpψ1q ď qrpϕq ď n.
The rest of this part is straightforward.

(iv.) Suppose ϕ “ Dxψ and ϕ P LSr with qrpϕq ď n, and the result holds for ψ and p P In with
a0, . . . , ar´1 P domppq.

24

By the coincidence lemma, we may assume WLOG that ϕ “ Dvrψ.
Now note that qrpψq ď n´ 1, so then

A (ϕra0, . . . , ar´1s iff Da P A such that A (ψra0, . . . , ar´1, as

iff Da P A, q P In´1, q Ą p, a P dompqq, A (ψra0, . . . , ar´1, as

iff Da P A, q P In´1, q Ą p, B (ψrppa0q, . . . , ppar´1q, qpaqs

iff Db P B, q P In´1, b P rangepqq, B (ψrppa0q, . . . , ppar´1q, bs

iff B (ϕrppa0q, . . . , ppar´1qs

�

Definition 5.2.9. For a symbol set S, define Φr :“ tϕ P LSr
 ϕ is atomic or negated atomicu. This set is

finite for all r.

Definition 5.2.10. We introduce some notation to help out with the proof of Fraisse’s theorem.
¨ For an r-tuple pa0, . . . , ar´1q P A

r, we write
r
a.

¨ Let A,B be S-structures with
r
a P Ar and

r

b P Br. Then we write

r
a Ñ

r

b P PartpA,Bq iff ppaiq “ bi for i ď r defines a partial isomorphism from A to B

¨ Define formulae ϕn
B,

r

b
P LSr such that

B (ϕn
B,

r

b
r
r

bs and if A (ϕn
B,

r

b
r
r
as

then
r
a Ñ

r

b P PartpA,Bq which may be extended back and forth n times

These formulae are formally defined by induction on n as below, given B. The above is shown in the proof
of Fraisse. We again use shorthand below, by letting

r

b b “ pb0, . . . , br´1, bq.

ϕ0

B,
r

b
“
ľ

tϕ P Φr
 B (ϕr

r

bsu

ϕn`1

B,
r

b
“ @vr

ł

tϕn
B,

r

bb

 b P Bu ^
ľ

tDvrϕ
n

B,
r

bb

 b P Bu

Since each Φr is finite, it follows by induction on n that the following set is finite.
"

ϕn
B,

r

b
is an S-sentence and

r

b P B

*

Thus the conjunctions and disjunctions are finite, so ϕn
B,

r

b
P LSr .

Lemma 5.2.11.
i. ϕn

B,
r

b
P LSr and qr

ˆ

ϕn
B,

r

b

˙

“ n

ii. B (ϕn
B,

r

b
r
r

bs

Proof: (i.) This is clear by induction on n.

(ii.) For n “ 0, this is immediate.
Suppose this holds for n and for all r.
Then for all

r

b, b1 P B, we have that B (ϕn
B,

r

bb1
r
r

b, b1s.

25

So for all b1 P B, B (
Ž

tϕn
B,

r

bb

 b P Bur
r

b, b1s and B (Dvrϕ
n

B,
r

bb1
r
r

bs.

So B (@vr
Ž

tϕn
B,

r

bb

 b P Bur
r

bs and B (
Ź

tDvrϕ
n

B,
r

bb1

 b P Bur
r

bs.

Therefore B (ϕn`1

B,
r

b
r
r

bs. �

Theorem 5.2.12. [Fraisse]
Let S be a finite symbol set and A,B be S-structures. Then A ” B iff A –f B.

Proof: By a previous theorem, it suffices to prove the satement for relational symbol sets.
pðq From the above lemma, if A –f B, then for all ϕ P LS0 , A (ϕ iff B (ϕ.
Therefore A ” B.

pñq Let A be an S-structure such that A ” B.
Claim: If A (ϕn

B,
r

b
r
r
as, then

r
a Ñ

r

b P PartpA,Bq.

We prove this claim by induction on n.
Suppose that A (ϕ0

B,
r

b
r
r
as.

Then for every atomic ψ P LSr , A (ψr
r
as iff B (ψr

r

bs.
Then

r
a Ñ

r

b P PartpA,Bq by the old remark.
Suppose the result holds for n ě 1 and A (ϕn`1

B,
r

b
r
r
as.

Fix any a P A.
Since A (@vr

Ž

tϕn
B,

r

b

 b P Bur
r
as, there is b P B such that A (ϕn

B,
r

bb
r
r
a, as.

