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0.0 Motivating remarks

Topology is the study of continuity. It may be equivalently defined as:

1. The study of topological spaces and their properties which are invarint under topological equivalences
A topological equivalence may be a homeomorphism, homotopy equivalence, cobordism, etc.

2. Rubber sheet geometry
We may then pose the heuristic question: what properties of a surface are invariant under trans-

formations that involve only stretching and bending, and not cutting, tearing or gluing? For example, we
find that

∼= 6∼=

The study of topology in this class will be concerned with the study of machines:

{
topological

spaces

}
M

{
algebraic
objects

}
Then it should follow that X ∼= Y =⇒ M(X) ∼= M(Y ).

Example 0.0.1. The Euler characteristic is an old example of an algebro-topological invariant. For X a
convex polyhedron, it follows that

(# of faces of X)− (# of edges of X) + (# of vertices of X) = 2

Consider the sphere, with different representations as a polyhedron.

6− 12 + 8 = 2 9− 16 + 9 = 2

9− 16 + 9 = 2 4− 4 + 2 = 2

This course will focus on two specific machines, with a third if time permits:

π1 : {topological spaces} → {groups}
H : {topological spaces} → {graded abelian groups}

QFT2 : {category of cobordisms of 1-dim manifolds} → {algebras}

The first is termed the fundamental group and the second denotes homology. We will study cellular and
singular homology.
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Example 0.0.2. There are several questions to be asked of the nature of invariants:

· Does M(X) 6∼= M(Y ) imply that X 6∼= Y ?
An old problem asked if Rn ∼= Rm, for n 6= m. With homology (and compactification), it is easily shown
that Rn 6∼= Rm for n 6= m.

· How good, or complete, is a given invariant M?
Another old problem (with recent resurgent interest) asks if X is an n-dimensional compact manifold without
boundary, and there exists a homotopy equivalence f : X → Sn, then is X homeomorphic to Sn? This is
termed the generalized Poincare conjecture, and is true. It has been proved in parts by:

n = 3 : Perelman, Hamilton, Ricci
n = 4 : Freedman
n > 5 : Smale

1 Point-set topology

1.1 Foundations

Definition 1.1.1. A topological space is a pair (X, τ), where X is a set and τ is a collection of subsets of
X such that:

1. ∅, X ∈ τ
2. arbitrary unions of elements of τ are in τ
3. finite intersection of elements of τ are in τ

The elements of τ are termed open sets, and for U ∈ τ , U c = X \ U is termed a closed set. Note that not
closed does not imply open, and not open does not imply closed.

A topology is often presented as generated by some collection of subsets of X, say B, for which every
x ∈ X must be in an element of B, and ∅, X ∈ B. Then the topology generated by B is given by closing B
under arbitrary unions and finite intersections of elements of B.

Example 1.1.2. These are some examples of topologies.

· The standard topology on R: The topology generated by {(a, b) : a < b ∈ R}
· The metric topology: For (M,d(·, ·)) a metric space, let Bc,r = {m ∈M : d(c,m) < r} be the open ball

of radius r centered at c. Then the metric topology is the topology generated by {Bc,r : c ∈M, r ∈ R>0}
· The Zariski topology: For A a commutative ring, let Spec(A) be the set of prime ideals of A, and I an

ideal of A. Define V (I) = {P ∈ Spec(A) : P ⊇ I}, and then the Zariski topology on A is generated by
{V (I) : I is an ideal of A}, which contains all the closed sets in the topology.

Consider further the Zariski topology, and let A = C[x], the single-variable polynomials over C. As a
prime ideal in C[x] is an ideal generated by irreducible polynomials, we have that

Spec(A) = {〈x− α〉 : α ∈ C}

Note that for any α ∈ C, V (〈x − α〉) = {〈x − α〉}, and so every point in Spec(A) is closed. Hence all open
sets in the Zariski topology of A are of the form C \ {finite number of points}, and therefore no open set
separates two points in this topology, and so it is not Hausdorff.

1.2 Morphisms

Definition 1.2.1. Let X,Y be topological spaces, and f a map from X to Y . Then f is termed continuous
iff f−1(U) ⊂ X is open, for U ⊂ Y open.

A bijective map f : X → Y with f, f−1 continuous is termed a homeomorphism, and we write X ∼= Y .
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Example 1.2.2. Consider a link in R3, and an unlink in R3.

∼=

The homeomorphism is given by simply mapping one ring of the link to one ring of the unlink, and the other
to the other. However the homeomorphism cannot be associated with a deformation in R3.

There are several common constructions of topological spaces.

· The product topology: let X,Y be topological spaces. Give X × Y the topology generated by the set
{U × V : U ⊆ X open, V ⊆ Y open}
· The quotient topology: Let X be a topological space and Y a set, with f : X � Y surjective. Define a

topology on Y by U ⊆ Y open iff f−1(U) ⊆ X is open.

Example 1.2.3. The Hopf fibration gives a way of describing the homeomorphic spaces S3/S1 ∼= S2.

1.3 The quotient topology

Using the definition for an open set in the quotient topology as given above, we choose an equivalence relation
∼ on the elements in X. Then the quotient topology is denoted Y = X/ ∼.

Example 1.3.1. Let X be the unit square on R2. Define a relation ∼ on X be identifying the top and
bottom edges of the square in the same direction. Then Y is a cylinder of length 1 and circumfrence 1, with
f : X → Y the transforming map.

X = Y = X/ ∼ = =

Open sets in X do not always correspond to open sets in Y . For instance, the open ball B0 of radius .3 in
X around the point (.5, 1) is an open set in X, but its image in Y is not. This is because B((.5, 1), ε) 6⊆ f(B0)
in Y for all ε > 0 . However, the union of the open balls around (.5, 1) and (.5, 0) in Y , or simply the open
ball around (.5, 1) in Y , as they are the same point in Y , is an open set in Y , and so is its preimage in X.

open

f−−→

not open open

f−1

−−−→

open

Example 1.3.2. Using the idea presented above, of identifying edges of the square in R2, we may construct
a number of classical surfaces.

= cylinder = torus = projective plane

= Mobius strip = Klein bottle

Definition 1.3.3. Let X be a topological space. Then X is termed connected if and only if X may not be
expressed as X = V ·∪W , for V,W ⊆ X open nonepmty sets. The relation ·∪ indicates disjoint union by
construction, i.e. V ∩W = ∅.
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Example 1.3.4. The union of the graph of these two functions, X = f(R>0) ∪ g(R>0), is not connected.

g(x) = 0

f(x) = 1/x

Definition 1.3.5. Let X be a topological space. Then X is termed path-connected if and only if for any
two points x, y ∈ X, there exists a continuous map f : [0, 1]→ X such that f(0) = x and f(1) = y.

Note that if X is path-connected, then X is connected, but the converse does not necessarily hold.

Example 1.3.6. The space below X = f(R>0)∪ {(0, y) : y ∈ [−1, 1]} is connected as it is the closure af a
continuous function, but not path connected, as for p(0) = x on the vertical strip and p(1) = y somewhere
on the graph of f , any path p(t) between the two does not converge as t→ 0+.

f(x) = sin(1/x)

Definition 1.3.7. A space X is termed compact if for any open covering {Uα}α∈I of X, there exists a finite
subcover.

A space X is termed sequentially compact if any sequence of points in X has a convergent subsequence,
using the metric topology of X.

These are in fact equivalent definitions of compactness.

1.4 CW-complexes

Example 1.4.1. We have already seen a cell complex, the torus T 2, given by

T 2 = S1 × S1 = =

a

a

b b =

a

a−1

b b−1

The corners are 0-cells, the sides are 1-cells, and the shaded area is a 2-cell. The construction is done in
several steps:

X0 = {∗} is a point, the 0-skeleton of the cell complex. Then take two 1-cells and glue them to
X0 by their boundaries, to get X1.

X1 = is two loops, the 1-skeleton of the complex. Then take a 2-cell and glue it to X1 via

ϕ : ∂D2 = S1 → X1

a

ba

b

→ a b

X2 = T 2, the 2-skeleton of X = D2 tX1/
(
s ∈ ∂D2 ∼ ϕ(s) ∈ X1

)
= D2 tϕ X1.
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Definition 1.4.2. In general, a CW-complex X is built inductively from X0 upward, following:
· Start with the 0-skeleton X0, a discrete topology
· For every n > 1, specify some number of n-cells enα for α ∈ In, the indexing set

· Specify gluing maps ϕα : ∂Dn
α = Sn−1 → Xn−1

· Construct Xn =
⊔
α∈In

(Dn
α tXn−1)

/
s ∈ ∂Dn

α ∼ ϕα(s) ∈ Xn−1

Stopping at the desired n, it will be that Xn = X, a finite-dimensional complex.

Example 1.4.3. The triple torus may be represented as a CW-complex, by noting that it is essentially three
tori glued together. Begin with three separate tori, each with a hole, and identify the commonly labeled
edges of the holes.

a

a

b b
g

h

c

c

d d
h

i

e

e

f f
i

g =

a

b a

b
c

d

c
de

f

e

f g

i
h

The border, which will be the 1-skeleton of the complex, simplifies to the wedge product of six circles, as
all outside 0-cells are identified, and so:

X0 = {∗}, then take six 1 cells and glue them by their boundaries to X0

X1 = the wedge product of six circles. Take a 2-cell and glue it to X1 via ϕ : ∂D2 → X1 given by

ϕ :

fef

e

d c d c b

a

ba

7→ a

bc

d

e f

This ordering on ∂D2 is taken from the 12-sided figure above.

Example 1.4.4. The n-sphere Sn may be constructed in two different ways. One is to do it inductively, by
X0 = {∗, ∗}, and for each n > 1, Xn = Dn

1 tDn
2 t Sn−1/

(
∂Dn

1 ∼ Sn−1, ∂Dn
2 ∼ Sn−1

)
.

Sn =

Dn
1

Dn
2

Sn−1

A simpler way to construt Sn is to let X0 = {∗}, and Xi = ∅ for 1 < i < n. Then X = Xn = Dn t {∗}/s ∈
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∂Dn ∼ ∗. So the boundary of Dn is drawn to the single point ∗ to create Sn.

