Compact course notes

PURE MATH 432/632, WINTER 2012
First order logic and Computability

Professor: B. Csima
transcribed by: J. Lazovskis
University of Waterloo
April 9, 2012

Contents
[1 First-order logic syntax|
LI Definftions. . . . v v v v v vt
Vi gl .
Validity|
2 Sequent calculus|
2.1 Comnsistency|o
2.2 Completeness| o L
2.3 Ideas of Leopold Lowenheim and Thoralt Skolem|
2.4 Elementary classes| oL
2.5 Abstraction and simplification|. L0000 L
[3 Programming logic|
B2 Formal. oo
|4 The limits of first-order logic]
4.1 Undecidability]
4.2 _Axiomatizationlo
4.3 Representation| o L.
4.4 Incompleteness| L.
[Elementary equivalence revisited|
.1 Partial and finite 1somorphisms| 0.
b.2 Dense orderings|. oL
[6 Computability|
6.1 Turing machines| L.
[6.2 Turing reducibility] oo o000
[6.3 Special non-computable sets|

Note: Not all theorems are proved that are presented.

=W NN

© 0w

13

................. 13
................. 16
................. 18
................. 19

21

................. 21
................. 22

1 First-order logic syntax

For the purposes of this course, we use naive set theory and assume the Axiom of Choice.

1.1 Definitions
Definition 1.1.1. An alphabet A is a non-empty set of symbols.

- A string or word a over an alphabet A is a finite sequence of symbols from A.
- The length of a word a is the total number of symbols in a, counting repetitions.

Remark 1.1.2. We use the following notation for readability:
- A* denotes the set of all possible words over A
- [denotes the empty word, i.e. the word of no symbols

Definition 1.1.3. The alphabet of a first-order language A contains the following symbols:

a. vy, V1,9, ... variables

b. =, A,v,—,< not, and, or, implies, if and only if
c. V,d for all, there exists

d. = equality

e. (,) parentheses

Accompanying A is a (possibly empty) set S being the union of the following sets:

f. For every n € N, a set of n-ary relation symbols
g. For every n € N, a set of n-ary function symbols
h. A finite set of constant symbols

Therefore the symbol set S determines a first-order language, and Ag = A U S is its alphabet
Example 1.1.4. The symbol set of groups is Sy, := {0, e}.

Definition 1.1.5. The arity of relations and functions refers to the number of symbols they state a relation
about or act on, and is denoted in the superscript, such as R™ or f". Irrespective of the arity, a function
always outputs a single symbol.

Definition 1.1.6. The following words in A% are termed S-terms:
T1. every variable in A
T2. every constant symbol in S
T3. fty...t, for f an n-ary function and ¢q,...,t, all S-terms

The set of all S-terms is denoted by 7.

Definition 1.1.7. The following words in A¥ are termed S-formulae:
F1. t; =ty for t1,ty S-terms
F2. Rt;...t, for R an n-ary relation symbol and ¢y, ... ¢, S-terms
F3. —y for ¢ an S-formula

Fd. (o n¢), (¢ v 1), (¢ = 1), (p <) for ¢, ¢ S-formulae
F5. Vzy and Jxp for ¢ an S-formula and « a variable

The set of all S-formulae of length n is denoted by L*.
Remark 1.1.8. If S is at most countable, then T and L° are at most countable also.

Definition 1.1.9. The function var acts on an S-term and outputs the set of variables occuring in this
term. Thus, if x is a variable, c¢ is a constant, f is an n-ary relation and ¢4, ...,t, are S-terms, then

var(z) = {z}
var(c) := J

var(fty...tn) = var(t;) U --- U var(t,)

Definition 1.1.10. The function SF assigns to each formula the set of its subformulae, and is defined by:

SF(t1 = ta) := {t1 = ta}
SF(Rt1 tn) = {Rt1 ...t}
(@) = {— w}uSF()
SF((p=1)) :=={(p*9¥)} v SF(p) U SF())
SF(Qw) {Qzp} v SF(p)

where x € {v, A, >, <} and Q € {V,3}.

Definition 1.1.11. Given an S-formula ¢, each of the variables in var(yp) are either bound or free. The
function free, that produces the set of free variables of an S-formula, is defined as follows:

free(t; = to) := var(t1) U var(ts)
free(Rty ...t,) :=var(t1) U - - - U var(ty,)
free(w) = free(y)
free((p = 1)) 1= free(p) U free(v))
free(Qw) = free(p)\{z}

Example 1.1.12. In Yz Rzyz, the variable x is bound and y, z are free

1.2 Meaning
Definition 1.2.1. Let ¢ be an S-formula. If free(¢) = ¢J, then ¢ is termed a sentence.

Definition 1.2.2. Define Lj to be the set of S-sentences. In general,
Ly :={yp | ¢ is an S-formula and |free(y)| = n}

Definition 1.2.3. An S-structure is a pair 2 = (A, a) of a set A and an assignment a on S such that
1. A is non-empty
2. a is defined by the following rules:
i. a(R) = R¥ = R4 is an n-ary relation on A
ii. a(f) = f* = f4 is an n-ary function on A
iii. a(c) = ™ = c? is an element of A
Remark 1.2.4. If § is an assignment in an S-structure 2 with a € A and z is a variable, then define the
assignment
15} ify+#ax
Bely) = { W Iy

a ify==z

Definition 1.2.5. An S-interpretation is a pair J = (2, 8) of an S-structure 2 and an assignment /3 in 2,
that acts on S-terms, such that
1. 32 = (A, B%)
2. the action of J is defined by the following rules:
i. J(z) = B(z) for x a variable
ii. J(c) = c* for c a constant
I(ftr.. tn) = fA(3(t1),...,3(t,)) for ty,..., t, S-terms

Definition 1.2.6. Given a formula ¢, an interpretation J is termed a model of ¢ (written J = ¢, pronounced
“J satisfies ") when the following conditions are satisfied:

J = tl = t2 if and OIlly if :i(tl) = j(tQ)
JERL ... t, if and only if R*(J(t1),...,3(t,)) holds
JE—p if and only if not (J &= ¢)
JE (px1) if and only if (T @) * (T =)
x€{n, v, o} * € {and, or, implies, if and only if}
JE Qxe if and only if Qae A J% E ¢
Qe {v,3} Q € {for all, there exists}

Definition 1.2.7. Let ® be a possibly infinite set of S-formulae. Then for an S-interpretation J, we say
JEQiff T ¢ forall pe®.

Definition 1.2.8. Let ® be a set of formulae and ¢ a formula. Then we write ® = ¢ (pronounced “y is a
consequence of ®") iff for every interpretation J with J = @, the expression J = ¢ holds.

1.3 Validity
Definition 1.3.1. A formula ¢ is termed valid iff ¢ = ¢, that is, when for all interpretations J, J &= .

Definition 1.3.2. A formula ¢ is termed satisfiable (written Sat(p)) if there exists an interpretation which
is a model of ¢. A set of formulas & is satsifiable if there exists an interpretation which is a model for every
@ in P.

Lemma 1.3.3. For all ® and all ¢, ® = ¢ iff not Sat(® U {—e}).

Definition 1.3.4. Two formulae ¢, are termed equivalent (written ¢ == ¢) iff ¢ = ¢ and ¥ = .
Therefore we may eliminate some symbols:

R Il Gt AV 1)

poPEHE e VY

peoEE ~(pvY) v =(=pv 1)
Vap g —Jz—p

So the connectives A, —, <> and the quantifier ¥ are superfluous. We no longer consider them in our language,
but we continue to employ them as shorthand.

Lemma 1.3.5. [COINCIDENCE LEMMA]|
Let J; = (4, 51) be an S;-interpretation and Jo = (2s, f2) be an Ss-interpretation, with S = S; n Sy and
t an S-term and ¢ an S-formula.

1. If 3; and J; agree on the S-symbols in ¢ and var(t), then J;(t) = Ja(¢)

2. If J; and Js agree on the S-symbols in ¢ and free(y), then (J1 k= ¢) == (J2 = ¢).

Proof: 1. will be done by induction.

2. will also be done by induction.
31 = tl = t2 lﬁ jl(tl) = jl<t2)

iff Jo(t1) = Ja(t2)
ifft o=ty =t

Now suppose ¢ = Jz).
Then J; = a1 iff there exists a € A such that J1 % & .
Note that free(y)) < free(p) u {z}.
Since J1,J2 agree on free(y¢), we have that J; 2 and Jo & agree on free(s)).
Also, 312 and J,% agree on {x}.
Hence they both agree on free(y).
Thus J; &= J29p iff there exists a € A such that 3,2 = ¢
iff there exists a € A such that 3, E ¢
iff Jp = Jayp []

Remark 1.3.6. If 7 = (2, 8) and free(¢) = {vo,...,vn—1} with B(v;) = a; € A for all 4, then

1. J = ¢ is equivalent to 2 = ¢lag, ..., an-1]

2. J(t) is equivalent to t*[aq, ..., a,_1]

3. if ¢ is a sentence and J = ¢, then A = ¢
Definition 1.3.7. Let S,.5" be symbol sets with S < 5" and 2 = (A, a) an S-structure and 2’ = (A4, a’) an
S’-structure so that a, a’ agree on S. Then

- 2 is termed a reduct of 2’

- A" is termed an expansion of 2, expressed 2 = A'|g

Moreover, we note that by the coincidence lemma,
A= plag, ..., an_1] iff A &= plag,...,an_1]

Definition 1.3.8. Let 2, B be S-structures. Then a map 7 : A — B is an isomorphism iff
1. 7 is a bijection between A and B
2. if Re S and ay,...,a, € A, then (ay,...,a,) € R* iff (7(a),...,7(a,)) € R®
3. if fe Sand ay,...,a, € A, then 7(f%(a1,...,a,)) iff f2(n(a1),...,7(an))
4. forall ce S, n(c*) = c®

If such a 7 exists, then 2 and 2B are termed isomorphic, and described 2 =~ 8.