Then by the induction hypothesis,
r
a a Ñ

r

b b P PartpA,Bq, and so
r
a Ñ

r

b P PartpA,Bq.

For S-structures A,B and n P N, let

Jn :“

"

r
a Ñ

r

b
 r P N, r

a P Ar,
r

b P B
r, A (ϕn

B,
r

b
r
r
as

*

Then we claim that:
(a) Jn Ă PartpA,Bq
(b) pJnqnPN has back and forth properties

(c) if n ą 0 and A (ϕnB

ˆ

“ ϕn
B,

0

b

˙

, then H P Jn, hence Jn ‰ H.

For (a), this was the previous claim.

For (b), let us first check the forth property.
Suppose that p “

r
a Ñ

r

b P Jn`1 and a P A.
Then A (ϕn`1

B,
r

b
r
r
as, so A (@vr

Ž

tϕN
B,

r

bb

 b P Bur
r
as.

So there is some b P B such that A (ϕn
B,

r

bb
r
r
a, as.

So
r
a aÑ

r

b b P Jn and extends p to a.

Now let us check the back property.
Suppose that p “

r
a Ñ

r

b P Jn`1 and b P B.
Since A (

Ź

tDvrϕ
n

B,
r

bb

 b P Bur
r
as, there is a P A such that A (ϕn

B,
r

bb
r
r
a as.

That is,
r
a aÑ

r

b b P Jn with b in its range.

For (c), suppose that A ” B.
If n ą 0, then B (ϕnB, so as A (ϕnB, clearly Jn ‰ H.

26

This proves the claims.
Therefore pJnqnPN : A –f B. �

Fraisse’s theorem implies that any two dense linear orderings are elementarily equivalent S-structures.

6 Computability

6.1 Turing machines
Definition 6.1.1. A Turing machine is a finite program with finitely many states that has access to a
read-only (oracle) and a read-write (work) infinite tape.

Definition 6.1.2. A Turing program is a finite list of instructions of the form

qiXY qjZD1D2

where qi, qj are states, X,Y, Z P t0, 1u and D1, D2 P tL,Ru.

Example 6.1.3. Suppose that a Turing machine is in state qi and is reading X on the oracle tape and Y
on the work tape, and if qiXY qjZD1D2 is an instruction in the program, then the following programs add
1.

q101q21RL

q200q01RL

Proposition 6.1.4. We can effectively list all the Turing programs.

Let P0, P1, . . . be such a list. To each program Pi we associate a partial function ϕi as follows:

¨ If Pi started with n` 1 1’s on the work tape, nothing on the oracle tape, with the work tape reading
head at the left-most 1 and in state q1, eventually reaches a halting state q0, then we write ϕipnq Ó, and let
ϕipnq be the number of 1’s on the work tape.

¨ If Pi started on input n and never halts, we write ϕipnq Ò.

Definition 6.1.5. A set A Ă N is termed computable iff there is i P N such that χA “ ϕi, where χ is the
traditional characteristic function.

Definition 6.1.6. A set A Ă N is termed computably enumerable iff there is i P N such that Wi “

dompϕiq “ tn
 ϕipnq Óu “ A.

¨ Now we have W0,W1, . . . as an effective listing of all uniqe c.e. sets.

Definition 6.1.7. A function f : NÑ N is termed partial computable iff there is i P N such that f “ ϕi.
¨ f is computable iff it is partial computable and dompϕiq “ N for the same i
¨ f is total iff it is defined for all input values

So as to alleviate tedious proofs, we accept Church’s thesis for Turing machines.

Definition 6.1.8. For s, x, y P N, we write ϕe,spxq “ y (and ϕe,spxq Ó) iff program Pe started with input x
and empty oracle tape, halts within s steps and outputs y. If after s steps this program has not halted, we
write ϕe,spxq Ò.

Definition 6.1.9. Define the standard pairing function (which is injective) by

x , y : Nˆ N Ñ N
px, yq ÞÑ 1

2 px
2 ` 2xy ` y2 ` 3x` yq

Then a binary relation R is termed computable iff txx, yy
 px, yq P Ru is computable.

27

Definition 6.1.10. We write that A Ă Σ1 (and say “A is Σ1") iff there is a computable relation Rpx, yq
such that for all k P N, x P A iff there is y P N such that Rpx, yq.

Theorem 6.1.11. A set A is c.e. iff A is Σ1.

Proof: pñq If A “We, then x P A iff x PWe iff there is s such that x PWe,s.
So A is Σ1.

pðq If A is Σ1, then there is a computable relation Rpx, yq such that x P A iff there exists y such that
Rpx, yq,

Consider the program P that on input x asks, for each y P N in turn, whether px, yq P R and halts with
output y for the first y with affirmative response.