∗

Dn

Definition 1.4.5. Let X be a CW-complex. Then there exists a topological invariant χ(X), termed the
Euler characteristic of X, given by

χ(X) =
∑
n even

(number of n-dim. cells of X)−
∑
n odd

(number of n-dim. cells of X)

Example 1.4.6. Here is the Euler characteristic for some complexes that we have seen.

χ(Sn) =

{
2 if n is even

0 if n is odd
χ(T 2) = 0

Definition 1.4.7. The real projective space of dimension n, denoted RPn, may be thought of as the set of

lines in Rn+1 through the origin, or as Sn/x ∼ −x. The same way that the sphere Sn was defined recursively,
so may RPn be defined recursively:

RPn = Dn t RPn−1/ϕ
ϕ : ∂Dn = Sn−1 → RPn−1

x 7→ [x]

where [x] = {x,−x}, i.e. all points are identified with their antipodes. Further, we find that

χ(RPn) =

{
1 if n is even

0 if n is odd

Definition 1.4.8. The complex projective space of dimension n, denoted CPn, may be thought of as the

set of complex lines in Cn+1 through the origin, or as S2n+1/S1. The same way that Sn and RPn were
defined recursively, so may CPn be defined:

CPn = D2n t CPn−1/ϕ
ϕ : ∂D2n = S2n−1 → CPn−1

λx 7→ x for all λ ∈ U(1)

The sphere may be seen as embedded in the complex projective space, by

S2n+1 ⊆ Cn+1 = {(v1, . . . , vn+1) ∈ Cn+1 :
∑
i

|vi|2 = 1}

Note that (v1, . . . , vn+1) = (v, w) for v ∈ Cn and w ∈ C, in which case on the sphere S2n+1 we have
|v| =

√
1− |w|2. Next we may use U(1) to fix the phase of w 6= 0, i.e. assume that w is real. Then the set

{(v, w) : w ∈ R, |v| =
√

1− |w|2} = D2n with boundary where w = 0, and hence ∂D2n = S2n−1.

Therefore by gluing ∂D2n to Cpn−1, we get CPn−1 = S2n−1/U(1). This also gives that χ(CPn) = n+ 1.

1.5 Standard operations on cell complexes

Definition 1.5.1. Product: For X,Y CW-complexes, the product X × Y is a CW-complex with cells that
are the cartesian products of the cells of X and Y . For example,

X =

e0
x,0

e0
x,1

e1
x Y =

e0
y,0

e0
y,1

e1
y X × Y = e1

x

e1
y
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The cells of X × Y are given by:

0-cells : e0
x,0 × e0

y,0, e
0
x,0 × e0

y,1, e
0
x,1 × e0

y,0, e
0
x,1 × e0

y,1

1-cells : e1
x,0 × e1

y, e
1
x,1 × e1

y, e
1
y,0 × e1

x, e
1
y,1 × e1

x

2-cells : e1
x × e1

y

Definition 1.5.2. Quotient: For X a CW-complex and A a subcomplex of X, the quotient X/A consists
of the cells of X \A along with an extra 0-cell. For example, we may quotient by the equator of a sphere.

X = A = X/A =

Let X,Y be topological spaces with x0 ∈ X and y0 ∈ Y .

Definition 1.5.3. Wedge sum:
(X,x0) ∨ (Y, y0) = X t Y/x0 ∼ y0

Definition 1.5.4. Suspension:

SX = X × [0, 1]
/
{x}×{0}∼{x′}×{0}
{x}×{1}∼{x′}×{1}

For example, note that SSn = Sn+1.

Definition 1.5.5. Smash product: Let X be based at x0 and Y at y0.

X ∧ Y = X × Y/X ∨ Y = X × Y/{X × {y0} ∪ {x0} × Y }

For example, note that Sn ∧ Sm = Sn+m.

2 Homotopy theory

2.1 Retracts and deformations

Definition 2.1.1. Let X,Y be topological spaces with f, g : X → Y continuous maps. A continuous map
H : [0, 1]×X → Y such that

H(·, 0) : X → Y = f(·)
H(·, 1) : X → Y = g(·)

is termed a homotopy between f and g. This relationship is denoted f ∼ g or f
H∼ g. Note that homotopy

is an equivalence relation.

Definition 2.1.2. Let X,Y be topological spaces. A map f : X → Y is termed a homotopy equivalence iff
there exists a map g : Y → X such that g ◦ f ∼ idX and f ◦ g ∼ idY . Note that homotopy equivalence is an
equivalence relation.

We will be interested in classifying spaces up to homotopy equivalence.

Definition 2.1.3. Let X be a topological space. A continuous map f : X → X, which for some A ⊆ X has
f |A = idA, is termed a retraction onto A.

For X,A, f as above, with the addition that f is homotopy equivalent to idX , the map f is termed a
deformation retraction. Further, a deformation retraction onto A constitutes a homotopy equivalence be-
tween A and X:
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Let ι : A ↪→ X be the inclusion map. Then

f ◦ ι = idA

ι ◦ f = idX

Example 2.1.4. Let A = S2 and the space X be defined as

X = (S2, ∗) ∨ (I, {0}) =

Then the map f : X → X given by
s ∈ S2 7→ s ∈ S2

t ∈ I 7→ {∗}

is a deform retraction onto A. Further, the homotopy map between f and idX is given by H : X× [0, 1]→ X,
for which

Ht :
s ∈ S2 7→ s ∈ S2

r ∈ I 7→ tr
f = H0 : X × {0} → X

idX = H1 : X × {1} → X

Hence the space X and A are homotopy equivalent.

Example 2.1.5. Not all retractions are deformation retractions. For example, the space X = • • · · · •
that consists of n distinct points may be retracted, but not deformation retracted, completely onto one of
those points •.

Example 2.1.6. Considering the shapes of the latin alphabet (without serifs) as one-dimensional, we may
classify them by homeomorphism and homotopy type.

[A] = {A,R} [A] = {A,D,O, P,Q,R}
[B] = {B} [B] = {B}
[C] = {C,G,L,M,N, S, U, V,W,Z} [C] = {C,E, F,G,H, I, J,K,L,M,N, S, T, U

[D] = {D,O} V,W,X, Y, Z}
[E] = {E,F, T, Y }
[H] = {H,K}
[I] = {I, J}

[X] = {X}
[P ] = {P}
[Q] = {Q}

Example 2.1.7. For GL+(n,R) the set of n × n positive invertible matrices over R, by scaling the deter-
minant to 1,

GL+(n,R)
deformation retraction−−−−−−−−−−−−−−−→ SL(n,R)

Definition 2.1.8. Let X,Y be topological space. Then X is termed contractible iff X ≈ {∗}. A map
f : X → Y is termed null homotopic iff f ≈ constant map.

Proposition 2.1.9. Let (X,A) be a CW-pair with A contractible. Then q : X → X/A is a homotopy
equivalence.

9



Example 2.1.10. Any connected graph is homotopy equivalent to a wedge sum of circles. For example,

X = A = X/A = = S1∨S1

As here, a maximal spanning tree A works to show the previously made claim. Moreover, this observation
demonstrates that any CW-complex is homotopic to a CW-complex with one 0-cell.

Proposition 2.1.11. Let (X,A) be a CW-pair and Y another CW-complex. Given f : A → Y , we may
glue X and Y along A via f . That is,

X tf Y = X t Y/a ∈ A ∼ f(a) ∈ Y

Further, if g : A→ Y is another map with f ≈ g, then X tf Y ≈ X tg Y .

Example 2.1.12. Consider the folllowing application of the previous proposition. Let X be S2 with a
diameter A dropped down. So X has three 0-cells, four 1-cells, and two 2-cells. Let Y be a knotted line.

X = Y =
f : A→ Y by id
g : A→ Y by x 7→ ∗ of Y

Then gluing X to Y by way of f and g results in

X tf Y = X tg Y =

Note that the sphere with a dropped diameter becomes a pinched torus in X tg Y . The previous proposition
tells us that these two CW-complexes are homotopic to each other.

2.2 Path homotopy

Definition 2.2.1. Given a topological space X, a path γ in X is a continuous map γ : I → X. The
endpoints of γ are γ(0) and γ(1).

Given paths γ, ρ inX with γ(0) = ρ(0) = x0 ∈ X and γ(1) = ρ(1) = x1 ∈ X, a fixed endpoint homotopy of paths
between γ and ρ in X is a map H : I × I → X such that H(s, 0) = γ(s) and H(s, 1) = ρ(s).

x0

x1γ(s)

ρ(s)

Note that H(t, 0) = x0 and H(t, 1) = x1 for all t ∈ I. Here we write γ ≈ ρ via H, which is an equivalence
relation on paths with given enpoints x0, x1. This fact may be checked in a straighforward manner:
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· Refelexivity: γ(s) ≈ γ(s) via H = id
· Syymetry: γ(s) ≈ ρ(s) implies ρ(s) ≈ γ(s) via H(s, 1− t)
· Transitivity: γ(s) ≈ ρ(s) and ρ(s) ≈ τ(s) implies γ(s) ≈ τ(s) by H ′(s, t) =

{
H1(s,2t) t∈[0,1/2]
H2(s,2t−1) t∈[1/2,1]

On such paths we have a kind of multiplication, if the paths are composable, that is if γ(1) = ρ(0). If

this holds, then we may define γ(s) · ρ(s) = τ(s) =
{

γ(2s) s∈[0,1/2]
ρ(2s−1) s∈[1/2,1]

For example,

γ(s)
ρ(s) →

τ(s)

This multiplication is not associative, but is rather homotopy associative. Consider a triple af paths
f, g, h, wtih f(1) = g(0) and g(1) = h(0). Then (f · g) · h 6= f · (g · h), but (f · g) · h ≈ f · (g · h) via H.

(f · g) · h =


f(4s) s ∈ [0, 1/4]

g(4s− 1) s ∈ [1/4, 1/2]

h(2s− 1) s ∈ [1/2, 1]

f · (g · h) =


f(2s) s ∈ [0, 1/2]

g(4s− 2) s ∈ [1/2, 3/4]

h(4s− 3) s ∈ [3/4, 1]

H : I × I → X

f
f

g

g
h

h

s = 0

s = 1

t = 0 t = 1

Definition 2.2.2. Given a topological space X 3 x0, let π1(X,x0) be the set of homotopy equivalence
classes of paths which start and end at x0 (i.e. loops based at x0).