Lemma 1.3.9. [[SOMORPHISM LEMMA]|
If 2,8 are isomorphic S-structures, then for all S-sentences ¢, A= ¢ < B = ¢.

Definition 1.3.10. Let 2, B be S-structures. Then 2 is a substructure of 9B iff
1. Ac B
2. i. ReS =— R*¥=RZ nh A"
ii. feS = f%=f%|an
ifi. ce § = A =c?
This relationship is then expressed 21 < B.
Lemma 1.3.11. [SUBSTRUCTURE LEMMA]
Let 2, B be S-structures with 2 = B and ¢ € L7 universal. Then for all ag,...,a,_1 € 4,

B E plag,...,an—1] implies A= plag,...,an—1]
Proposition 1.3.12. Let A, B be S-structures with 2 < B and ¢ € Lg existential. Then
A= implies BEp

Definition 1.3.13. For arbitrary terms tg,...,t,. and pairwise distinct variables of ¢ xg, ..., z,, define
4,0;27; := @ with z; replaced by t; for all ¢

Lemma 1.3.14. [SUBSTITUTION LEMMA|
1. For every term t, J (t byt) = g3(t0)30) (t)

LOyee sy Ty LOyeeey Ty

2. For every formula ¢, J & @il=ale jff 33(23 e J(e) P

Lye.ny Ty, Y Xy, T,

2 Sequent calculus

2.1 Consistency

Definition 2.1.1. A non-empty sequence of formulae I" is termed a sequent. A set of rules associated with
it is termed a sequent calculus &.

Definition 2.1.2. A formula ¢ is termed formally provable or derivable from a set of formulae & iff there are
finitely many formulae (the antecedents) @1, ..., ¢, such that given them, one may obtain ¢ (the succedent).
This is expressed @ — ¢.

If p1,...,p, are in a sequence of formulae I', then we write — I'p with the same meaning.

Theorem 2.1.3. [SOUNDNESS THEOREM]
For a sequent T', if - T'p, then I' = ¢. Moreover, if ® - ¢, then there exists a sequence of formulae I' from
® such that - T'p.

Definition 2.1.4. A set of formulae ® is termed consistent and denoted Con(®) iff there is no formula ¢
such that ® - ¢ and ® - —¢. If this occurs, then ® is termed inconsistent and denoted Inc(®).

Lemma 2.1.5. Inc(®) iff for all ¢, & - .

Proof: («<): Let ¢ = vy = vg.
So ® - ¢ and @ - —, so Inc(®).

(=): Suppose Inc(P).

Let ¢ be arbitrary.

Then there is ¢ such that ® — ¢ and & - —.

So there are sequents I'y,I's © ® such that - I'y¢ and + I'o—).

Since - I'1%), we have — I'1T's—pv by (Ant).

Since I's—t), we have - I'1T'a—p—1) by (Ant).

Thus + I'1Tap by (Ctr).

Since I'1,T's < @, we have ® - . |

Corollary 2.1.6. Con(®) iff there is some formula that is not derivable from ®.
Lemma 2.1.7. Con(®) iff Con(®y) for all finite sets &g < P.
Lemma 2.1.8. Sat(®) implies Con(®)

Lemma 2.1.9. For all ® and ¢:
1. @+ ¢ iff Inc(® U {—¢})
2. if Con(®), then either Con(® U {¢}) or Con(® U {—p}).

Lemma 2.1.10. For n € N, let S,, be symbol sets such that Sy < S; € S, < ---. Let ®, be a set of
Sp-formulae so that Cong, (®,) and ®; < &y < ---. Let S = (J,,cy Sn and @ = J,, .y . Then Cong ().

2.2 Completeness

Definition 2.2.1. A set of formulae ® is termed negation complete iff for every formula ¢, either ® - ¢ or
D —p.

Definition 2.2.2. A set of formulae ® contains witnesses iff for every formula of the form 3z, there is a
term ¢ such that & - Jzp — @%

Lemma 2.2.3. Suppose ® is consistent, negation complete, and contains witnesses. Then
1. ¢+ —p iff not ¢ - ¢
2. D (pv) iff P por & 9
3. @ | dxyp iff there is a term ¢ such that @ - g@%

Definition 2.2.4. Let ® be a set of formulae and t1,ts terms. Then define the relation ~ by
ty ~t iff Dt =t

Then ~ is an equivalence relation.

/
ne

Lemma 2.2.5. If t; ~ t},...,t, ~ t, then for an n-ary function symbol f € S, ft1...t, ~ ftj...t
Moreover, for an n-ary relation symbol R € S,

& Rty...t, if @+ Rt)...t,
Definition 2.2.6. Define the following symbols:
T5 = {t | tisan S-term}
ti={t'eT" | t~1t}
T® :={t | te T}
And the S-structure % over T such that

for n-ary Re S, RTI’E...tn iff ®E= Rty,...t,
for n-ary f €S, fTP(EE) = ft1,...ty
force S, =z

And for an assignment (3, let
B(x) =7
Therefore we have constructed J% = (T®, %), the term interpretation associated with ®.

Theorem 2.2.7. Let ® be a consistent set of formulae which is negation complete and contains witnesses.
Then @ is satisfiable.

Lemma 2.2.8. Let S be at most countable with ® — L° consistent and free(®) finite. Then there exists
© D ® which is consistent, negation complete, and contains witnesses. Moreover, this implies that © and ®
are satisfiable.

Definition 2.2.9. Let S be an arbitrary symbol set. To each ¢ € L® associate a constant c,, such that
¢, = cy iff ¢ = . Then define
S* := S U {caz, | Jzp e L5}
W(S) := {(Bap — p=22) | 3zp € L)
Lemma 2.2.10. For ® c L?, if Cong(®), then Congx(® U W(95)).

Definition 2.2.11. Let M be a set and U a non-empty set of subsets of M. Then a non-empty set D c U
is termed a chain of U iff for all Vi, V5 € D, either V; < V5 or Vo < V.

Lemma 2.2.12. [ZORN]
If Uyep V €U for every chain D < U, then U has a maximal element. That is, there is some Uy € U such
that there does not exist Uy € U with Uy < Us.

Theorem 2.2.13. [COMPLETENESS|

PEp if PR
Sat(®) iff Con(®)

2.3 Ideas of Leopold Lowenheim and Thoralf Skolem

Theorem 2.3.1. [LOWENHEIM, SKOLEM]
Every satisfiable and at most countable set of formulae is satisfiable over a domain which is at most countable.

Proof: Let @ be an at most countable set of S-sentences which is satisfiable and hence consistent.
There are at most countably many S-symbols in ®, as every S-formula contains finitely many symbols.
Therefore WLOG S is at most countable.
By previous knowledge, there exists an interpretation J that satisfies ® with terms ranging over 7.
Since T is at most countable, A is at most countable. |

Corollary 2.3.2. Every at most countable set of formulae that is satisfiable over an infinite domain is
satisfiable over a countable domain.

Theorem 2.3.3. [COMPACTNESS|

We combine a previous theorem with a new one, together for the clear analogy:
la. Con(®) iff Con(®) for all finite &g < &
1b. ® - ¢ iff g I ¢ for some finite &y < ¢

2a. Sat(®) iff Sat(Pg) for all finite Py <
2b. ¢ = ¢ iff &g = ¢ for some finite &g = O

Y

Theorem 2.3.4. Let ® be a set of formulae which is satisfiable over arbitrarily large finite domains. Then
® is also satisfiable over an infinite domain.

Theorem 2.3.5. [LOWENHEIM, SKOLEM - “DOWNWARD" VARIANT]
Let ® = L? be satisfiable. Then @ is satisfiable over a domain of cardinality at most |L%|.

Theorem 2.3.6. [LOWENHEIM, SKOLEM - “UPWARD" VARIANT]
Let ® = L® be satisfiable over an infinite domain. Then for every set A there is a model of ® which contains
at least as many elements as A.

Theorem 2.3.7. [LOWENHEIM, SKOLEM, TARSKI|
Let ® c L® be satisfiable over an infinite domain. Then for any s > |®|, ® has a model of cardinality .

2.4 Elementary classes

Definition 2.4.1. Let ® be a set of S-sentences. Define the class of models of ® by
Mod?(®) := {A | Ais an S-structure, A = @}

Definition 2.4.2. Let R be a class of S-structures. Then
1. R is termed elementary iff there is an S-sentence ¢ such that & =Mod®(¢)
2. fis termed A-elementary iff there is a set ® of S-sentences such that & =Mod” (®)

Remark 2.4.3. Any elementary class is A-elementary. Moreover, a A-elementary class may be described
as the intersection of elementary classes.

- The class of fields is elementary.

- The class of fields with characteristic p prime is elementary.

Definition 2.4.4. Let 2A,B be S-structures. Then 2 and B are termed elementarily equivalent, denoted
2A =B, iff for every S-sentence ¢, A = ¢ iff B = .

Definition 2.4.5. A set ® of S-sentences is termed independent iff there is no ¢ € ® such that ®\{p} - ¢.

Definition 2.4.6. Let 2 be an S-structure. Then define the theory of 2 to be

Th(2) = {pe L§ | A=}
Lemma 2.4.7. Let 2, B be S-structures. Then B = 2 iff B = Th(A).
- Note that by the isomorphism lemma, {8 | B~} c {B | B =A}.

Theorem 2.4.8. Let 2 be an S-structure. Then
1. if 2 is infinite, then {B | B =~ A} is not A-elementary
2. {B | B =2} is A-elementary
Moreover, {B | B = A} is the smallest A-elementary class containing 2I.

Definition 2.4.9. Consider S, := (+,-,0,1) and 0N := (N, +N,.N 0N 1¥). A structure which is elementarily
equivalent but not ismorphic to 91 is termed a non-standard model of arithmeric.