Since R is computable, by Church’s thesis there is an index e such that P “ Pe, so A “We.
That is, A is c.e. �

Theorem 6.1.12. A non-empty set A is c.e. iff it is the range of a computable function.

Proof: pðq Suppose A “ rangepfq for f computable.
Then n P A iff there is an x such that fpxq “ n, so A is Σ1, and hence c.e.

pñq Suppose A “We is non-epmty.
For a P A, define fpxx, syq “

x xPWe,s

a else
Then f is computable and has range A. �

Theorem 6.1.13. There is no effective listing of the computable functions.

Proof: Suppose that f0, f1, . . . is an effective listing.
Then gpnq “ fnpnq ` 1 would be computable.
But g ‰ fn for any n, so such a list cannot exist. �

Definition 6.1.14. Define the following sets:

K “ te
 ϕepeq Óu

K0 “ txe, ny
 ϕepnq Óu

Theorem 6.1.15. K is not computable

Proof: If K were computable, so would gpxq “
!

ϕxpxq`1 xPK
0 else

So g “ ϕe for some e, and g is total.
Then ϕepeq Ó, so ϕepeq “ gpeq “ ϕepeq ` 1, a contradiction. �

Corollary 6.1.16. K0 is not computable.

Definition 6.1.17. For sets A,B, we write A ďm B (and say “A is many-one reducable to B") iff there is
a computable function f such that x P A iff fpxq P B. In the case where such a function f is injective, we
write A ď1 B (and say “A is one-reducable to B).

Therefore we have that K ďm K0.

Theorem 6.1.18.
1. If A ďm B and B is computable, then A is computable.
2. If A ďm B and B is c.e., then A is c.e.

28

Proof: Suppose that A ďm B via a function f .
(1.) Suppose that B is computable. To compute whether x P A, first compute fpxq, then compute

whether fpxq P B.

(2.) If B is c.e., then B “We for some e.
So x P A iff fpxq PWe iff there is s such that fpxq PWe,s.
So B is Σ1, therefore c.e. �

Theorem 6.1.19. [s´m´ n theorem]
If Ψpx, yq is a partial computable function on two variables, then there exists an injective function f such
that Ψpx, yq “ ϕfpxqpyq

¨ This theorem shows that K0 ďm K.

Definition 6.1.20. The sets K and K0 are termed complete, that is, they are able to uniformly compute
any c.e. set.

6.2 Turing reducibility
Note that if A is a non-computable c.e. set, then A ­ďm A, which complicates things. Turing reducibility
circumvents this difficulty.

Definition 6.2.1. For sets A,B, we write A ďT B iff there is a Turing program Pe such that if B is on the
oracle tape and Pe started on input n (i.e. n` 1 on work tape) and halts after finitely many steps with

1 on work tape if n P A
0 on tape if n R A

Then we write ΦBe “ A.

Remark 6.2.2. If program Pe with oracle B started with input x and halts after s steps with y on the work
tape, then we write ΦBe,spxq “ y (and ΦBe pxq Ó). Therefore if ΦBe pxq “ y then there is some finite segment
(convex set) σ Ă B such that Φσe pxq Ó also.

Definition 6.2.3. For a set A Ă N, define the jump of A by

A1 :“ tx
 ΦAx pxq Óu

We say that a y is A1-computable iff y P A1, or equivalently, that A computes y.

Proposition 6.2.4. [Properties of the jump]
1. A1 is c.e. in A
2. A ăT A1
3. If B is c.e. in A, then B Ă A1

4. If B ďT A, then B1 ďT A1

Definition 6.2.5. If H ďT A ď H
2 and A1 ”T H1, then we say that A is low. If A ďT H1 and A1 ”T H2,

then we say that A is high.

Remark 6.2.6. Note that all computable sets are low. Also, if A ”T H1, then A is high.

29

6.3 Special non-computable sets
First we wish to construct a low set that is not computable. We will build this set A in stages by finite
binary strings αs, and ultimately A “

Ť

stαu.

At each stage s` 1 we wil have αs`1 Ą αs. Then A will not be computable, but will be H1-computable
- to compute whether x P A, we will run the construction using an H-oracle until a stage s for which x P
dompαsq, so then x P A iff αspxq “ 1.