Theorem 2.2.3. The set π1(X,x0) is a group, with the product [f ][g] = [fg].

Proof: The binary operation on this group, composition, is clear. Above we showed that the multipliciation
is associative, i.e. ([f ][g])[h] ≈ [f ]([g][h]).

Now suppose that [f ] = [f ′]. Let us check that [fg] = [f ′g]. Now f ≈ f ′, so there exists a homotopy
H : I × I → X such that H0 = f and H1 = f ′. Multiplying both these maps by g, we have

fg =

{
f(2s) s ∈ [0, 1/2]

g(2s− 1) s ∈ [1/2, 1]
f ′g =

{
f ′(2s) s ∈ [0, 1/2]

g(2s− 1) s ∈ [1/2, 1]

Define a homotopy G : I × I → X given by

G(s, t) =

{
H(2s, t) s ∈ [0, 1/2]

id(2s− 1, t) s ∈ [1/2, 1]

Then G shows that fg ≈ f ′g, meaning that [fg] = [f ′g].

The identity of this group exists as [cx0
], the equivalence class of all paths homotopic to the constant path

at x0. It is clear that [fcx0
] = [cx0

f ].

For inverses, if f(s) is a loop at x0, then f̄(s) = f(1− s) is its inverse. It is easily checked that [f ][f̄ ] = [cx0 ],
through the homotopy H.

H(s, t) =

{
f(2st) s ∈ [0, 1/2]

f̄((2s− 1)t) s ∈ [1/2, 1]

11



This shows that π1(X,x0) is indeed a group. �

Remark 2.2.4. If X is path connected, then π1(X,x0) = π1(X,x1) for any two basepoints x0, x1 ∈ X.
This is made clear by defining a path γ on X with γ(0) = x0 and γ(1) = x1, for which γgγ̄ is a loop at x1,
if g is a loop at x0.

2.3 The fundamental group of S1

Proposition 2.3.1. π1(S1) = Z.

Proof: Consider the map p : R → S1 given by r 7→ (sin(2πr), cos(2πr)). Observe that it is possible to

cover S1 by open sets {Uα} such that p−1(Uα) is o disjoint union of open sets in R, each of which maps
homeomorphically onto Uα.

S1

R

Uα

p−1(Uα)

Let Φ be our potential isomorphism, given by

Φ : Z → π1(S1, (0, 1))

r 7→ [p ◦ f̃ ]

where f̃ is any path in R from 0 to r. Now we check that this defines a homomorphism. Clearly 0 7→ [c(0,1)].
Next observe that

Φ(r + s) = [p ◦ f̃r+s]
Φ(r)Φ(s) = [p ◦ f̃r][p ◦ f̃s] = [p ◦ (f̃r · f̃s)] = [p ◦ f̃r+s]

Hence Φ is the desired isomorphism, and π1(S1) = Z. �

Lemma 2.3.2. Let Y be a topological space, and F : Y ×I → S1 a continuous map. A lifting F̃ : Y ×{0} → R
of F may be extended uniquely to a lift F̃ : Y × I → R.

Proof: Let N ⊆ Y be an open neighborhood of y0 ∈ Y . Suppose that {Uα}α∈J is a cover of S1. Then each
(y0, t) ∈ Y × I has an assigned product neighborhood Nt × (at, bt), such that F (N × (at, bt)) ⊆ Uα for some
α ∈ J .

By the compactness of y0 × I, a finite number of Nt × (at, bt) cover y0 × I. Label those indeces 0 < t0 <
t1 < · · · < tm = 1, such that {Nti × (ati , bti) : i = 1, . . .m} covers y0 × I. Now redefine N =

⋂m
i=0Ni, so

for each i, F (N × [ti, ti+1]) ⊆ Uα, for some α ∈ J . For each i = 0, . . . ,m − 1, let Ui be the Uα for which
F (N × [ti, ti+1]) ⊆ Uα.

Assume inductively that F̃ has been constructed up to N × [0, ti]. Then as F (N × [ti, ti+1]) ⊆ Ui, there
exists Ũi ⊆ R such that p : Ũi → Ui is a homomorphism, and F̃ ({y0} × {ti}) ∈ Ũi. Now reduce the size of
N so that F̃ (N × {ti+1}) is completely in Ũi. Then on N × [ti, ti+1] define F̃ = p−1 ◦ F .

After a finite number of steps, we get N 3 y0 and a lift F̃ such that the diagram below commutes.

12



N × I S1

R

F

F̃ p

�

Proposition 2.3.3. The map Φ : Z→ π1(S1) that maps n to the path from 0 to n in R is an isomorphism.

Proof: Left as an exercise. �

The fact that π1(S1) = Z has several important consequences, with the fundamental theorem of algebra
and the Poincare-Hopf Index theorem.

Corollary 2.3.4. [Fundamental theorem of algebra]
If f(z) ∈ C[z], then f(z) has a root in C.

Proof: Suppose that f(z) = zn + a1z
n−1 + · · · + an−1z + an has no roots in C, so normalize it by setting

f(z)← f(z)
|f(z)| , and consider the following function along concentric circles on C.

fs(r) =
f(re2πis)

|f(re2πis)|
s

r

Note that fr : S1 → S1, and that f0(s) is the constant loop on S1. Varying r gives a homotopy of loops
in S1, so define R > |a1|+ · · ·+ |an| and R > 1. Then on the circle where |z| = R, we have

|zn| = Rn = R ·Rn−1 > (|a1|+ · · ·+ |an|)|zn−1| > |a1z
n−1 + · · ·+ an|

Define a new function gt(z) = zn+t(a1z
n−1+· · ·+an), so by our assumption, gt(z) has no roots on |z| = R,

for 0 6 t 6 1. Going from t = 1 to t = 0 gives a homotopy between fr(s) and f̃r(s) = pt(re
2πis)/|pt(re2πis)|.

This function, f̃r(s) = re2πisn/|re2πisn|, when t = 0, is associated to the polynomial zn. But when t = 0,
f̃r(s) > n ∈ π1(S1), and hence [0] = [n]. This contradicts the above. �

Definition 2.3.5. Let X be a surface, i.e. a 2-dimensional differentiable manifold with no boundary. Let V
be a vector field on X which vanishes only at discrete points. For x0 a zero of the vector field and N ⊂ X an
open neighborhood containing x0 and no other zeros, we may view the vector field on N as a vector field on
R2. Then define the winding number I(x0) of x0 to be the number of counter-clockwise cycles of the vector
field along a loop in N around x0.

Example 2.3.6. Consider a vector field on the sphere S2, and x0 as the north pole.

x0

x0
=⇒ I(x0) = 1

Theorem 2.3.7. [Poincare-Hopf index theorem]
Let X be a surface, V a vector field on X, and S ⊂ X the set of zeros of X. Then∑

x∈S
I(x) = χ(X)

13



2.4 The functor π1

Definition 2.4.1. Let f : (X,x0) → (Y, y0) be a based map of topological spaces (i.e. f(x0) = y0). Then
there exists an induced map f∗ : π1(X,x0) → π1(Y, y0), with [γ] 7→ [f ◦ γ]. Moreover, this is a group
homomorphism, and may be viewed functorially as coming from the application of π1.

π1(X,x0) π1(Y, y0)

(X,x0) (Y, y0)

f∗

f

π1

it remains to check that f∗ is well-defined. Suppose that H : I × I → X is a based homotopy between loops
γ, γ′ in X. Then

[f ◦ γ] = [(f ◦H) ◦ γ] = [f ◦ (h ◦ γ)] = [f ◦ γ′]
This follows as f ◦ H is a homotopy between f ◦ γ and f ◦ γ′. Now check that f∗ is indeed a group
homomorphism. First note that f∗[cx0 ] = [f ◦ cx0 ] = [cy0 ], and next

f∗([γ][γ′]) = f∗([γγ
′]) = [f∗ ◦ γ][f∗ ◦ γ′] = f∗[γ]f∗[γ

′]

This is the desired result. Composition works as follows:

γγ′ =

{
γ(2s) s ∈ [0, 1/2]

γ(2s− 1) s ∈ [1/2, 1]

Definition 2.4.2. Let (X,x0) be a based space, with (X,x0)
f−−→ (Y, y0)

g−−→ (Z, z0). Then π1 is termed a
functor if and only if the following conditions hold:

1. id∗ : π(X,x0)→ π1(X,x0) is the same as id : π1(X,x0)→ π1(X,x0)
2. g∗ ◦ f∗ = (g ◦ f)∗

Lemma 2.4.3. There are no retractions r : D2 → ∂D2.

Proof: Suppose that such a retraction exists. Let ι : ∂D2 → D2 be the inclusion map. Pick x0 ∈ ∂D2 as a
basepoint. Consider the folowing sequence of maps:

∂D2 D2 ∂D2
ι r

r ◦ ι

Then by assumption, ι ◦ r = id|∂D2 . Now apply the functor π1 to the above diagram to get the following
diagram:

π1(∂D2) π1(D2) π1(∂D2)
ι∗ r∗

r∗ ◦ ι∗

= = =

Z 0 Z

From the definition of π1, we know that r∗ ◦ ι∗ = (r ◦ ι)∗. However, the only maps Z→ 0→ Z are the zero
maps, so this composition is the zero map. From previously, r ◦ ι = id|∂D2 , so (r ◦ id)∗ = id : Z → Z. This
contradicts the fact the composition was the zero map. �
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Theorem 2.4.4. [Fixed point theorem, Brouwer]
Let f : D2 → D2 be a continuous map. The there exists x ∈ D2 with f(x) = x.