In general, 2 is a non-standard model of B iff A = 9B and 2A £ B.

Theorem 2.4.10. There exists a countable non-standard model of arithmetic.

Proof: Let ¥ =Th(M) v {—2=0,~z=1,-x=2,...}.

Let ® — ¥ be finite.

So there exists m € N such that for all n > m, —z =m ¢ .

Then (M, 5) is a model for ® if f(z) = n.

By the completeness theorem, there is a model of ¥, so by Lowenheim-Skolem, since ¥ is countable, ¥
has an at most countable model, say (2, 3).

Observe that 2 is elementarily equivalent to 91, since 2L ETh(MN).

Also note that 21 2 91, since an ismorphism must map n to n®, but there is nothing to map 3(z) to. B

Note that above we have used the convention n:=1+1+---+1= ff--- f1 for f the successor function.

n times n times

2.5 Abstraction and simplification

Definition 2.5.1. An S-formula ¢ is termed term-reduced iff its atomic subformulae have one of the following

forms, where y, x,x1,...,x, are variables and c is a constant.
Rxq...xz, T=Y
fri...z,=x c=x

Theorem 2.5.2. For every S-formula ¢ there is a logically equivalent term-reduced formula ¢*.

Note that free(y) = free(p*).
Definition 2.5.3. A symbol set S is termed relational iff it contains only relation symbols.

Definition 2.5.4. To every symbol set S associate a relational symbol set S” containing:
- all relation symbols in S
- for every n-ary function symbol f € S, an (n + 1)-ary relation symbol F'
- for every constant symbol ¢ € S, a unary relation symbol C

To every S-structure 2 associate an S” structure 20" by:
R = R%
- F%" = the graph of f%
- C*" = the graph of ¢*

Theorem 2.5.5. For S-structures 2,3, 2 = B iff A" = B".

Definition 2.5.6. A formula which is the disjunction of conjunctions of atomic and negated atomic formulae
is termed a formula in disjunctive normal form. Similarly, a formula which is the conjunction of disjunctions
of atomic and negated atomic formulae is termed a formula in conjunctive normal form.

Theorem 2.5.7. If ¢ is quantifier-free, then ¢ is logically equivalent to a formula g in disjunctive normal
form and 7 in conjunctive normal form.

Proof: We prove only that ¢ == ¢(here.
Suppose ¢ € Lf.
Let {©0,...,¢n} be the atomic formulae appearing in .
For an S-structure 2l and a = (a1, ...,a,) € A", let Y ay = Yo A - -+ A Py, where

‘ - if Ak —p;ilal

Note that 2 = (g)[a], and there are at most 27+ formulae of the form Yata)-
Let x := V{22 | Ais an S-structure, a € A” and A = p[a]}.
Note that x € L? is in disjunctive normal form.
Claim: x is logically equivalent to (.
Proof of claim: Suppose B & ¢[b].
Then ¢ 5 is the disjunct of x, and since B & o 5 [b], we have B = x[b].
Now suppose B = x[b].
Then there is some S-structure 2 and some @ € A" with 2 = ¢[a] such that B &= ¢ 4 [b].

Then for each atmoic formula ¢; appearing in o, B = ¢;[b] iff % = p;[a].

Since ¢ is obtained from the ¢; using only v and —, we have that B & ¢[b] iff 2 = ¢[a].
So since A = p[a], we have B = ¢[b].]

Definition 2.5.8. A formula which has the from ¢ = Q121 ... Qnz,p for Q; € {3,V} for all ¢ and ¢ quantifier
free is termed a formula in prenex normal form.

- Q11 ... Qpxy, is termed the prefix of ¢
- o is termed the matrix of ¢

Theorem 2.5.9. Every formula ¢ is logically equivalent to a formula v in prenex normal form with free(p) =

free(v)).

Proof: Let ¢ ~ 1 denote ¢ 5= 1.
We note that:
1. ¢ ~1 implies —¢p ~ =1
®o ~ 1o and @1 ~ 1Py implies (o v @1) ~ (1o v ¥1)
@ ~ 1) implies Qxp ~ Q)
—Qrp~Q 'z—gp
© ¢ free(ip) implies (qre v) ~ Qu(ip v ¥) and (¥ v Q) ~ Qu(v @)
v~V
For ¢ € L°, let qn(y) be the number of quantifiers occuring in ¢.
We prove the theorem by induction on n.
Let P(n) be the statement “For ¢ with qn(n) < n, there is ¢ € L in prenex normal form such that
@ ~ 1, free(p) = free(y)) and qn(y) = qn()".
n = 0: If qn(p) = 0, we can set ¢ = .
n > 0: Suppose ¢ = —¢'.
Then qn(¢’) = qu(y) and free(p’) = free(p).
By the induction hypothesis, there is a formula Qxy that is a prenex normal form for ¢ with
an(Qax) = an(’) and free(Qa) — free().

SR BN

10

Then ¢’ ~ Qxy implies ¢ = —¢' ~—=Qux by 1. above.

Further, —Qzx ~ Q 'z—y by 4. above.

Note free(—y) = free(x) and qn(—x) = qn(x) = qu(¢) —1<n—1

Since P(n—1) holds, there is a prenex normal form 1) for —y with qu(y)) = qn(x) and free(y)) = free(x).
Thus Q~'a1) is the desired prenex normal form for ¢ by 3. above.

Suppose ¢ = (¢’ v ¢”) and qun(p) > 0.

WLOG assume qn(¢') > 0.

By the induction hypothesis, there is a formula Qzy that is a prenex normal form for ¢’ with
free(Qzx) = free(¢’) and qn(Qux) = an(¢’).

Let y be a variable which does not occur in Qxx or ¢”.

Then Qzx ~ Qyx 2.

So by 2. and 5. above,

=" v ")~ (Quxtve") ~QuxL v ")
So qu(x% v ¢") =aqn(p) -1 <n-1.
Since P(n — 1) holds, there is a prenex normal form ¢ for x£ v " with qn(¢)) = qn(x% v ¢") and
free(¢)) = free(x 2 v ¢").
Then Qy is the desired prenex normal form for .
We also note that

free(Qyy) = free(x % v ¢")\{y}
c free(x)\{z} U free(¢”)
= free(Qxx) U free(¢")
= free(y’) U free(y”)
= free(y)

Suppose ¢ = Iz’

Since qn(¢’) < m — 1, there is a prenex normal form ¢ with ¢’ ~ and free(¢)) = free(y’) and
(i) = qu().

So Jz1 is the desired prenex normal form for . |

Remark 2.5.10. A countably infinite symbol set may be viewed as being defined over a finite alphabet.

3 Programming logic

3.1 Heuristic

Definition 3.1.1. A procedure P may run on inputs of words over a language. It may have an output and
it may halt.

Definition 3.1.2. Let A be an alphabet, W < A* and P a procedure. Then
1. P is adecision procedure for W iff for every input £ € A*, P eventually stops, having (before stopping)
given exactly one output 1 such that
n=0iffEeW
n+DEE ¢ W
2. P is an enumeration procedure for W if P, having been initiated, yields eventually as output any
word in in W, in any order, with possible repetition.
Then we may describe W by saying that
i. W is decideable iff there exists a decision procedure for W
ii. W is enumerable iff there exists an enumeration procedure for W

11

Remark 3.1.3. If A is a finite alphabet, then A* is enumerable.
Remark 3.1.4. The set {p € L§” | k& ¢} is enumerable.

Proof: By the completeness theorem, we need to enumerate all Sy;-sentences such that ¢.
We may list all words over the language, checking if each word is a formula.
For each n € N, form all the (finite) combinations of the first n formulae in the list.
Check, for each combination, if it is a derivation ending with a sentence ¢.
If so, list ¢. |

Theorem 3.1.5. Every decideable set is enumerable.
Theorem 3.1.6. A subset W < A* is decideable iff W and A*\W are enumerable.

Proof: (=) Clearly a decision procedure P for W can be made into a decision procedure P’ for A*\W.
By the above theorem, A and A*\W are both enumerable.

(<) Suppose W and A*\W are enumerable by P and P’.
To decide whether £ € W, run P and P’ until one lists £.
Exactly one will list £, as W n A¥\WW = &, and W u A¥\W = A*.]

Definition 3.1.7. A computable function f : A* — B* is a function for which there is a procedure P that
with input £ € A* halts with output f(&) € B*.

3.2 Formal

Definition 3.2.1. A register R is an indefinitely large unit of memory in which a word may be stored. We
assume that an indefinite amount of register machines are avilable for use.

Definition 3.2.2. Fix an alphabet A = {ag,...,a,}. A register program P over an alphabet A is a finite
sequence «g, . . ., o of instructions of the type below.

1LET R; = R; + q; [add-instruction]
2LET R; = R; —aj [sub-instruction] if a; is not last in R;, do nothing
3IF R, =[] THEN L' ELSE Lo OR --- OR L, [jump-instruction| if a; is last, do L;
4 PRINT [print-instruction] output the word in Ry
5 HALT [halt-instruction] stop the procedure
Above we assume 0 < j < n, i € N, and Ry, Ry, ... are register machines.

We assume certain properties of register machines:
1. «; has label 4
2. every jump-instruction refers to labels < k
3. only the last line, ay, is a halt-instruction

Definition 3.2.3. A program P is started with the a word £ € A* if P begins the computation with & in
Ry and [] in the remaining registers.

- If P started with £ and reaches the halt-instruction, we write P : & — HALT. Otherwise, write P : & — 0.
- If P started with & and prints exactly one word 1 and later halts, we write P : & — 7.

Definition 3.2.4. To abbreviate a special instance of rule 3. we equivalently say:

IF Ro =[] THEN I/ ELSE L' OR --- OR L'

.