As we build A, we must meet for each e P N the requirement Re : A ‰ ϕe, which will ensure that A is
not computable - it will be met at stage 2e ` 2 of the construction. And in order to make A low, we will
ensure that at stage 2e ` 1, it will be decided whether or not ΦAe peq Ó. Since the construction will be H1
computable, this will ensure that A1 ďT H.

Theorem 6.3.1. There exists a low set A that is not computable.

Proof: Construct the set A in the following manner:
Stage 0: Let α0 “ l.

Stage s` 1 “ 2e` 1: Given αs, put to the oracle the question DσDt
`

σ Ą αs ^ Φσe,tpeq Ó
˘

.
As it is a Σ1-question, we can effectively find the appropriate location to check the H1-oracle.
If we find 1, set αs`1 “ σ.
If we find 0, set αs`1 “ αs " 0, where " indicates string concatenation.

Stage s` 1 “ 2e` 2: For n “ |αs|, put to the oracle the question Dt pϕe,tpnq Ó ^ϕe,tpnq ” 0q.
Similarly to above, we can effectively find the appropriate location to check the H1-oracle.
If we find 1, set αs`1 “ αs " 1.
If we find 0, set αs`1 “ αs " 0.

Let A “
Ť

stαsu.
Since the construction is H1-computable, we have that A ďT H.

The set A is low because H1 computes at stage s` 1 “ 2e` 1 if e P A1, i.e. if ΦAe peq Ó.
If the answer to DσDt

`

σ Ą αs ^ Φσe,tpeq Ó
˘

was "yes", then e P A1, since Φ
αs`1

e,t peq Ó, and αs`1 P A
1.

If the answer was "no", then e R A1.
Indeed, e P A1 implies there exists τ Ă A and t P A such that Φτe,tpeq Ó.
Let σ be such that σ Ą τ, αs, then this σ and t would show that the answer would have been "yes".

The set A is not computable.
Assume for contradiction that A “ ϕe for some e, and consider step s` 1 “ 2e` 2 with n “ |αs|.

If ϕepnq “ 0, then there exists t such that ϕe,tpnq “ 0, so Apnq “ αs`1pnq “ 1 ‰ 0.
If ϕepnq “ 1, then it is not the case that there exists t such that ϕe,tpnq “ 0, so Apnq “ αs`1 “ 0 ‰ 1.

So ϕe ‰ A. �

Definition 6.3.2. Given a set X Ă N and n P N, define the following set:

X æ n :“ tx P X
 x ă nu

Lemma 6.3.3. [Limit lemma]
A total function g : NÑ N is H1-computable iff there exists a computable function f : NˆNÑ N such that
for all x P N, gpxq “ lim

sÑ8
rfpx, sqs.

Proof: pðq Suppose that gpxq “ lim
sÑ8

rfpx, sqs for f computable.
Then H1 can compute gpxq as follows:

30

For each s, put to H1 the question Dtpt ą s^ fpx, tq ı fpx, sqq.
Since gpxq “ lim

sÑ8
rfpx, sqs, there must be some s for which the answer is "no".

So after finitely many steps, H1 will find such an s, and know that gpxq “ fpx, sq.

pñq Suppose that g ďT H1.
Then g “ ΦKe for some e.
Let tKsusPW be an enumeration of K.
Define a function f by

fpx, sq “

#

ΦKse,spxq if it is defined
0 else

Note that ΦKse,spxq is computable, as it is bounded by s steps.
Since gpxq “ ΦKe pxq, there is some initial segment σ Ă K and some t0 such that gpxq “ Φσe,t0pxq.
Since tKsu is a c.e. approximation to K, there is a stage t1 such that Kt1 æ |σ| “ K æ |σ|.
Let s “ maxtt0, t1u.
Then ΦKse,spxq “ ΦKe pxq “ gpxq, and ΦKse,spxq Ó.
So fpx, sq “ gpxq. �

Definition 6.3.4. If ΦXe,spnq Ó for some Turing program Pe at s steps, we call the largest number of X on
the oracle tape that was queried the use of the computation.

Definition 6.3.5. Define the following set, for e P N.

Xres :“ txe, xy
 x P Xu

Next we wish to construct a low c.e. set that is not computable. We will build A in steps, such that
As`1 Ą As, and A “ lim

sÑ8
rAss. In the end A will satisfy the following conditions for all e P N.

for non-computability Pe : A ‰ ϕe
for being low Ne : D8s

`

ΦAe,speq ÓÑ ΦAe peq Ó
˘

When A will meet all of Ne, we will use an auxiliary function fpe, sq “ 1 whenever ΦAse,speq Ó and 0
otherwise, so that A1peq “ lim

sÑ8
rfpe, sqs. Then we will have that A1 is limit computable, and so A1 ďT H1.