Proof: Suppose that there exists f : D2 → D2 with f(x) 6= x for all x ∈ D2, i.e. no fixed points. Then we

may define a retraction r : D2 → ∂D2 by letting r(x) be the intersection point of the ray from f(x) through
x with ∂D2. This is a well-defined (as no f(x) = x) and continuous map.

f(x)

xr(x)

Note that for x ∈ ∂D2, r(x) = x, so the map is surjective. Note if we would have chose the arc from x to
f(x), then surjectivity need not necessarily hold. This yields a retraction r : D2 → ∂D2, contradicting the
previous lemma. �

Proposition 2.4.5. Let X be a topological space with a basepoint x0 ∈ A ⊆ X. Let ι : A → X be
the standard inclusion map. If r : X → A is a retraction, then ι∗ : π1(A, x0) → π1(X,x0) is injective.
Furthermore, if r is a deformation retraction, then ι∗ is an isomorphism.

Proof: Suppose that r : X → A is a retraction. Consider (ι ◦ r)∗ = ι∗ ◦ r∗, with

π1(A, x0)
ι∗−−→ π1(X,x0)

r∗−−→ π1(A, x0)

We know that (ι◦r) = idA, meaning that (ι◦r)∗ = idπ1(A,x0). Since (ι◦r)∗ is an isomorphism, ι∗ is injective.

Suppose further that r is a deformation retraction, i.e. there exists H : I×X → X sugh that H0 : X → X = r
and H1 : X → X = idX . Consider any loop γ(s) at x0 ∈ X, and take the family of loops Ht ◦ γ(s) as a
homotopy of loops:

At t = 0, H0 ◦ γ(s) is a loop in A based at x0

At t = 1, H1 ◦ γ(s) is a loop in X based at x0, more specifically, is γ(s)

So we have that [γ] = [H0 ◦ γ] in π1(X,x0), but H0 ◦ γ being a loop in A is the image of ι∗. Therefore the
map ι∗ is surjective, and hence is an isomorphism. �

Example 2.4.6. Let X be contractible, i.e. X ≈ {x0 ∈ X}, with r : X → {x0} a deformation retraction.
Then π1(X,x0) = 0.

Example 2.4.7. Let X = D2 3 x0. Then there exists a deformation retraction from X onto x0.

X =

x0

Proposition 2.4.8. π1(X × Y, (x0, y0)) = π1(X,x0)× π1(Y, y0)

Proof: Any map f : Z→ X ×Y is continuous if and only if its component maps f = (f1, f2) are individually
continuous. So, given a loop at (x0, y0) ∈ X × Y , we have that γ(s) = (γ1(s), γ2(s)), and γ1, γ2 are loops at
x0, y0, respectively. Likewise, any homotopy H : I × I → X × Y of loops is a pair of homotopies between
the coordinate loops. So [γ]→ [γ1]× [γ2] is an isomorphism. �
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Example 2.4.9. The implications of the above theorem are immediate:

π1(T 2 = S1 × S1) = Z× Z
π1(D2 × S1) = 0× Z = Z

2.5 The van Kampen theorem

Definition 2.5.1. Let {Gα}α∈J be a collection of groups. Then ∗
α∈J

Gα = Gα ∗Gβ ∗Gγ ∗ · · · is termed the

free product of groups Gα, and is itself a group. It conforms to the following rules:

1. g ∈ ∗
α∈J

Gα is of the form g = g1g2 · · · gk for gi ∈ Gαi , with gi 6= e and gi, gi+1 not in the same group

2. the empty word is in ∗
α∈J

Gα and acts as the identity

3. multiplication is concatenation of words

Note that the free product of groups is the coproduct on the category of groups.

Example 2.5.2. Z ∗ Z = F2, and in general Z∗k = Fk, the free group on k elements.

Remark 2.5.3. Note that any Gα has a canonical inclusion ια into ∗
α∈J

Gα, given by g ∈ Gα 7→ g ∈ ∗
α∈J

Gα.

Moreover, given any family of homomorphisms {ϕα : Gα → H}, there exists a unique map ϕ : ∗
α∈J

Gα → H

such that the following diagram commutes:

∗
α∈J

Gα H

Gα

ϕ

ϕαια

It follows that ϕ(g1g2 · · · gk) = ϕα1(g1)ϕα2(g2) · · ·ϕαk(gk) for gi ∈ Gαi .

Theorem 2.5.4. [van Kampen]
Let a topological space X be defined as X =

⋃
α∈J Aα, for {Aα}α∈J a collection of open, path-connected

sets in X. Let x0 ∈ Aα for all α ∈ J , with the added conditions that:

1. For all α, β ∈ J , Aα ∩Aβ is path-connected
2. For all α, β, γ ∈ J , Aα ∩Aβ ∩Aγ is path-connected

If 1. holds, then π1(X,x0) = ∗
α∈J

π1(Aα, x0)/ ker(ϕ), for ϕ : ∗
α∈J

π1(Aα, x0) → π1(X,x0) the induced map.

If condition 2. also holds, then ker(ϕ) is generated by elements of the form ιαβ∗(w)ι−1
βα∗(w) for all α, β ∈ J .

Note that we have the inclusion maps

ια : Aα ↪→ X
ιαβ : Aα ∩Aβ ↪→ Aα

Apply the functor π1 to find that ια∗ : π1(Aα, x0)→ π1(X,x0), meaning that {ια∗ : α ∈ J} induces

ϕ : ∗
α∈J

π1(Aα, x0)→ π1(X,x0)

Proof: We want to show that ϕ is surjective, namely that for any γ(s) ∈ π1(X,x0), there exist paths

16



γ1, γ2, . . . , γk with γi ∈ Aαi such that [γ] = [γ1][γ2] · · · [γk]. We prove this part by pictures.

X = Aα ∪Aβ = x0γ

Aα Aβ

Suppose that γ(s) running over I is a loop in both Aα and Aβ as above. It is possible to partition I into
0 = t0 < t1 < t2 < t3 = 1 such that γ([ti, ti+1]) lies completely in either Aα or Aβ . Connect each partition
point γ(ti) to x0 by a path gi. Label the components of the complete path γ.

X = x0γ

Aα Aβ

g1

g2

γ(t2)

γ(t1)

γ1

γ3γ2

Then γ = γ1γ2γ3 = γ1g1︸︷︷︸
∈Aβ

g1γ2g2︸ ︷︷ ︸
∈Aα

g2γ3︸︷︷︸
∈Aβ

, and so γ ∈ Im(ϕ). Hence ϕ is surjective, and the first claim is

satisfied.

Now assume that Aα ∩ Aβ ∩ Aδ is path-connected for any α, β, δ ∈ J . By generalizing the above, any
element γ ∈ π1(X,x0) is in Im(ϕ), so there exist γ1, γ2, . . . , γk with [γ] = [γ1][γ2] · · · [γk] such that each γi is
a loop completely in some Aαi . There are two points to note:

· Suppose that γ1, γi+1 are in the same Aα. Then reducing the factorization [γi][γi+1] → [γiγi+1] does
not change the element of ∗

α∈J
π1(Aα, x0) represented by γ1γ2 · · · γk.

· Suppose that γi ⊆ Aα ∩Aβ . Then γi represents a loop in either Aα or Aβ . Then changing,for example,

[γi] ∈ π1(Aα, x0) to [γi] ∈ π1(Aβ , x0) does change the element of ∗
α∈J

π1(Aα, x0) represented by γ1γ2 · · · γk.

As a result, we want to say that for ιαβ∗ : π1(Aα ∩ Aβ , x0) ↪→ π1(Aα, x0) has ιαβ∗(γi) = ιβα∗(γi), implying
that ιαβ∗(γi)ι

−1
βα∗(γi) = 0, which was the second claim. �

The van Kampen theorem has several consequences.

Proposition 2.5.5. Let X =

n∨
i=1

S1. Then π1(X) = Z∗n = Fn ,the free group on n generators.

Proof: Describe X as a bouquet of n ordered circles, all connected at the point x0. Let U be a small open
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neighborhood around x0, and let Ai = U ∪ S1, where S1 is the ith circle in the bouquet.

X = U = Ai =

As U deformation retracts to x0, Ai deformation retracts to the ith circle S1, for which π1(Ai, x0) =
π1(S1) = Z. The inclusion maps ιij : Ai∩Aj ↪→ Ai induce the maps ιij∗, and these are the 0-homomorphism.
This follows as Ai ∩ Aj = U and U is conractible to x0, hence π1(Ai ∩ Aj) = 0. Therefore ιij∗(w)ιji∗(w) is
always zero, and by van Kampen,

π1(X,x0) =
n∗
i=1

π1(Ai, x0)
/〈
ιij∗(w)ι−1

ji∗(w)
〉

=
n∗
i=1

Z/{0} = Z∗n

�

Example 2.5.6. More generally, the same argument works for X a wedge product of different types of
spheres. For example, if X = S1 ∨ S2, then π1(X,x0) = π1(S1, x0) ∗ π1(S2, x0), where we choose U , A1 and
A2 as below.

X = U = A1 = A2 =

Remark 2.5.7. Even more generally than in the example, if X = A∨B with A and B locally contractible (for
example, topological manifolds) and path-connected spaces, it will follow that π1(X,x0) = π1(A, x)∗π1(B, x0)
by the same argument as above.

Example 2.5.8. Let X = R3\(the Hopf link), for which X ≈ S2 ∨ T2. Then by van Kampen,

π1(X,x0) = π1(S2, x0) ∗ π1(T2, x0) = 0 ∗ Z× Z = Z× Z

This is the free abelian product on two groups. Note that 〈a, b〉 = Z ∗ Z 6= Z× Z = 〈a, b : ab = ba〉, where
the group operation in Z× Z is addition, and a = (0, 1), b = (1, 0).

Remark 2.5.9. Consider the effect on π1 of gluing 2-cells to a CW-complex. LetX be the CW-complex, with
basepoint x0 ∈ X. Form Y by attaching a 2-cell along a map ϕ : S1 → X, so Y = X tϕ e2. Suppose without
loss of (much) generality that ϕ is a based map, so ϕ : (S1, s0)→ (X,x0). Then note that [ϕ] ∈ π1(X,x0).

Y =

x0
ϕ(S1)

e2

X

We use van Kampen to compute π1(Y, x0), in terms of π1(X,x0) and [ϕ]. Let y ∈ e2 be fixed, and set
A1 = X ∪ (e2 \ {y}) and A2 = e2, which are both open. Note that A1 deformation retracts onto X, so
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π1(A1, x0) = π1(X,x0). Also note that A2 does not contain x0, but any other choice that is not y in e2 is a
good basepoint for use in van Kampen.