GOTO L'

12

Definition 3.2.5. Let W < A*. A program P decides W iff for all £ € A*

P:&—-0O iff EeW
P:&—n iff E¢Wandn#0

Then W is termed register decidable iff there is a program P that decides W.

Definition 3.2.6. Let W < A*.

- A program P enumerates W iff P started with [] and prints exactly all the words in W, with possible
repetitions, and in any order.

- W is register enumerable iff there exists a program that enumerates W.

Definition 3.2.7. Let A, B be alphabets and F : A* — B*.
- A program P over A u B computes F iff for all £ € A*, P: & — F(Z).
- I is register-computable iff there is a program that computes F'.

Remark 3.2.8. The left column comes from the definitions above. Church conjectures the right column.

R-decidable == decidable decidable == R-decidable
R-enumerable == enumerable enumerable == R-enumerable
R-computable = computable computable = R-computable

4 The limits of first-order logic

4.1 Undecidability

Let A = {ag,...,a,}. Let B=AU{AB,...,Z} u{0,1,...,9} U {=,+,—,[0,§}. Then to every program P
we associate a unique word over B. For example,

OLET Ry = R1 + ag
1 PRINT - OLETR1=R2-+ao§1PRINT§2HALT
2 HALT

Consider a lexicographic ordering of B*. Then for a program P over A, we can find its equivalent under
association in this ordering, say it is at position n. Then define £, = ag ... ag to be the Godel number of P.
—

n times

Lemma 4.1.1. Let Il = {¢;, | P is a program over A}. Then II is deciedable.

Proof: Given a word in A*, check whether it is of the form ag ... ag.
—_——

If not, then it is not in II. n times

If yes, loon at the nth word in the ordering of B*.

Check whether this codes a program over A.

Since the word is of finite length, we can check it. |

Theorem 4.1.2. [UNDECIDABILITY OF THE HALTING PROBLEM]
a. The set ITj 1 = {£, | P is a program over A and P : &, — HALT} is not R-decidable
b. The set Iyt = {&p | P is a program over A and P : [] — HALT} is not R-decidable

Proof: (a.) Suppose there exists a program Py that decides ITj,; ;.
Then for all P,

Py:&, —[iff P:&,—HALT
Py:&p—-mn it P:&, —ooforn#0]

From P, we obtain a program P; by making the substitution

k HALT =— kIF Ry =[] THEN Kk ELSEkX+10R --- ORk +1

13

And adding the line
k + 1 HALT

Then for this program P; we have that

P gy — 0 iff P:&p — HALT
P &, > HALT iff P:&, -

But then P; has a Godel number, so P; : EPl — o iff P : EPl — HALT.
This is a contradiction.

(b.) We design a procedure, that produces P* from P such that &, € ITj,; ¢ iff £, € Tlgarr.
Given P, compute &, with n instances of ag.
Let P be the program that begins with

0 LET Rop = Rg + ag

n—1LET Ry = Ry + ag

followed by the lines of P, all incremented by n.
Clearly, P : &£, — HALT iff P* : [J — HALT.
Now the result follows from (a.). [|

Lemma 4.1.3. Iyt is enumerable.

Proof: For every n € N, get the finitely many programs with Godel number < n.
Start each program with [], run for n steps, print the Godel number of the programs that halt. |

Corollary 4.1.4. A*\Ilgyr is not enumerable.

Definition 4.1.5. Let P be a program with instructions «y, ..., a; and let n € N be the maximal index of
registers appearing in P. Then an (n + 2)-tuple of rational numbers

(Lymo, ... ,my)

with 0 < L < k is termed the configuration of P after s steps if P started with [], runs for at least s steps

and after s steps L is to be executed next while the registers Ry, ..., R, contain the numbers my,...,m,,
respectively.
In the above circumstances, the (n + 1)-tuple (0,...,0) is termed the initial configuration of P.

Remark 4.1.6. Since Sy has countably many function, relation, and constant symbols of each arity, we
enumerate them and denote them by writing

R for the mth n-ary relation symbol
ff for the fth k-ary function symbol
c¢; for the jth constant symbol

Theorem 4.1.7. [UNDECIDABILITY OF FIRST ORDER LOGIC]|
The set {p € L5* | E ¢} of valid Sy sentences is undecidable.

Proof: Let A = {1}, and identify words over A with natural numbers.
We assign to every program P in an effective way an Sy, sentence pp such that = p iff P :[] — HALT.
This will show that T = {p € L)*" | | ¢} is undecidable.

14

Suppose the contrary.

Let £ € A* decide if € € II.

If IlOt, z ¢ HHALT~

If yes, compute P so that & = np.

Compute ¢p.

Use the decision procedure to decide whether = .
If yes, € € Iyprr.

If no, 14 ¢ Ilgprt.

So we have a decision procedure for Iy, .

This is a contradiction.

Now we define @p.

Let P be a program with instructions ay,. .., ak.

Compute the smallest n € N such that the registers occuring in P are among Ry, ..., R,.

Since «y is the only halt-instruction, P : [J — HALT iff there exist s,mg,...,m, € N such that
(k,mg, ..., my) is the configuration of P after s steps.

Let R = R{*3 and <= R2 and f = f} and ¢ = co, all in S,.

Let S ={R,<, f,c} € Sy.

We associate to P an S-structure 2Ap that describes P.

Set 2lp = N and interpret < by <, ¢ by 0, f by the successor function, R by {(s, L, mg, ..., m,) ’ (Lymo,...,my)
is the configuratiton of P after s steps}.

Now we define an S-sentence ¥ p that will appear in @p.
We want ¢ p to have the following properties:

(a). A, =Evp -

(b). if 2 is an S-structure with 2 = ¢p and RsLmy...m,, then A = RsLmy,...,m,.
Let 9o be the sentence describing that f, ¢, < work as desired.

o :=“<is an ordering" AVa(c <z v ec=1x) AVa(z < fo) AVaVz(z < z = (fr <z v fz=2))

For a = ay, ..., ap_1 we define v, by the following rules:
-If «is “L LET R; = R; + 1”7 then

Yo = YaVyo ... Yyn(RxLyo ... yn = RFTL + 1yo ... Yic1 fYilis1-- - Yn)

-If «is“L LET R; = R; — 1”7 then

Yo = YaVYo . .. VYn(RxLyo - .. yn — ((Yi = OARfxLyo ... yn)V(—yi = 0nJu(fu = yi ARFEL + 1yo . .. i 1WYis1 - - Yn))))
If o is “L IF R; = [] THEN L' ELSE Lo” then

o =VVyo. .. Vyn(Rnyo v = (i =0 A Rfffyo) V(Y =0 fofoyo e Yn)))
- If o is “L PRINT” then

Yo = YaVyo .. . Yyn(ReLyo ... yn — RfrL + 1yo ... yn)

Let ¢vp = o A ROO---0 Aoy Ao A Yoy, -
Then ¢p satisfies (a). and (b). by induction.
Let op = ¥p — 23y, ... Jy, RxLyy . .. Yn.
Now we claim that ¢p is valid iff P : [] — HALT.

Suppose = ¢p.

Then Ap = pp. -

Thus Ap = Ixyo ... Iy Rx Ly . . . Yn.-

15

So there are s,my, ..., m, € Ap such that (s,k,mg,...,my) € R.
In other words, the program P reaches the halt-configuration after s steps.
Thus P : [] — HALT.

Suppose P :[]— HALT, so P has a halt-configuration (s, k, mg, ..., m,).
Let 2 be an arbitrary S-structure.

If A = ¢¥p, then A = pp, as any result follows from a false statement.

If 2 = ¢p, then by (b). we have 2 = Rskmmg, ..., M,

So A &= IzIyg ... Iy Rakyo . . . yn.

So then 2 = pp.

Since 2 was arbitrary, ¢p is valid.

Definition 4.1.8. A set T Lj is termed a theory iff Sat(7) and T is closed under logical consequence,

ie. T ={p | T = ¢}. We define associated sets for general ® = L°.
- i={pel® | Dk}
O i={pel’ | D ¢}

By the completeness theorem, we know that these two sets are equal.

4.2 Axiomatization

Definition 4.2.1. Let ®p,4 consist of the following S*" sentences:

Ve—z+1=0

Vez +0=x

Vex-0=0
VaVy(z + 1=y + 1>z =y)
VaeVyz + (y+ 1) =(z+y)+ 1
VaVyz(y+ 1) =z -y +x

And for all x1,...,7,,y and all p € L such that free(¢) c {z1,...z,}, the sentence
Vri... Vo, ((gpg A Yy ((p — <p”7+1)) — Vygp)

Then ®p 4 is termed the set of first-order Peano axioms.

- We note that 9 = ®p 4, or equivalently, CI)}'=,A < Th().

Definition 4.2.2. A theory T is termed R-axiomatizable if there is an R-decidable set ® such that T = ®F.

A theory T is termed finitely axiomatizable if there is a finite set ® such that T' = ®F.

Theorem 4.2.3. An R-axiomatizable theory is R-enumerable.

Proof: Let T be a theory.
Let ® be an R-decidable (or enumerable) set of S-sentences such that T = ®F.
Generate systematically all derivable sequents.
Check for each whether the members of the antecedent belong to ®.
If yes, and the succedent is a sentence, list the succedent.

Definition 4.2.4. A theory T < Lj is termed complete iff for every S-sentence ¢ we have p € T or —¢ € T.

As a special case, for structures 2, the theory Th(2() is always complete.

16

Theorem 4.2.5.
i. Every R-axiomatizable, complete theory is R-decidable.
ii. Every R-enumerable, complete theory is R-decidable.

Proof: (i.) Since R-axiomatizable implies R-enumerable, a proof of ii. will suffice.
(ii.) Execute the enumeration of T until either ¢ or —¢ is enumerated.
If ¢ is enumerated, then p € T'.
If — is enumerated, then ¢ ¢ T, since T is satisfiable.]

The folowing two lemmas will be used to prove the subsequent theorem.