Theorem 6.3.6. There exists a low c.e. set A that is not computable.

Proof: Let xe,s be witnesses at stage s so that xe “ lim
sÑ8

rxe,ss exists with Apxeq ‰ ϕepxeq.
Construct A as follows.
Stage 0: Let rpe, 0q “ 0 and xe,0 “ xe, 0y.

Stage s` 1: Suppose ϕe,s`1pxe,sq Ó and ϕe,s`1pxe,sq “ 0 for some Pe that is not satisfied.
Enumerate xe,s into As`1, so that Pe may be declared satisfied.
For all e ď s, if Φ

As`1

e,s`1peq Ó, let rpe, s` 1q be the use of the computation.
For all i ď s, let xi,s`1 be the least y such that y P Nris with y R As`1 and y ą rpe, s` 1q @ e ă i.

Let A “ lim
sÑ8

rAss.
For each e, there is at most one stage s when xe,s is enumerated into A.

If Xe,s is enumerated into A at stage s, then Pe is satisfied, and there is no further enumeration.

For all e P N, the limit lim
sÑ8

rrpe, sqs exists and is finite.
Let s be a stage where, for i ď e, if xi,t is ever going to be enumerated into A, then it has happened

by stage s.

31

Then by above, such an s exists.
Suppose there is a stage s1 ą s where rpe, s1q ‰ 0.
Then Φ

As1
e,s1peq Ó, and rpe, s

1q is the use of the computation.
As s1 ą s and all xe,t ą rpe, s1q for unsatisfied Pe that might be satisfied, there will be no enumeration

below rpe, s1q in A, so Φ
As1
e,s1 “ ΦAe peq and rpe, tq “ rpe, s1q for all t ě s1.

To meet N0, check if ΦAs0,sp0q Ó at some stage s.
If this happens, do not enumerate 0 into A below rpe, sq.
The Ne conditions for e P N are all met.

Let s be such that rpe, sq “ lim
tÑ8

rrpe, tqs.

Then if rpe, sq ‰ 0, then ΦAte,tpeq “ ΦAe peq for all t ě s by the above discussion.
If rpe, sq “ 0, then ΦAte,tpeq Ò for all t ě s.

To meet P0, i.e. to ensure that A ‰ ϕ0, wait until a stage s when ϕ0,sp0q Ó and ϕ0,sp0q “ 0.
If this never happens, then 0 R A, so Ap0q “ 0 ‰ ϕ0p0q.
If at stage s we have ϕ0,sp0q Ó and ϕ0,sp0q “ 0, then we enumerate 0 P As`1, so Ap0q “ 1 ‰ 0 “ ϕ0p0q.
If ΦAse,speq Ó and ΦAse,speq ‰ ΦAe peq, then at stage t ą s, some x ă rpe, tq was enumerated into As.
The Pe conditions for e P N are all met.

Let s be such that rpi, sq “ lim
tÑ8

rrpi, tqs for all i ă e.
Then xe,t “ xe,s for all t ě s.
Let xe “ lim

tÑ8
rxe,ts.

If ϕepxeq Ó and ϕepxeq “ 0, then ϕepxe,tq Ó and ϕepxe,tq “ 0 for some t ě s.
At such a stage t, if Pe was not yet satisfied, we enumerate xe,t into At, so Apxeq ‰ ϕepxeq.
If Pe was already satisfied, then ϕepxe,s̃q Ó with ϕepxe,s̃q “ 0.
Moreover, xe,s̃ P A for some s̃ ď t, so Apxe,s̃q ‰ ϕepxe,s̃q.
If ϕepxeq ‰ 0, then ϕe,tpxe,tq ‰ 0 at any t after xe,t “ xe.
Thus xe R A, so Apxeq “ 0 ‰ ϕepxeq.

Therefore A is not computable, low, and c.e. �

32

	First-order logic syntax
	Definitions
	Meaning
	Validity

	Sequent calculus
	Consistency
	Completeness
	Ideas of Leopold Lowenheim and Thoralf Skolem
	Elementary classes
	Abstraction and simplification

	Programming logic
	Heuristic
	Formal

	The limits of first-order logic
	Undecidability
	Axiomatization
	Representation
	Incompleteness

	Elementary equivalence revisited
	Partial and finite isomorphisms
	Dense orderings

	Computability
	Turing machines
	Turing reducibility
	Special non-computable sets