Van Kampen tells us that π1(Y, x0) = π1(A1, x0)∗π1(A2, x0)/N . Note that π1(A2, x0) = 0 and π1(A1∩A2) =
π1(e2 \ {y}) = Z. Since the triple intersection hypothesis is trivially satisfied, N = 〈ιij∗(w)ι−1

ji∗(w)〉. Next
note that

ι12 : A1 ∩A2 ↪→ A2

ι12∗ : π1(A1 ∩A2) → π1(A2) = π1(X)
ι21 : A1 ∩A2 ↪→ A1

ι21∗ : π1(A1 ∩A2) → π1(A1) = 0

Since π1(A1 ∩A2) = Z and ι21∗ is trivial, we are left with ι12∗ : [1] 7→ [ϕ], so π1(Y, x0) = π1(X,x0)/〈[ϕ]〉.

Example 2.5.10. Consider X = S1 ∨ S1, and let Y = T 2. Then π1(X,x0) = Z ∗ Z = 〈a, b〉, and let
ϕ : S1 → X be given by:

ϕ :

a

ba

b

→ X = a b

Then π1(Y, x0) = 〈a, b : aba−1b−1 = e〉 = Z⊕ Z = Z× Z, as [ϕ] = aba−1b−1 in π1(X,x0).

Example 2.5.11. Let Mg be the orientable surface of genus g, i.e.

Mg = · · ·

For this it is fairly simple to make the cell decomposition, with a map ϕ : ∂e2 → X1.

X0 = • X1 =

b1

a1

bg

ag

X2 = X1
⊔
ϕ

e2 ϕ :
b1

a1

b1a1

bg

ag
→ X1

This construction allows a clear construction of the fundamental group of Mg. Note that for all g > 1, this
group is not abelian.

π1(Mg) = π1(S1 ∨ S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g times

)

/
〈[ϕ]〉 = 〈a1, b1, . . . , ag, bg : a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g = e〉

Example 2.5.12. Consider the projective plane, RP 2, constructed as:

x0 x0

a

a

By this construction, π1(RP 2) = π1(S1)/〈a2〉 = 〈a : a2 = e〉 = Z/2Z. Note that this group has no torsion,
i.e. there exists a loop γ in RP 2 for which [γ] 6= 0, but [γ][γ] = 0.
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3 Covering spaces

In this section, the folowing assumptions will be made about the topological space X:

1. X is path-connected
2. X is locally path-connected, i.e. for all x ∈ X and open sets U ⊆ X containing x, there exists V ⊆ U

such that V is path-connected
3. X is semi-locally simply connected, i.e. for all x ∈ X there exists an open set U ⊆ X containing x

such that the map ι∗ : π1(U, x)→ π1(X,x) induced by ι : U ↪→ X is trivial

Example 3.0.1. Consider the following example of a path-connected but not locally path-connected space.

This next example, a union of circles of radii 1/n centered at (1/n, 0) in R2, is path-connected, locally
path-connected, but not semi-locally simply connected, as every open neighborhood of the point (0, 0) has
non-trivial fundamental group.

3.1 The universal cover

Definition 3.1.1. Let X,Y, Z be topological spaces with continuous maps f : X → Y and g : Z → Y . A
lifting of the map f is a map h : X → Z such that f = g ◦h, or equivalently, such that the following diagram
commutes.

X Y

Z

f

h g

Definition 3.1.2. Let X be a topological space. a covering space of X is a space X̃ along with a map

p : X̃ → X such that there exists an open cover {Uα}α∈J of X for which the space p−1(Uα) is a disjoint
union of open sets in X̃, each of which is mapped homeomorphically onto Uα, for all α ∈ J .

Proposition 3.1.3. Given a topological space X, its universal covering X̃ is path-connected.

Proof: Let γ be a path in X starting at x. Consider the family of paths γs(t) = γ(st) for s, t ∈ [0, 1].

x
γ

X

[cx] [γs]
[γ]

X̃
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By moving from s = 1 to s = 0 we may move from the class [y] to the class of the constant path [cx] at x.
Hence any path [γ] ∈ X̃ may be connected to the constant path [cx] ∈ X̃, so X̃ is path-connected. �

Proposition 3.1.4. Given a topological space X, its universal covering X̃ is simply-connected.

Proof: Recall that if p∗(π1(X̃, [cx])) ⊆ π1(X,x), then π1(X̃, [cx]) = 0 iff p∗(π1(X̃, [cx])) = 0. So let γ be a

path in X with [γ] ∈ Im(p∗). First note that elements in Im(p∗) are loops in X that lift to loops in X̃.

Suppose that there exists a path γ′ with [γ′] = [γ] in X, such that there exists a path γ̃′ in X̃ with
p ◦ γ̃′ = γ′. Observe that we can lift γ by the construction in the path-connectedness proof. Then apply the
homotopy lifting property between γ and γ′ as the starting data using this observation. Then γ and hence
γ′ are null-homotopic in X, implying that γ̃′ is null-homotopic in X̃, meaning that X̃ is simply connected.
�

Example 3.1.5. Consider the following spaces and their universal coverings.

X = S1 p : R→ S1

X̃ = R t 7→ eit
X = S1 × S1 p : R2 → S1 × S1

X̃ = R2 (t, s) 7→ (eit, eis)

For X = S2, X̃ = S2, giving for X = S1 ∨ S2 a universal covering of spheres attached to the real line R at
every integer:

R

For X = S1 ∨ S1, the covering space X̃ is the Cayley graph:

For X = M2, the surface of genus two, the covering space X̃ is R2, by tiling R2 with octagons. This is
possible if the geometry of R2 is made hyperbolic.

X = =

b1

a1b1

a1

b2

a2 b2

a2

X̃ = = R2

Remark 3.1.6. Given a space (B, b) and its universal cover (B̃, b̃), we assign the fundamental group π1(B, b)
to (B, b), and the trivial group {0} to (B̃, b̃). Then for every subgroup H 6 π1(B, b) there exists a covering

21



(B̃H , b̃H) of (B, b). This relation may be presented in diagram form:

(B, b)

(B̃H , b̃H)

(B̃, b̃)

π1(B, b)

H

{0}

pH

p

6
6

To construct B̃H , we put an equivalence relation on B̃. We say that [γ] ∼ [γ′] if and only if γ(1) = γ′(1)
and [γγ̄′]. This defines an equivalence relation, letting us state that B̃H = B̃/ ∼ and b̃H = [b̃].

To see that B̃H
pH−−−→ B is a cover, note that if [γη] ∈ Uα[γ] ∼ [γ′η] ∈ Uα[γ′], then Uα[γ] ∼ Uα[γ′].

3.2 Equivalence of covers

Definition 3.2.1. Suppose that (E, e0) and (E′, e′0) both cover (B, b0), by p and p′, respectively. A morphism
between these two covers is the data of a continuous map ϕ : E → E′ such that the following diagram
commutes.

E E′

B

ϕ

p p′

If the map ϕ is a homeomorphism, then ϕ is termed an isomorphism of covers.

The following two lemmae will be used in the proof of the succeeding proposition.

Lemma 3.2.2. [Lifting criterion]

Let (E, e0)
p−−→ (B, b0) be a covering and f : (Y, y0) → (B, b0) a continuous based map. There exists a lift

f̃ : (Y, y0)→ (E, e0) of f if and only if Im(f∗) 6 Im(p∗).

Lemma 3.2.3. [Uniqueness statement]
With the conditions as in the previous lemma, let f̃ and f̃ ′ be two such lifts of f , such that there exists a
point y ∈ Y with f̃(y) = f̃ ′(y). Then f̃ = f̃ ′.

Proposition 3.2.4. Two covers (E, e0)
p−−→ (B, b0) and (E′, e′0)

p′−−→ (B, b0) are isomorphic if and only if
p∗(π1(E, e0)) = p′∗(π1(π1(E′, e′0)).

Proof: Suppose that ϕ : (E, e0) → (E′, e′0) is an isomorphism of covers. Apply the functor π1 to the
commutative diagram to get another commutative diagram.

E E′

B

ϕ

p p′

π1−−→

π1(E, e0) π1(E′, e′0)

π1(B, b0)

ϕ∗

p∗ p′∗

The map ϕ∗ is still an isomorphism, and since this diagram commutes, p′∗ ◦ ϕ∗ = p∗, so Im(p∗) = Im(p′∗).

Now suppose that p∗(π1(E, e0)) = p′∗(π1(π1(E′, e′0)), and apply the lifting criterion to get a commutative
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diagram:

(E′, e′0) (B, b0) (B, b0)

(E, e0) (B, b0)

(E′, e′0)

p′ id

p̃′
p id

p

p̃
p′id

p′

p

By the uniqueness of lifts, we have that p̃ ◦ p̃′ = id. By a symmetric diagram, with the spaces E and E′

interchanged, we have that p̃′ ◦ p̃ = id. Therefore ϕ = p̃ = (p̃′)−1 is the desired isomorphism of covers. �

Example 3.2.5. Let B = S1 ∨ S1, for which π1(S1 ∨ S1) = 〈a, b〉. Let H = 〈a〉 ⊂ 〈a, b〉. Then

BH =

a

b b

Note that this diagram is not maximally symmetric, as moving the basepoint does not preserve symmetry.
Next let B = S1 ∨ S1 again, but with H = 〈a, b : a3 = b3 = ab = ba〉. Then

BH =

a

b

a

b

a

b

This is a 3-sheeted cover.

Theorem 3.2.6. [Nielsen-Schreier theorem]
Every subgroup of a freely-generated group is free.

Remark 3.2.7. Suppose that F is a free group on n generators. Then F = π1(S1 ∨ · · · ∨ S1), the wedge
product of n 1-spheres. Moreover, any connected cover of S1 ∨ · · · ∨ S1 is a connected graph.

It follows that given a maximal subtree of a connected graph, quotienting by this subtree yields a bouquet
of circles. Hence any subgroup of F is π1(S1 ∨ · · · ∨ S1), the wedge product of k 6 n 1-spheres.