Lemma 4.2.6. [$-FUNCTION LEMMA]
There is a function 3 : N® — N such that
1. for every sequence (ao, ..., a,) over N there are ¢,p € N such that for all 0 < i <r, 8(¢,p, i) = a;
2. 3 is definable in L - there is an S,,-formula g (t, p, 4, a) such that N = ¢gs[t, p,i,a] iff B(t,p,i) = a

Lemma 4.2.7. [yp-LEMMA]|

Given a program P, one may effectively associate to it a formula yp(vg,...,va,42) such that for all
loy... ln,Lymg,...,my, € N we have M &= xp[lo,...,ln, L,mg,...,my,] iff P, beginning with the config-
uration (0,4, ..., ¥¢,) after finitely many steps reaches the configuration (L, mq,...,my,).

Proof: We would like xp(zo, ..., Tn, 2,Y0,---,Yn) to formalize the folowing:

There is s € N and a sequence of configurations (¢;);_, such that:
co = (0,20,...,2n)
cs = (2,90, -+ Yn)
and for all 0 < 7 < s, we have ¢; £, Cit1

Equivalently this may be stated as:

There is s € N and a sequence

E’/Oa sy Ont 1,42y - - o5 Q(n42) 4 (n41)y e v v -+) As(n+2)y -+ -y As(n+2)+(n+1)
co c1 Cs
such that
ap =0,a1 =Zo, ..., Ant1 =Ty oo y As(n+2) = %5 Gs(n+2)+1 = Y05+ -+ Cs(n+2)+(n+1) = Yn

and for all 0 < i < s,

P
(ai(n+1)a cee 7ai(n+2)+(n+1)) - (a(i+1)(n+1)7 cee 7a(i+1)(n+2)+(n+1))

Using § from above, we complete the construction by setting
XP(T0y - oy Ty 2, Y0y -+ s Yn) = Hsﬂpﬂt(go@(t,p,o,O) A p(t,p, 1,20) Ao A pg(t,p,n + 1x,) A a(t,p,s(n+2),2) A ---

‘A palt,p,s(n+2) + (n+1),y,))
A Vi(i < 8 — YuVug - - - Yu, Vo' Vug - '-Vu;(cpg(hp,i(n +2),u) A

conpp(typi(n+2) + (4 1),un) A ps(t,p, (i + 1) (n+2),u") A

onepltp, (i 4+ 1) (n+2)+ (n+1),ul,) = "(u,ug, ..., up) LN (u',ué,...,u%)"))

Theorem 4.2.8. Th(M) (commonly termed arithmetic) is not R-decidable.

17

Proof: We effectively assign to every register program P over A = {1} an S,,-sentence ¢p.

This @p is such that 91 = pp iff P:[]— HALT.

Then Th(91) will be undecidable, since Iy r is undecidable.

As before, given P, we may compute its list of instructions «y, . .., oy (for only ay the HALT-instruction),
and n the least number such that all registers by P used are among Ry, ..., R,.

Using the yp-lemma, we have xp that describes how P operates, and we set

op =Fg...3v,xp(0,...,0,k,vg,...,0,)
;v_/

n+1 zeros

Then we will have that

NE=ep iff NMExp[0,...,0,k,mo,...,my] for some mg,...,m, €N
iff P beginning with the configuration (0,...,0) after finitely many steps
reaches configuration (k, mg,...,my,)
iff P:[]— HALT

This completes the proof. |

Corollary 4.2.9. Arithmetic is neither R-axiomatizable nor R-enumerable. Therefore, with respect to a

previous statement, ®' , < Th(MN).

4.3 Representation

Theorem 4.3.1.
i. Given an n-ary decidable relation R over N, there exists an S,,-formula ¢(vp, ...,v,—_1) such that for
all fo, AN 7£n71 eN
Rly...lay i N[0 T]

ii. Given an n-ary computable function f : N — N; there is an S,,-formula ¢(vy,...,v,) such that for
all (60,...,&1) _ J—
floy .. 1) =1Ly iff NME|l,...0]

Proof: The required functions are conjunctions of x p at each stage of a program P that decides R (and f). B

Definition 4.3.2. Let ¢ c Lg‘”. An r-ary relation R on N is termed representable in @ iff there is an
Sar-formula ¢(vy, ..., v,.—1) such that for all ng,...n,_1 € N

if Rng...n.—1, then ® - [ng, ..., M1]
if =Rng...n,_1, then ® - —p[g, ..., 71 |-

In this case, we say that ¢ represents R in ®.
Definition 4.3.3. An r-ary function f on N is termed representable in ¢ Lg‘”' iff there is an S,,-formula
©(vg, - .., v,) such that for all ng,...,n, € N, then

if f(no,...,nr—1) = n,, then ® - o[Mg, ..., 7, |
if f(no,...,nr—1) # Ny, then ® - —¢[g, ..., 7, |

In this case, we say that ¢ represents f in ®.

Remark 4.3.4. If & = Th(9), then we call the set of representable functions and relations in ® arithmetic.

18

Lemma 4.3.5.

i. If @ is inconsistent, then every function and relation over N is representable in .

ii. f®cd c Lg‘”', then all functions and relations representable in ® are representable in ®’.

iii. Let ® be consistent. If ® is R-decidable, then every relation representable in ® is R-decidable, and
every function representable in ¢ is R-computable.

Definition 4.3.6. Let ¢ — L. Then ® allows representations if all R-decidable relations and all R-
computable functions over N are representable in ®.

Theorem 4.3.7. Th(M) allows representations.

Theorem 4.3.8. $p 4 allows representations.

4.4 Incompleteness

Definition 4.4.1. Let S be a symbol set. If L° is enumerable, then we define the Godel number of some
S-formula ¢ to be the position that ¢ appears in in some numbering of L%, and denote it by N

Theorem 4.4.2. [FIXED POINT THEOREM]|
Suppose that ¢ allows representations. Then for every v € Lls‘” thereisa p € Lg " such that ® - ¢ « ¥(7y).

Proof: Suppose that ® allows representations and v € Lf‘”‘.
Define a computable function F : N> — N by

Ny if n=n, for some x e L
F(n,m) —{ O><() s X X €

Thus we have that if y € L7*", then F(n,,m) = TN (777) -
Since ® allows representations, there is an a € Lf‘”‘ such that for all m,n,k e N,
F(n,m) =k = &+ a(n,m,k)
F(n,m) #k = &+ —a(n,m,k)
Let B(z) = Vz(a(x, x, 2) — ¥(2)) and let ¢ = B(Rg) = Vz(a(nig, g, 2) — ¥(2)).
We claim that ® - ¢ < (7).
Proof of claim: Note that 8 € Ly*", so F(ng,ng) = ng(mz)-
However, 3(ng) = ¢, so F(ng,ng) = n.
Thus ® - a(ng, 73, 7,). By definition of ¢, we have ® U {¢} - a7, 715, 7e,) — (7).
Therefore ® - ¢ — (7).

By above, ® - 3= 2a(ng, 75, 2) and so @ + Vz(a(ng, ng, 2) — 2 = Niy).
Thus & - ¢(ng) — (Vz(a(ng, g, 2) = ¢(2)))-
Therefore ® - 1)(72,) — . []

Lemma 4.4.3. Suppose that ® is consistent and allows representations. Then ®" is not representable in
.

Proof: Suppose that x(v) represents ®~ in .

Then for any n € N,
ned = @ x(n)
ng¢ ®" = ® —x(n)
In particular, if a € Lf‘", then

Pta = ¢+ x(Ma)
B a — O+ —x(mg)

19

Since ® is consistent, we must have that ® } a iff ® - —x(7ig).

By the fixed point theorem applied to —x and @, there exists ¢ € Lg‘" such that ® - ¢ « —x(7g).
But then ® - ¢ iff —x(72,) iff @ H .

This is a contradiction.

Hence ®" is not representable in ®. |

Theorem 4.4.4. [TARSKI]
1. Suppose that @ is consistent and allows representations. Then ®F is not representable in ®.
2. Th(9) is not representable in Th(9T).

Proof: (1.) By completeness, = = ®F.

(2.) Th(9) allows representations, and Th(91)~ = Th(91).
Apply the above theorem. |

Consider ® Lg er decidable and allowing representations. Let us fix an enumeration of all S, deriva-
tions, i.e. all sequents in the derivation calculus of S,,.. Define a binary relation H by

Hnm << (the mth derivation ends with a sequent ¥g ... 1¥r_1¢ with ¥, € ® V i and n = nSD)

Since @ is decidable, H is decidable, and ® I~ ¢ iff there is an m € N such that Hn,m. Since ® allows
representations, there is some @y (z,y) € LS"” that represents H in ®. Then we define

Derg () := Jypu(z,y) Consisg := —Derg(n—o=0)

With these formulae we may encode the derivability of a formula and the consistency of a set. They will be
also used to prove the theorems below. So if x is the Godel number of some formula y, then

(cp derives X) iff <<1>H<> iff <<I>PDer¢(x))

<<I> is consistent> iff (@ F @ iff not @ ﬁap> iff ((I> - ConsiSq>>

Theorem 4.4.5. [FIRST INCOMPLETENESS - GODEL]
Suppose that ® is consistent, R-decidable, and allows representations. Then there is an S,,-sentence ¢ such
that neither ® - ¢ nor ® - —¢.

Proof: Assume no such ¢ exists.
Then ®" is complete.
So ®" is consistent and R-enumerable, hence R-decidable.
Since ® allows representations, ®~ is not representable by Tarski.
This is a contradiction.
Hence such a ¢ exists.]

- For the followng lemma, we choose —Derg(vg) € Lf v, so then by the fixed point theroem we can find
¢ € L3 such that @ - ¢ < —Derg (Tg).

Lemma 4.4.6. If @ is consistent, then not ® - ¢.

Proof: Suppose @ = .
Let m be such that Hn,m.
Then ® - ¢u(fig, m), so ® - Derg(7ey).
But ® - ¢ < — Derg(n,), so ® - — Derg (7).

20

Therefore ® is inconsistent. |

- It is technically tedious, but possible, to show that, with ¢ as above,
® |- Consisg — —Derg (7))

Theorem 4.4.7. [SECOND INCOMPLETENESS - GODEL]
Suppose that ® > ®p 4 is consistent and R-decidable. Then not ® - Consisg.

Proof: Suppose that ® - Consisg.
Then ® - — Derg (7).
Since ¢ was a fixed point (i.e. ® - ¢ < — Derg(72,,)), we have that ® - ¢.
Then by the above lemma, @ is inconsistent. |

5 Elementary equivalence revisited

5.1 Partial and finite isomorphisms

Definition 5.1.1. Let 21 and B be S-structures. A map p : A — B is termed a partial isomorphism from
2A to B if the following conditions are satisfied:
1. p is an injective homomorphism
2. for every n-ary Re S and ay,...,a, € A, we have R%a; ...a, iff R®p(a;)...p(ay)
3. for every n-ary f € S and a,a4,...,a, € A, we have f*(ai,...,a,) = aiff fZ(p(a1),...,p(an)) = p(a)
4. for ce S and a € dom(p), we have c* = a iff ¥ = p(a)

The set of all such isomorphisms is denoted by
Part(2,B) := {p | p: A — B is a partial isomorphism from 2 to B}
Note that the empty map, as well as any restriction of a (partial) isomorphism is a partial isomorphism.

Remark 5.1.2. If S is relational, then for aq,...,a, € A and by, ...,b. € B, equivalently
1. By setting p(a;) = b; the function p determines a partial isomorphism from 2 to B
2. For every ¢ € LY atomic, 2 = ¢lai, ..., a,] iff B & b, ...,b]

Proof: (1. = 2.) Suppose R € S is n-ary for {a;,,...,a;,} < {a1,...,a,} and R = Ra;, ...a;,, SO

2 = Rlay,...a,] iff (as,...,a;)€ R®
iff (p(ai1)7...,p(ai")) € R®
iff (b;,,...,b;,)€ R®
ifft BE= R[biy,...,b:,]

A= v, =vjlag, ..., ar—1] iff a; =a;
iff p(a;) = p(a;)
iff by = b;

iff B = v; E’l}j[bo,...,br_l]

(2. = 1.) Here we use injectivity.
Consider v; = vj, so then

a; = a; iff AE=wv; =vjfag,...,ar—1]
iff %#’UiEUj[bo,...,br_l]
iff b; = 0b;

21

Definition 5.1.3. Given maps p, ¢, we say that ¢ is an extension of p iff dom(p) = dom(q) and q|gom(p) = -
This relationship is expressed as p < q.

Definition 5.1.4. Two S-structures 2,8 are termed finitely isomorphic iff there exists a sequence (I,)%_;
such that every I,, is a non-empty set of partial isomorphisms from 2 to B satisfying

Forth-property: For every p € I,+1 and a € A, there is g € I, such that p ¢ g and a € dom(q)
Back-property: For every p € I,1 and b € B, there is ¢ € I, such that p © ¢ and b € range(q)

For such a sequence, we write (I,)0_; : A =; B.

Definition 5.1.5. Two S-structures 2(,‘B are termed partially isomorphic if there exists I < Part(2l,B)
non-empty such that

1. for all a € A and p € I there is ¢ € I with p € ¢ and a € dom(q)

2. for all be B and p € I there is ¢ € I with p € ¢ and b € range(q)

This relationship is expressed as 2 =, ‘B.

Lemma 5.1.6.
1. If A =B, then A =, B.
2. If A =, B, then A = B.
3. If A =4 B and A is finite, then A = B.
4. If A =, B and A, B are at most countable, then A =~ B.

Proof: (1.) If m: A = B, then I : A =, B for [= {rn}.
(2.) If I : A =, B, then (I,)r_, : A =, B for I, = I for all n.

n=1
(3.) Suppose that (I,)5_; : A =; B and A = {a1,...,a,}.
Choose pg € I-11.
Then for 0 < i < r, given p; € I 41—, choose p; 41 € I—; such that p; < p; 41 and a;11 € dom(p;41).
Now p, € I is a partial isomorphism from 2 to B with dom(p,) = A.
So to show p, : A — B, it suffices to show range(p,) = B.
Suppose there exists b € B with b ¢ range(p,.).
Then there exists p,.+1 € I1 with b € range(p,41).
This is a contradiction, as dom(A) = A and p,4+1 is injective.

(4.) If A or B are finite, the result follows from (2.) and (3.).

So suppose that A = {ag,a1,...} and B = {bg, b1,...}.

Choose pg € 1.

For i = 2r + 1, choose p; € I with p;_1 < p; and a, € dom(p;).

For i = 2r + 2, choose p; € I with p;_1 < p; and b, € range(p;).

Then p = Ule Pr is an isomorphism from 2 to B. |

5.2 Dense orderings

Definition 5.2.1. A dense ordering is a set of formulae ® that satisfy the following sentences.

Ve—x <z

VaVyVz((z <y Ay < z) > x < 2)
VeVy(z <yvae=yvy<zx)
VaVy(x <y - Iz(z <z A 2 <y))
Vrdyr <y

Vriyy < x

22

This set of sentences is denoted by ®jo.-4-

Theorem 5.2.2. Any two countable dense orderings without endpoints are isomorphic. That is, a dense
ordering without endpoints is a model of ®;,.4.

Proof: By the previous lemma, it suffices to show that any two countable dense linear orderings are partially
isomorphic.
Set A = (A, <) and B = (B, <B) be countable dense linear orderings.
Claim: I : A =, B for I = {p | p € part(2,B) and dom(p) is finite}.
Proof of claim: Since p =g eI, I # .
First we check that it satisfies the forth property.
For p € I, suppose dom(p) = {a1,...,a,}.
Note that 2 puts an order on aq, . . ., a,, which is equivalent to the ordering that 9 puts on p(a1), ..., p(an).
So for a € A, 2 determines where a is relative to aq, ..., a,,
Since B is dense, there is some b € B with the same position, but with respect to p(a1),...,p(ay).
So p u {(a,b)} is a finito partial isomorphism extending p with a in its domain.
The back property is proved similarly.
Since we have a partial isomorphism, we have an isomorphism. |

Definition 5.2.3. A successor ordering is a set of formulae ® that satisfy the following sentences.

Ve(—x =0 < Jyoy = x)
VaVy(ox = oy — z =y)
Ve—ox ==z

Ve—oox ==z

VYe—ooox =x

This set of sentences is denoted by ®,, where o is the successor function. For shorthand notation, for a € A
of 2 a successor structure, we let
a™ =g4.. .04
—

n times

Proposition 5.2.4. Any two models of ®, are finitely isomorphic.

Proof: For every n € N, define a function d,, by

dp: AxA — Nu{0}

m if a™ = ¢ and m < 2"
(a,a’) +— —m ifa’™ =qand m < 2"
o0 else

Suppose that 2 and B are models of ®.
We will show that (I,,)5_; : A = B for

I, = {p e part(A,B) | |dom(p)| < o0, 04 € dom(p), dn(a,a’) = dn(p(a),p(a’)) ¥V a,a’ € dom(p)}

We note that I,, # &, as (04,08) e I,,.
Forth property: Suppose p € 1,41 and a € A.

Case 1: There is an o’ € dom(p) such that d,(a,a’) < 2™.
In this case, choose b € B such that d,(p(a’),b) = d,(a,a).

23

Let ¢ = pu (a,b).
Since p € I,,11, g is an isomorphism preserving distances.
Case 2: There is no such a'.

Choose b such that d,(p(a’),b) = oo for all @’ € dom(p).
Let ¢ = pu (a,b).

The back prorperty is done in a symmetrical fashion. |

Lemma 5.2.5. For a theory T' Lg , the following are equivalent.
1. T is complete
2. Any two models of T' are elementarily equivalent.

Proof: (1.=2.) Let 2,8 be models of T' with ¢ € L§.
Then either p e T or —p e T.
If peT, then A = ¢ and B = @, or else A K ¢ and B H .
Therefore 21 = *B.

(2.=1.) Let ¢ € L§ and suppose A = T

If A = ¢, then B = ¢ for all models B of T', and so ¢ € T'.

If A H ¢, then A = —¢p and B = —¢ for all models B of T, and so —p e T.

Therefore T is complete. |

Proposition 5.2.6.
1. The theory ®F Hora Of dense orderings is complete and R-decidable.
2. The theory ®F of successor structures is complete and R-decidable.

Definition 5.2.7. For a formula ¢, define the quantifier rank to be a function that enumerates the makimum
number of nested quantifiers in .

ar(ep)
ar(—e) :
ar(p v) :
qr(Jze) :

0 if p is atomic
qar(y)

max{qr(y), qr(¢)}
ar(p) +1

Lemma 5.2.8. Let (1,,)%_; : % =~; B. Then for every formula ¢, if ¢ € LY and qr(¢) < n with p € I,, so
that ag,...,a,—1 € dom(p), then A = ¢[ao, ...ar—1] iff B = ¢[p(ag),...,plar—1)].
Proof: This will be done by induction on formulae.
(i.) For ¢ atomic, this is a restatement of a remark proved earlier.
(ii.) If ¢ = —¢ for p € LY with qr(¢) < n, and the result holds for ¢ and p € I, with ag,...,a,_ €
dom(p), then
2 E (,0[(107 s 7a7‘—1] iff A H: ¢[a0a ceey a’?“—l]
iff B H: w[p(a0)7 cee ap(a/Tfl)]
it B = QO[p(a()), cee 7p(a7‘71)]
(iii.) If ¢ = tpo v 11, then qr(¢o), qr(¢1) < qr(p) < n.
The rest of this part is straightforward.