3.3 Higher homotopy groups

Definition 3.3.1. Let (X,x0) be a based space. For k > 1, let πk(X,x0) be the set of classes of maps
ϕ : Ik → X such that ϕ|∂Ik = x0, with respect to fixed boundary homotopy, denoted [(Ik, ∂Ik)→ (X,x0)].
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Note that for all πk(X,x0) is a group for all k > 1, where the group action is concatenation of cubes,
Ik = I × · · · × I representing the k-dimensional cube.

      
I

Ik−1 Ik

      

I




Ik−1Ik

X

ϕ ψ

 

{ {

1/2 1/2

Ik−1 Ik

X

ϕ · ψ

Moreover, πk is abelian for k > 1. This can be seen by noting that since ϕ|∂Ik = x0, the whole boundary
of the cube goes to x0, so by thickening and thinning this boundary in certain parts, commutativity may be
demonstrated.

ϕ·ψ = ϕ ψ  ϕ
ψ  

ϕ

ψ
 

ϕ

ψ
 

ϕ

ψ
 

ϕ

ψ
 

ϕ

ψ
 ϕ

ψ  ϕψ = ψ·ϕ

For k = 0, the object π0 has I0 = ∗, and ∂I0 = ∅ - it detects path-connected components of X, and
unlike the other homotopy groups, is not a group.

Example 3.3.2. For the circle S1, we have the following associated groups:

k 0 1 2 3 · · ·
πk(S1) 0 Z 0 0 0

For the sphere S2, we have the following associated groups:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
πk(S2) 0 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2

2 Z12 × Z2 Z84 × Z2
2 Z2

2 · · ·

As these examples show, both the calculation of the homotopy group and the group itself may be very
complex.

Remark 3.3.3. Serre proved that, for all q > 1, there exist k, n ∈ N such that πk(Sn) has q-torsion (i.e. a
subgroup of order q).

Even though higher homotopy groups are very complex, the field of stable homotopy theory studies
lim
n→∞

[πk+n(Sn)]. However, we now move to homology theory for the sake of computability.

4 Homology

To a space X, we associate a countable family of abelian groups Hk(X), for k ∈ N.

4.1 Background

The groups Hk(X) are both very similar and very distinct from the homotopy groups πk(X). For example,

π1(X)ab = H1(X)

That is, the abelianization of π1(X) is equal to H1(X). In general, the Hurewicz theorem states that if j is
the smallest index for which πj(X) 6= 0, it follows that

π0<k6j(X) = H0<k6j(X)
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Example 4.1.1. For the n-dimensional sphere Sn, we have the following homology groups:

k 0 1 2 · · · n− 1 n n+ 1 · · ·
Hk(Sn) Z 0 0 · · · 0 Z 0 · · ·

Example 4.1.2. Let n ∈ N and G be a group (abelian if n > 1). Then there exists a space K(G,n), termed
the Eilenberg-MacLane space, with πk(K(G,n)) =

{
0 k=n
G k 6=n . For G = Z and small n, we have the following:

K(Z, 1) = S1

K(Z, 2) = CP∞

4.2 Singular homology

Consider a space X, with loops embedded in X. Not all have the same properties.

X =

ϕγ

· ∂ϕ = 0, ∂γ = 0
· ϕ 6= ∂(closed subsurface)
· γ is a boundary of a disk in X

We will study spaces that have no boundary and that are not the boundary of a subspace of the whole space.

Definition 4.2.1. For n ∈ N, an n-simplex is the smallest convex set containing n + 1 generic points in

Rn+1 (i.e. not all on a hyperplane in Rn). A simplex is a generalization of a triangle. For example,

0-simplex - point
1-simplex - line segment
2-simplex - triangle
3-simplex - tetrahedron

...

The stanard n-simplex is described as a subset of Rn+1, by

∆n = {(t0, . . . , tn) ∈ Rn+1 : ti > 0,

n∑
i=0

ti = 1}

For example, the standard 2-simplex in R3 is embedded as:

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Definition 4.2.2. Let X be a space. Then Cn(X) is termed the nth chain group of X, with elements
termed chains.

Cn(X) =

(
free abelian group generated by {∆n σ−−→ X} =

{∑
i

aiσi

})
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Here the maps σ, σi : ∆n → X are continous, and ai ∈ Z for all i. Further, we have boundary maps ∂,
which may be extended to Cn linearly, by the following definition:

∂ : Cn(X) → Cn−1(X)

σ 7→
n∑
i=0

(−1)iσ|[x0,...,x̂i,...,xn]

The definition implies that ∂ ◦ ∂ = 0. With these maps, the singular chain complex of X is given by:

· · · Cn+1 Cn Cn−1 · · · C1 C0 0
∂ ∂ ∂ ∂ ∂ ∂ ∂

Definition 4.2.3. With respect to the previous definitions, the kth homology group of X is given by

Hk(X) = ker(∂ : Ck → Ck−1)︸ ︷︷ ︸
contains k-cycles

/
Im(∂ : Ck+1 → Ck)︸ ︷︷ ︸
contains k-boundaries

Remark 4.2.4. If the chain complex of X is exact (i.e. ker(∂) = Im(∂)), then Hk = 0 for all k. Hence Hk

measures the failure to be exact.

Proposition 4.2.5. Let X = {pt}. Then H0 = Z and Hk 6=0 = 0.

Proof: Since X = {pt}, for each n ∈ N, there exists a unique singular n-simplex σn : ∆n → {pt}, so Cn = Z.
The boundary maps ∂ are defined by

∂ : Cn → Cn−1

aσn 7→ a∂(σn) = a

n∑
i=0

(−1)i σn|[v0,...,v̂i,...,vn]︸ ︷︷ ︸
σn−1

=

{
0 n odd

aσn−1 n even

Therefore the chain complex of X is given by

· · · Cn+1 Cn Cn−1 · · · C1 C0 0
∂ ∂ ∂ ∂ ∂ ∂ ∂

· · · Z Z Z · · · Z Z 0

Hn+1 = 0 Hn = 0 Hn−1 = 0 H1 = 0 H0 = Z

0 0 0 0id id id

= = = = =

�

Proposition 4.2.6. The group H0 detects the path-connected components of X. That is, if X has α
path-connected components, then H0(X) =

⊕
α Z.

Proof: Assume that X is path-connected and non-empty, so

H0(X) = ker(∂ : C0 → 0)
/

Im(∂ : C1 → C0) = C0

/
Im(∂ : C1 → C0)

Define a new map ε : C0 → Z by
∑
aipi 7→

∑
ai, where the sums are finite, ai ∈ Z, and pi is a point in X.

This allows us to claim that ker(ε) = Im(∂ : C1 → C0). To check this claim, we prove double inclusion.
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Im(∂) ⊆ ker(ε): Suppose that σ is a singular 1-simplex in X, so ∂σ = σ|v1 − σ|v0 , for σ : [v0, v1] → X.
Then ε(∂σ) = 1− 1 = 0, proving the first part.

ker(ε) ⊆ Im(∂): Suppose that Σaipi is such that ε (σaipi) = 0. This implies that
∑
ai = 0. Next pick a

basepoint x0 ∈ X, and for each pi a path from x0 to pi called γi.

γ1

γ2

γ3

x0

p1

p2

p3

Consider the element Σaiγi in C1, for which

∂
(∑

aiγi

)
=
∑

ai (γ1(1)− γi(0))

=
∑

ai (pi − x0)

=
∑

aipi −
∑

aix0

=
∑

aipi

This proves the second part, and the claim. Now we have an exact sequence:

0 ker(ε) C0 Z 0
ε

Since ker(ε) = Im(∂), it follows that C0/Im(∂) = H0(X) = Z. A special case of the folowing proposition
proves the second statement. �

Proposition 4.2.7. Let X =
⊔
αXα be the decomposition of X into its path-connected components. Then

for any k, Hk(X) =
⊕

αHk(Xα).

Proof: If a singular complex σ : ∆n → X has image in some Xα, then so does ∂(σ). �

4.3 The functoriality of H•(·)
Definition 4.3.1. The statement that H• is functorial means that given f : X → Y , there exists an induced
map f∗ : H•(X)→ H•(Y ) such that

1. For the map idX : X → X, we have (idX)∗ = idH•(X) : H•(X)→ H•(X)

2. For maps X
f−−→ Y

g−−→ Z, we have g∗ ◦ f∗ = (g ◦ f)∗

The map f∗ is defined by first writing the induced maps on chain complexes, given by

f# : Ck(X)→ Ck(Y )

For σ : ∆k → X a singular k-simplex in X, the map f ◦ σ becomes a singular k-simplex in Y . This allows
us to say f# (

∑
aiσi) =

∑
ai(f ◦ σi). It is important to note that f# is a chain map, or a chain morphism,

equivalently, satisfies the property below, which is also equivalent to to the diagram below commuting.

f# ◦ ∂ = ∂ ◦ f# ⇐⇒

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·

· · · Cn+1(Y ) Cn(Y ) Cn−1(Y ) · · ·

∂

∂

∂

∂

∂

∂

∂

∂

f# f# f#
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Remark 4.3.2. The fact that f# is a chain map is crucial to defining f∗. As f# satisfies the property
above, we may check that it indeed induces a map f∗ : H•(X)→ H•(Y ). Suppose that a class [σ] ∈ Hk(X)
is represented by a singular k-simplex σ. It follows that f∗[σ] = [f#σ].

Note that given ∂σ = 0, we have ∂(f#σ) = 0 and f#∂σ = 0.

Further, if σ is the sum of a k-cycle and the boundary of a (k + 1)-chain, then

f∗[σ] = f∗[σ
′ + ∂α]

= [f#(σ′ + ∂α)]

= [f#σ
′ + f#∂α]

= [f#σ
′] + [f#∂α]

= [f#σ
′]

= f∗[σ
′]

The properties given above with f∗ as defined are similarly checked.

Proposition 4.3.3. Suppose that f, g : X → Y are continous and homotopic via H : X×I → Y (so H0 = f
and H1 = g). Then f∗ = g∗.