(iv.) Suppose ¢ = 3Jz¢p and ¢ € LY with qr(p) < n, and the result holds for ¢ and p € I, with
ag, - .., ar—1 € dom(p).

24

By the coincidence lemma, we may assume WLOG that ¢ = Juv,1.
Now note that qr(y)) < n — 1, so then
A= plag, .. .,ar—1] iff Ja € A such that A &= Ylaog, .. .,a,-1,4d]
ifft Ja€ A, qel,—1, ¢ O p, aedom(q), AE=Y[ag,...,ar—1,a]
iff da€ A, qel,—1, ¢ p, BE=Yplag),...,plar—1),q(a)]
ifft 3be B, qeI,_1, berange(q), B = ¢¥[p(ag),...,p(ar—1),b]
ift B &= p[plag),...,p(ar—1)]

Definition 5.2.9. For a symbol set S, define ®, := {p € LY | ¢ is atomic or negated atomic}. This set is
finite for all r.

Definition 5.2.10. We introduce some notation to help out with the proof of Fraisse’s theorem.
- For an r-tuple (ag,...,a,—1) € A", we write a.
T
- Let A, 2B be S-structures with a e A" and b € B". Then we write

r

G be Part (2, B) iff p(a;) = b; for i < r defines a partial isomorphism from 2 to B

- Define formulae ¢” ., € L;? such that
b

s

B = 9";,;;[’3] and if A @gvg[a]

then
a—bhe Part(2(, B) which may be extended back and forth n times

These formulae are formally defined by induction on n as below, given 8. The above is shown in the proof

of Fraisse. We again use shorthand below, by letting 2 b= (bo,...,br—1,b).

o= \leed | B glbl)

<)0;4;:1 = Yo, \/{90;,21) | be B} A /\{H”T‘P;,gb | be B}

Since each ®,. is finite, it follows by induction on n that the following set is finite.
{90; ; is an S-sentence and ZT; € B}

Thus the conjunctions and disjunctions are finite, so " , € L?.
B.b

Lemma 5.2.11.
i. ©" , e L% and no) =
Py € L and qr (@%’b> n
-
g B n
ii. B =] 0]

)

Proof: (i.) This is clear by induction on n.

(ii.) For n = 0, this is immediate.
Suppose this holds for n and for all r.

Then for all lT), b’ € B, we have that B = gog . [Z, b'].
bb’

25

So for all ¥ € B, B & \/{go%,gb | be B}[b,b'] and B = HUT@%,gb,[b]'
. n, B Jupp" B}[b].
So B = Yo, \/{go%ﬁgb | be B}[b] and B = A{ U7<‘0f3,2b/ ‘ b e B}[b]

Therefore 9B = 907;}1 [IT)]

)

Theorem 5.2.12. [FRAISSE]
Let S be a finite symbol set and 2, B be S-structures. Then 2 =B iff A =, B.

Proof: By a previous theorem, it suffices to prove the satement for relational symbol sets.
(<) From the above lemma, if 2 ~; B, then for all p € Lj, 2 = ¢ iff B = ¢.
Therefore 21 = *B.

(=) Let A be an S-structure such that 2 = 8.

Claim: If 2 = go;’z[&], then @ — b € Part(2, B).
We prove this claim by induction on n.
Suppose that A = QD?BJT)[g,].

Then for every atomic ¢ e LY, 2 = Yla] iff B = 1/)[12]
Then a — (2 € Part(2,B) by the old remark.
Suppose the result holds for n > 1 and 2 = <p;+’£1 [a].
Fix any a € A.

Since 2A = Vo, \/{ap; .| be B}[a], there is b€ B such that A = <p; Tb[a,a].
»b ,b

Then by the induction hypothesis, @ a — bb € Part(2,B), and so @ — b € Part(2, B).
For S-structures 2,8 and n € N, let

Jn:{a—)g |7’€N, aEAT, ZZEBTa Q['ZQO;E[&]}

)

Then we claim that:
(a) J, < Part(2, B)
(b) (Jn)nen has back and forth properties

(c) if n >0 and A = ¢y <= " 0>, then & € J,, hence J,, # .
8

s

For (a), this was the previous claim.

For (b), let us first check the forth property.
Suppose that p =a — Z € Jpy1 and a € A.
Then 2 = ¢"*[a], so 2 = Vo, \/{oY . | be B}[a].
en A Ml s0 A = Vo V@Y . | be Bl

So there is some b € B such that 2 = w; - [a,a).
b

)

Soaa— Zb € J, and extends p to a.
Now let us check the back property.
Suppose that p =4 — 17; € Jn+1 and b e B.
Since 2 = /\{Hvrgog - | be B}[a], there is a € A such that A = 90; Tb[& al.
»b »b
That is, aa— Z b e J, with b in its range.

For (c), suppose that 2 = 8.
If n > 0, then B = @i, so as A = i, clearly J, # .

26

This proves the claims.
Therefore (J,,)nen : A =5 B. []

Fraisse’s theorem implies that any two dense linear orderings are elementarily equivalent S-structures.

6 Computability

6.1 Turing machines

Definition 6.1.1. A Turing machine is a finite program with finitely many states that has access to a
read-only (oracle) and a read-write (work) infinite tape.

Definition 6.1.2. A Turing program is a finite list of instructions of the form
qi XY q;ZD1 Do
where ¢;, g; are states, X,Y,Z € {0,1} and Dy, D; € {L, R}.

Example 6.1.3. Suppose that a Turing machine is in state ¢; and is reading X on the oracle tape and Y’
on the work tape, and if ¢; XY'¢q;ZD; D, is an instruction in the program, then the following programs add
1.

¢101g21RL

QQOOquRL

Proposition 6.1.4. We can effectively list all the Turing programs.

Let Py, P1,... be such a list. To each program P; we associate a partial function ; as follows:

- If P; started with n 4+ 1 1’s on the work tape, nothing on the oracle tape, with the work tape reading
head at the left-most 1 and in state ¢;, eventually reaches a halting state gg, then we write ¢;(n) |, and let
©;(n) be the number of 1’s on the work tape.

- If P; started on input n and never halts, we write ¢;(n) 1.

Definition 6.1.5. A set A < N is termed computable iff there is i € N such that x4 = ¢;, where x is the
traditional characteristic function.

Definition 6.1.6. A set A — N is termed computably enumerable iff there is i € N such that W; =
dom(gs) = {n | giln) 1} = A,

- Now we have Wy, Wy, ... as an effective listing of all unige c.e. sets.

Definition 6.1.7. A function f: N — N is termed partial computable iff there is i € N such that f = ;.
- f is computable iff it is partial computable and dom(p;) = N for the same ¢
- f is total iff it is defined for all input values

So as to alleviate tedious proofs, we accept Church’s thesis for Turing machines.

Definition 6.1.8. For s,z,y € N, we write ¢, s(z) = y (and @, s(z) |) iff program P. started with input x
and empty oracle tape, halts within s steps and outputs y. If after s steps this program has not halted, we
write e s(z) 1.

Definition 6.1.9. Define the standard pairing function (which is injective) by

(, NxN —> N
(z,y) — (@ +2zy+y*+3z+y)

Then a binary relation R is termed computable iff {{z,y) | (z,y) € R} is computable.

27

Definition 6.1.10. We write that A < 3; (and say “A is X1") iff there is a computable relation R(z,y)
such that for all k € N, z € A iff there is y € N such that R(z,y).

Theorem 6.1.11. A set A is c.e. iff A is Xy.

Proof: (=) If A =W,, then x € A iff x € W, iff there is s such that z € W ;.
So A is X.

(«) If A is X4, then there is a computable relation R(z,y) such that = € A iff there exists y such that
R(z,y),

Consider the program P that on input x asks, for each y € N in turn, whether (z,y) € R and halts with
output y for the first y with affirmative response.

Since R is computable, by Church’s thesis there is an index e such that P = P,, so A = W,.

That is, A is c.e.]

Theorem 6.1.12. A non-empty set A is c.e. iff it is the range of a computable function.

Proof: (<) Suppose A = range(f) for f computable.
Then n € A iff there is an x such that f(z) = n, so A is ¥y, and hence c.e.

(=) Suppose A = W, is non-epmty.
For a € A, define f((z,s)) = {* " Ve

Then f is computable and has range A. |

Theorem 6.1.13. There is no effective listing of the computable functions.

Proof: Suppose that fo, f1,... is an effective listing.
Then g(n) = f,(n) + 1 would be computable.
But g # f,, for any n, so such a list cannot exist. |

Definition 6.1.14. Define the following sets:

K = {6 | 906(6) l}
Ko = {{e;n) | pe(n) |}

Theorem 6.1.15. K is not computable

v (z)+1 zeK
0 else

Proof: If K were computable, so would g(z) = {

So g = . for some e, and g is total.
Then @.(e) |, so pc(e) = g(e) = gc(e) + 1, a contradiction. [|

Corollary 6.1.16. Kj is not computable.

Definition 6.1.17. For sets A, B, we write A <,,, B (and say “A is many-one reducable to B") iff there is
a computable function f such that z € A iff f(x) € B. In the case where such a function f is injective, we
write A <; B (and say “A is one-reducable to B).

Therefore we have that K <,,, Kj.

Theorem 6.1.18.
1. If A <,,, B and B is computable, then A is computable.
2. If A<,, B and B is c.e., then A is c.e.

28

Proof: Suppose that A <,,, B via a function f.
(1.) Suppose that B is computable. To compute whether x € A, first compute f(z), then compute
whether f(x) € B.

(2.) If B is c.e., then B = W, for some e.
So x € Aiff f(x) € W, iff there is s such that f(z) € W, .
So B is X1, therefore c.e. |

Theorem 6.1.19. [s —m —n THEOREM]
If U(x,y) is a partial computable function on two variables, then there exists an injective function f such

that U(z,y) = @) (y)
- This theorem shows that Ky <,, K.

Definition 6.1.20. The sets K and K are termed complete, that is, they are able to uniformly compute
any c.e. set.

6.2 Turing reducibility

Note that if A is a non-computable c.e. set, then A <,, A, which complicates things. Turing reducibility
circumvents this difficulty.

Definition 6.2.1. For sets A, B, we write A <p B iff there is a Turing program P, such that if B is on the
oracle tape and P, started on input n (i.e. n + 1 on work tape) and halts after finitely many steps with

1 on work tape if n e A
Oon tapeifn¢ A

Then we write ®Z = A.

Remark 6.2.2. If program P, with oracle B started with input = and halts after s steps with y on the work
tape, then we write ®Z (z) = y (and ®Z(z) |). Therefore if ®Z(x) = y then there is some finite segment
(convex set) o < B such that ®7(z) | also.

Definition 6.2.3. For a set A c N, define the jump of A by
A= o | 04(x) 1)
We say that a y is A’-computable iff y € A’, or equivalently, that A computes .

Proposition 6.2.4. [PROPERTIES OF THE JUMP|
1. Aisce. in A
2. A <T A
3. If Bisce. in A, then Bc A’
4. If B<7 A, then B’ <p A’

Definition 6.2.5. If & <y A < @&"” and A’ =p ¢, then we say that A is low. If A <r @' and A’ = ",
then we say that A is high.

Remark 6.2.6. Note that all computable sets are low. Also, if A = @f, then A is high.

29

6.3 Special non-computable sets

First we wish to construct a low set that is not computable. We will build this set A in stages by finite
binary strings a,, and ultimately A = |, {a}.

At each stage s + 1 we wil have a;11 D a,. Then A will not be computable, but will be @’-computable
- to compute whether x € A, we will run the construction using an J-oracle until a stage s for which = €
dom(a), so then = € A iff ag(x) = 1.

As we build A, we must meet for each e € N the requirement R, : A # ¢., which will ensure that A is
not computable - it will be met at stage 2e + 2 of the construction. And in order to make A low, we will
ensure that at stage 2e + 1, it will be decided whether or not ®2(e) |. Since the construction will be ¢’
computable, this will ensure that A’ <r &.

Theorem 6.3.1. There exists a low set A that is not computable.

Proof: Construct the set A in the following manner:
Stage 0: Let ag = [

Stage s + 1 = 2e + 1: Given aj, put to the oracle the question 303t (00 > ag A 7 4(e) 1).
As it is a ¥j-question, we can effectively find the appropriate location to check the @’-oracle.
If we find 1, set a4 = 0.
If we find 0, set as41 = g —~ 0, where —~ indicates string concatenation.

Stage s + 1 = 2e + 2: For n = |as], put to the oracle the question 3¢ (e (n) | Ape(n) =0).
Similarly to above, we can effectively find the appropriate location to check the ¢f'-oracle.
If we find 1, set agy1 = as —~ 1.
If we find 0, set asy1 = as —~ 0.

Let A = [J {as}.
Since the construction is ¢f’-computable, we have that A <r .

The set A is low because ¢J' computes at stage s + 1 =2e + 1 if e A, i.e. if ®(e) |.
If the answer to 303t (0 > as A ®Z,(e) |) was "yes", then e € A, since ®; 3" (e) |, and a1 € A
If the answer was "no", then e ¢ A’.

Indeed, e € A’ implies there exists 7 < A and ¢ € A such that ®7,(e) |.

Let o be such that ¢ S 7, a,, then this ¢ and ¢ would show that the answer would have been "yes".

The set A is not computable.
Assume for contradiction that A = ¢, for some e, and consider step s + 1 = 2e + 2 with n = |a|.

If w.(n) = 0, then there exists ¢ such that ¢. (n) =0, so A(n) = as11(n) =1+ 0.

If p.(n) = 1, then it is not the case that there exists ¢ such that ¢, (n) =0, so A(n) = as41 =0 # 1.
So @, # A. |

Definition 6.3.2. Given a set X ¢ N and n € N, define the following set:

Xlini={zeX | z<n}

Lemma 6.3.3. [LIMIT LEMMA]
A total function ¢ : N — N is @f-computable iff there exists a computable function f : N x N — N such that
for all z e N, g(z) = lim [f(z, s)].

S§—00

Proof: (<) Suppose that g(z) = lir{.lo[f(x, s)] for f computable.

Then ¢’ can compute g(x) as follows:

30

For each s, put to ¥’ the question 3¢(t > s A f(z,t) # f(z,s)).
Since g(z) = lim [f(z, s)], there must be some s for which the answer is "no".
§—00

So after finitely many steps, ¢’ will find such an s, and know that g(z) = f(z, s).

(=) Suppose that g < &&'.
Then g = ®X for some e.
Let {Ks}sew be an enumeration of K.
Define a function f by
®Es () if it is defined
Flavs) = { #@

0 else

Note that <I>£(s (x) is computable, as it is bounded by s steps.

Since g(z) = ®X (x), there is some initial segment o K and some tq such that g(z) = ®Z, ().

Since {K} is a c.e. approximation to K, there is a stage ¢; such that Ky, | |o| = K | |o].

Let s = max{tg, t1}.

Then ®5;(z) = @5 (z) = g(x), and ®K: () |.

So f(x,s) = g(x). [|

Definition 6.3.4. If ‘I)éfs(”) | for some Turing program P, at s steps, we call the largest number of X on
the oracle tape that was queried the use of the computation.

Definition 6.3.5. Define the following set, for e € N.
Xlel = {¢e, x) | ze X}

Next we wish to construct a low c.e. set that is not computable. We will build A in steps, such that
Asi1 D As, and A = lim [A;]. In the end A will satisfy the following conditions for all e € N.
§—00

for non-computability P.: A # o,
for being low N, : 3%s(®2, (e) |— @ (e) |)

When A will meet all of N, we will use an auxiliary function f(e,s) = 1 whenever @ég(e) } and 0
otherwise, so that A’(e) = lirrolc[f(e, s)]. Then we will have that A’ is limit computable, and so A’ <r ¢'.

Theorem 6.3.6. There exists a low c.e. set A that is not computable.

Proof: Let x. s be witnesses at stage s so that z. = lim [z, 5| exists with A(ze) # @e(ze).
- 5— 00

Construct A as follows.
Stage 0: Let r(e,0) = 0 and z. o = {e, 0).

Stage s 4+ 1: Suppose e s+1(Zes) | and e s+1(xe,s) = 0 for some P, that is not satisfied.

Enumerate z. s into Agy1, so that P. may be declared satisfied.
For all e < s, if (1)2';111(6) 1, let r(e,s + 1) be the use of the computation.

For all i < s, let x; 41 be the least y such that y € NIl with y ¢ Ay; and y > r(e,s + 1) V e <.

Let A= lim [4,].
5—00
For each e, there is at most one stage s when z. ; is enumerated into A.
If X. s is enumerated into A at stage s, then P, is satisfied, and there is no further enumeration.

For all e € N, the limit lim [r(e, s)] exists and is finite.
§—00

Let s be a stage where, for ¢ < e, if z;; is ever going to be enumerated into A, then it has happened
by stage s.

31

Then by above, such an s exists.

Suppose there is a stage s’ > s where (e, ') # 0.

Then @2;',(6) l, and r(e, s') is the use of the computation.

As ¢ > sand all z.; > r(e, s) for unsatisfied P, that might be satisfied, there will be no enumeration
below r(e, s’) in A, so e = ®A(e) and 7(e,t) = r(e,s’) for all t > s'.

e,s’ T

To meet Ny, check if @3; (0) | at some stage s.
If this happens, do not enumerate 0 into A below (e, s).
The N, conditions for e € N are all met.

Let s be such that r(e, s) = tlingg[r(e,t)].

Then if r(e, s) # 0, then @2@ (e) = ®4(e) for all t > s by the above discussion.
If r(e,s) = 0, then @éi(e) 1 for all t > s.

To meet Py, i.e. to ensure that A # ¢, wait until a stage s when ¢ (0) | and ¢ s(0) = 0.
If this never happens, then 0 ¢ A, so A(0) = 0 # ¢o(0).
If at stage s we have ¢ 5(0) | and ¢ s(0) = 0, then we enumerate 0 € As41, 80 A(0) =1 # 0 = (0).
If ®s(e) | and ®25(e) # 2 (e), then at stage t > s, some x < r(e, t) was enumerated into A,.
The P, conditions for e € N are all met.
Let s be such that r(i, s) = tliﬁlg)[r(i,t)] for all i < e.
Then z.; = x5 for all t > s.
Let 2, = tlirg[me,t].
If p.(xe) | and @e(ze) = 0, then @e(xe,) | and @e(xe,) = 0 for some ¢ > s.
At such a stage t, if P. was not yet satisfied, we enumerate z., into A, so A(ze) # @e(ze).
If P, was already satisfied, then ¢, (z¢.5) | with @c(x.3) = 0.
Moreover, z. ; € A for some § < t, 50 A(Ze,5) # Pe(Te,3)-
If we(xe) # 0, then @ i (ze) # 0 at any ¢ after z.; = ..
Thus z. ¢ A, so A(x.) =0 # @c(x.).

Therefore A is not computable, low, and c.e. |

32

	First-order logic syntax
	Definitions
	Meaning
	Validity

	Sequent calculus
	Consistency
	Completeness
	Ideas of Leopold Lowenheim and Thoralf Skolem
	Elementary classes
	Abstraction and simplification

	Programming logic
	Heuristic
	Formal

	The limits of first-order logic
	Undecidability
	Axiomatization
	Representation
	Incompleteness

	Elementary equivalence revisited
	Partial and finite isomorphisms
	Dense orderings

	Computability
	Turing machines
	Turing reducibility
	Special non-computable sets