Proof: Recall that we have the following maps:

f# : C•(X) → C•(Y )
g# : C•(X) → C•(Y )

with
∂ ◦ f# = f# ◦ ∂
∂ ◦ g# = g# ◦ ∂

Now we construct a chain homotopy between f# and g#, given by the operator P : C•(X)→ C•+1(Y ) such
that ∂P + P∂ = g# − f#, or equivalently, so that the following diagram commutes:

· · · C•+1(X) C•(X) C•−1(X) · · ·

· · · C•+1(Y ) C•(Y ) C•−1(Y ) · · ·

∂

∂

∂

∂

∂

∂

∂

∂

f#

g#

f#

g#

f#

g#

PPPP

To construct P , we need to express ∆n × I as a linear combination of simpleces. The general case will not
be done here, but the smallest examples will be presented to give an idea of the procedure.

∆1 × I = =

∆2 × I = = =

Given such a representation of ∆n × I as a sum of n-simplices, we may define P . Choose a generator
σ ∈ Cn(X) to get maps

σ × id : ∆n × I → X × I
H ◦ (σ × id) : ∆n × I → Y
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This induces a map P : Cn(X)→ Cn+1(Y ) that satisfies ∂P +P∂ = g#− f#. Further, since f#[σ] = g#[σ],
it follows that

(g# − f#)[σ] = [g#σ − f#σ] = [∂Pσ − P∂σ] = [0]

Here, Pσ is a boundary, so ∂Pσ = 0. Further, as ∂σ is a boundary, it is no longer a generator, so P∂σ = 0,
and the function has been defined as desired. �

Corollary 4.3.4. If f : X → Y is a homotopy equivalence, then f∗ : Hn(X) → Hn(Y ) is an isomorphism
for all n.

Definition 4.3.5. Let A•, B•, and C• be chain complexes. A short exact sequence of chain complexes is a
pair of chain maps i : A• → B• and j : B• → C•, with i∂A = ∂Bi and j∂B = ∂Cj, such that for each n, each
row in the following diagram is a short exact sequence.

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

0 An+1 Bn+1 Cn+1 0

...
...

...

...
...

...

i j

i j

i j

∂A

∂A

∂B

∂B

∂C

∂C

(1)

Proposition 4.3.6. Let A•, B•, and C• be chain complexes, and 0 → A• → B• → C• → 0 a short exact
sequence of chain complexes. Then this short exact sequence induces a long exact sequence in homology:

· · · j∗−−→ Hn+1(C•)
δ−−→ Hn(A•)

i∗−−→ Hn(B•)
j∗−−→ Hn(C•)

δ−−→ Hn−1(A•)
i∗−−→ · · · j∗−−→ H0(C•)→ 0

Proof: First we need to define the map δ. We will use the diagram presented above in (1). As each row there
is exact, each component map i (and j) is injective (and surjective).

Consider [c] ∈ Hn+1(C•), so c is a cycle in Cn+1, that is, ∂c = 0. Since j is surjective, there exists b ∈ Bn+1

with j(b) = c. And as ∂j = j∂,
j(∂b) = ∂j(b) = ∂c = 0

Therefore ∂b ∈ Bn and ∂b ∈ ker(j). By the exactness of i and j, and as ∂b ∈ ker(j), there exists a ∈ An
such that i(a) = ∂b. Then we define δ[c] = [a].

Now check that this definition makes sense. As i(a) = ∂b, we have that i(∂a) = ∂i(a) = ∂∂b = 0, and as i is
injective, this means that ∂a = 0. Therefore [a] ∈ Hn(A•), which is what we wanted.

Next check this is well defined. Let c̃ = c + ∂c, so c′ = ∂b′ for some b′. If i(ã) = b + ∂b′ and i(a) = b, then
i(ã− a) = b+ ∂b− b = ∂b, and so i∗[ã− a] = [∂b] = 0

This shows that δ is a well-defined homomorphism. To complete the proof, it remains to check that the
sequence produced is indeed long exact. This is a diagram-chasing calculation that involves six calculations,
or three double inclusions, which are omitted here. �
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4.4 Relative and reduced homology

Definition 4.4.1. Let (A,X) be a pair of spaces, that is, A ⊆ X a subspace. Then the relative chain complex
of (X,A) is defined as

C•(X,A) = C•(X)
/
C•(A)

So ∂X,A descends from C•(X) to the quotient, as α ∈ C•(A) implies ∂Xα = ∂Aα. So if c = c′ + α, for
c, c′ ∈ C•(X) and α ∈ C•(A), then ∂c = ∂c′ + ∂α, meaning that ∂c is in the same class as ∂c′ + ∂α in
C•−1(X)

/
C•−1(A).

By construction, there is an induced short exact sequence of complexes:

0 −−→ C•(A)
i−→ C•(X)

j−−→ C•(X,A) −−→

Here i is the inclusion map and j is the quotient map. Further, we then say that H•(X,A) is the homology
of C•(X,A). This produces a long exact sequence, by the previous proposition, in homolgy, termed a long
exact sequence in relative homology:

· · · j∗−−→ Hn+1(X,A)
δ−−→ Hn(A)

i∗−−→ Hn(X)
j∗−−→ Hn(X,A)

δ−−→ Hn−1(A)
i∗−−→ · · ·

Remark 4.4.2. With respect to the above definition, if A is non-empty, closed, and has an open neighbor-
hood deformation retracting onto A, then (X,A) is termed a ”good pair,” and for n > 1, it follows from
excision that H̃n(X/A) = Hn(X,A), where H̃n is the reduced homology of this pair. This implies that there
is a long exact sequence in reduced homology associated to this pair:

· · · j∗−−→ H̃n+1(X/A)
δ−−→ H̃n(A)

i∗−−→ H̃n(X)
j∗−−→ H̃n(X/A)

δ−−→ H̃n−1(A)
i∗−−→ · · ·

Note that for n = 0, we have H̃0(Y ) = H0(Y )⊕ Z for any space Y .

Example 4.4.3. Let X = I, A = ∂I = {0} t {1}, and so X/A = S1. Since I ≈ pt, we have that H̃n(I) = 0
for all n. As for the space A, we have

H̃n({0} t {1}) =

{
Z n = 0

0 else

The long exact sequence of reduced homology of the pair (X,A) ends as follows:

· · · H̃2(S1) H̃1({0} t {1}) H̃1(I) H̃1(S1) H̃0({0} t {1}) H̃0(I) H̃0(S1) 0

0 0 Z 0

= = = =

This directly implies that

H̃n(S1) =

{
Z n = 1

0 else

Example 4.4.4. Compute the homology of Mb/∂Mb. This is an example of the general case that for any
space X, (X, ∂X) forms a good pair. Hence we apply the reduced long exact sequence, and have the following
data initially:

· · · H̃2(Mb) H̃2(Mb/∂Mb) H̃1(∂Mb) H̃1(Mb) H̃1(Mb/∂Mb) H̃0(∂Mb) H̃0(Mb) H̃0(Mb/∂Mb) 0

0 Z Z 0 0

j∗ δ i∗ j∗ δ i∗ j∗

= = = = =
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To get the groups, we used the fact that Mb ≈ S1 and ∂Mb ≈ S1. Then as H̃n(S1) = 0 for all n 6= 1,
in which case it is Z, we have the exact sequence 0 → H̃n(Mb/∂Mb) → 0 for all n 6= 1, meaning that
H̃n(Mb/∂Mb) = 0 for all n > 3.

Since the first j∗ is the zero map, Im(j∗) = 0 = ker(δ), so the first δ is injective. Further, the map i∗ : Z→ Z
takes a generator S1 from ∂Mb to Mb. The action is given by i∗ : a 7→ 2a, as the boundary of Mb maps
twice to the circle S1 that Mb is homotopic to.

Mb = ≈ = S1 ∂Mb =

Therefore this i∗ is injective, so ker(i∗) = 0 = Im(δ). Then δ is injective with an empty image, so δ is the
zero map, implying that H̃2(Mb/∂Mb) = 0.

Since the second δ is the zero map, ker(δ) = H̃1(Mb/∂Mb) = Im(j∗), so the second j∗ is surjective. We also
know that Im(i∗) = 2Z = ker(j∗). This gives a short exact sequence Z→ Z→ H̃1(Mb/∂Mb), meaning that
H̃1(Mb/∂Mb) ∼= Z/ ker(j∗) = Z/2Z.

As for H̃0(Mb/∂Mb), it is clearly 0 from above. This allows us to conclude that:

Hn(Mb/∂Mb) = Hn(RP 2) =


Z n = 0

Z/2Z n = 1

0 else

Remark 4.4.5. Suppose U1, U2 are open sets covering X = U1 ∪ U2. Consider the set

Cn(U1 + U2) = {α+ β : α ∈ Cn(U1), β ∈ Cn(U2)} ⊆ Cn(X)

The boundary map ∂ : Cn(U1 + U2) → Cn−1(U1 + U2) is the standard differential. Note that the map
i : Cn(U1 + U2) → Cn−1(U1 + U2) induces an isomorphism in homology i∗ : Hn(U1 + U2) → Hn(X). This
isomorphism is not canonical, in the sense that there is no one natural way to induce it. To see this, consider
the below situation, with 0-, 1-, and 2-cells as drawn.

U1 U2

U1 U2

U1 U2

i

i

Either way, this produces a short exact sequence of complexes:

0 Cn(U1 ∩ U2) Cn(U1)⊕ Cn(U2) Cn(U1 + U2) 0

x (x,−x) (x, y) x+ y

ϕ ψ
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This in turn induces a long exact sequence in homology:

· · · Hn+1(U1 + U2) Hn(U1 ∩ U2) Hn(U1)⊕Hn(U2) Hn(U1 + U2) Hn−1(U1 ∩ U2) · · ·

Hn+1(X) Hn(X)

δ ϕ∗ ψ∗ δ

∼= ∼=

Moreover, this approach may be generalized to the case that X = U1 ∪ U2 ∪ · · · ∪ Uk canonically.

Example 4.4.6. Calculate the homology groups of CP 2, using the Mayer-Vietoris sequence. First we note
that this is a 4-manifold that is not the boundary of any 5-manifold. Second, we consider the following
construction of this space:

CP 2 = ϕ

D4

CP 1 ≈ S2

∂D4 = S3

U1 = D4

U2 = CP 2 \Bε
U1 ∩ U2 = int(D4) \Bε

1

ε

D4

Above, the gluing ϕ : S3 → S2 is the Hopf map, and Bε is the open ball centered at the center of D4 with
a radius of ε < 1. Such a construction allows us to apply the Mayer-Vietoris sequence. First we state the
homolgies that we already know:

Hn(U1) =

{
Z n = 0

0 else
Hn(U2) ∼= Hn(CP 1) =

{
Z n = 0, 2

0 else
Hn(U1∩U2) ∼= Hn(S3) =

{
Z n = 0, 3

0 else

So most of the groups in the long exact sequence are trivial, but not all. The non-trivial part of this sequence
begins at n = 4, or Hn(CP 2) = 0 for all n > 4. Sections will be considered separately.

· · · H4(U1)⊕H4(U2) H4(CP 2) H3(U1 ∩ U2) H3(U1)⊕H3(U2) H3(CP 2) H2(U1 ∩ U2) · · ·

0 ⊕ 0 Z 0 ⊕ 0 0

δ

= = = =

As the map before the map δ is the zero map, it has zero image, so δ has zero kernel, meaning that δ is
injective. And as the map after δ is also the zero map, it has kernel Z, so δ has image Z, meaning that δ is
surjective. Hence δ is an isomorphsm, and H4(CP 2) = Z. Note that the generator (a cycle) of H4(CP 2) is
the whole space, i.e. the class [CP 2].

For the third homolgy group, both groups to either side of it are zero, so H3(CP 2) = 0 as well.

· · · H2(U1 ∩ U2) H2(U1)⊕H2(U2) H2(CP 2) H1(U1 ∩ U2) · · ·

0 0 ⊕ Z 0

ψ∗

= = =

For the same reasons as above, ψ∗ is an isomorphism, so H2(CP 2) = Z. Here note that the generator (a
cycle) of H2(CP 2) is CP 1, or S2 = Z[CP 1 ↪→ CP 2].

· · · H1(U1 ∩ U2) H1(U1)⊕H1(U2) H1(CP 2) H0(U1 ∩ U2) H0(U1)⊕H0(U2) H0(CP 2) 0

0 0 ⊕ 0 Z Z ⊕ Z

δ ϕ∗

= = = =
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Recall that ϕ : pt 7→ pt ⊕ −pt, so ϕ : [pt] 7→ [pt] ⊕ −[pt]. Hence [1] 7→
[

1
−1

]
, so ϕ∗ is injective. Therefore

ker(ϕ∗) = 0 = Im(δ), so δ is the zero map. This means that the map before δ is injective, directly implying
that H1(CP 2) = 0.

For the last homology group, since CP 2 is connected, H0(CP 2) = Z. Therefore we have the following results,
from whih we may generalize to the k-dimensional complex projective space:

Hn(CP 2) =

{
Z n = 0, 2, 4

0 else
Hn(CP k) =

{
Z n ∈ 2Z, n 6 2k

0 else

Definition 4.4.7. Let X,Y be connected surfaces. The surface X#Y is defined as follows:

1. Remove a contractible 2-disk D1 from X and D2 from Y .
2. Pick a homeomorphism S1 ϕ−−→ S1

3. Glue X \ int(D1) to Y \ int(D2) via ϕ, so

X#Y = X \ int(D1)
⊔
ϕ

Y \ int(D2)

Remark 4.4.8. The connect sum # is well-defined with respect to the choice of ϕ. For example, Kl =
T 2#RP 2, and Mg = T 2# · · ·#T 2︸ ︷︷ ︸

g times

.

Mg = · · · = · · ·

Now compute Hn(Mg) From this construction. Recall that π1(Mg) = Z∗2g, so H1(Mg) =
(
Z∗2g

)
ab

= Z⊕2g.

Hn(Mg) =


Z n = 0, 2

Z⊕2g n = 1

0 else

Definition 4.4.9. Let X be a connected 3-manifold. Then a Heegaard splitting is a way of expressing
X = H1 ∪H2, where H1 and H2 are isomorphic, and ∂(H1) = ∂(H2) = Mg for some g ∈ N.

X = H1 H2

Mg

4.5 Relating π1(X) and H1(X)

Given a topological space X with basepoint x0, there is a natural map h : π1(X,x0) → H1(X) that takes
[f ] to [f ], where f : I → X is a loop based at x0, so ∂f = [x0]− [x0] = 0.

Definition 4.5.1. Suppose that σ, σ′ are two n-cycles in X, and there exists an (n + 1)-cycle τ in X such
that ∂τ = σ − σ′. Then σ is termed homologous to σ′, and the relation is expressed as σ ∼ σ′. That is,
[σ] = [σ′] i]n Hn(X).
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Theorem 4.5.2. The map h : π1(X,x0)→ H1(X) is a group homomorphism, and if X is path-connected,
then h is surjective and ker(h) = [π1(X,x0), π1(X,x0)], and

H1(X) = π1(X,x0)
/

[π1(X,x0), π1(X,x0)] = π1(X,x0)ab

Proof: We make some basic observations first.

Obs.1: If f = cx0
, then f ∼ 0. That is, if f = cx0

, then represents a cycle in C1({x0}), and as we know
H1({x0}) = 0, it follows that f ∼ 0.

Obs.2: f ≈ g implies f ∼ g. That is, the existence of the homotopyH : I × I → X with H0 = f and
H1 = g is the data of a 2-chain σH = σ1 − σ2, given diagrammatically by:

σH :

f

g

cx0
cx0

γσ1

σ2

→ X

∂σH = ∂σ1 − ∂σ2 = (cx0 + g − γ)− (−γ + f + cx0) = g − f ⇐⇒ g ∼ f

Obs.3: f · g ∼ f + g. That is, the map h takes multiplication to addition, or [h(fg)] = [h(f)] + [h(g)].
This may be described by the following diagram:

σ :

f

g
f

g

v0

v2

v1

→ X
where the action of σ

is described by:

f

g
f

g

v0

v2

v1

∂σ = −f · g + g + f =⇒ f · g = g + f − ∂σ =⇒ f · g ∼ g + f

Obs.4: f ∼ −f . This follows from the previous observations.

The above observations imply that h is a well-defined homomorphism from π1(X,x0) to H1(X). Now suppose
that X is path connected. We will now prove that h is surjective.

Let σ be a 1-cycle in C1(X), so σ =
∑
i niσi, for σi singular 1-simpleces and ni ∈ Z. By relabelling, we

may assume that ni ∈ {1,−1}. Further, since f̄ ∼ −f , we may assume that ni = 1 for all i, so σ =
∑
i σi.

Lastly, we assume that ∂σ = 0. This means that for each i such that σi is not a loop, there is a j such that
σj composes with σi.

x z

y
σi σj ∂σi = [y]− [x]

∂σj = [z]− [y]

Hence we may assume that
∑
i σi is a sum of loops in X. Next, for each i, pick a path γi from x0 to σi(0).

γj

γi

x0

σj

σi
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Then by the previous observations, γiσiγi ∼ σi, so σ ∼
∑
i γiσiγi. Hence [σ] ∈ Im(h), and h is surjective.

Next we observe that [π1(X,x0), π1(X,x0)] ⊆ ker(h), as H1(X) is abelian. We claim that ker(h) ⊆
[π1(X,x0), π1(X,x0)]. To see this, first suppose that [f ] ∈ π1(X,x0) and h(f) = 0, which implies that
there exists a 2-chain σ =

∑
i niσi such that ∂σ = f . As above, we assume that n ∈ {1,−1}, and addition-

ally we assume that f appears as a single face of some σi. The σi are 2-simplices, and we may label their
faces as follows:

σi =

1

τi2

0
τi1

2

τi0
→ X

Recall that τij = f for some j. Define a space K = ti∆2/ϕ, where ϕ identifies the faces of the simpleces
that coincide in the image. For example,

τ12

τ11

τ10

τ22

τ21

τ20

σ1

σ2

Im(τ10) = Im(τ22)

=⇒ K = t
/
τ10 ∼ τ22

Then we regard σ as going from K to X. Then it is possible to deform σ : K → X to a map σ′ : K → X such
that σ′ maps all the vertices of K to x0, and agrees with σ on f . This may be done by fixing a path from
each vertex vij to x0, which then defines a homotopy between σ|f∪Ko → X and σ′|f∪Ko → Im(f) ∪ {x0}.
Now we have σ′ : K → X with all σ′ loops at x0, and as σ′ is a class in C2(X), ∂σ′ =

∑
i,j(±1)τij ,

where the τij are loops based at x0, and these loops cancelling in pairs except for f =
∑
i,j(±1)τij . But as

f =
∑
i ∂(σi), it follows that [f ] = 0 in π1(X)ab, since ∂(σ1) = 0 in π1(X)ab. This completes the proof. �

Definition 4.5.3. Let f : Sn → Sn be a map. The degree of f is the integer associated to f∗ in
HomZ(Hn(Sn), Hn(Sn)) = Z. This map is induced canonically:

f : Sn → Sn f∗ : Hn(Sn)→ Hn(Sn)

(id : 1 7→ 1) 7→ 1

(n : 1 7→ n) 7→ n

Example 4.5.4. Consider the map f : S1 → S1 given by eiθ 7→ einθ. Then deg(f) = n.

Definition 4.5.5. Lat γ be a closed simple curve in R2, and p a point not on γ.

fp : S1 → S1

θ 7→
−−−→
pγ(0)

‖
−−−→
pγ(0)‖

Then deg(fp) is termed the winding number of γ around p. The generalization of this map is termed the
Gauss map.

More generally, the above implies that if X,Y are compact connected manifolds of dimension n, Hn(X) =
Hn(Y ) = Z.
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Definition 4.5.6. Let X be a space. Then the Euler characteristic of X is defined as the number

χ(X) =
∑
i

(−1)irank(Hi(X))

Here rank is the dimension of the free part of the argument. This agrees with the Euler characteristic for
CW complexes. Moreover, the nth Betti number of X is rank(Hn(X)).

Definition 4.5.7. Let X be an n-dimensional topological space. An orientation of X is a generator for
Z, that is, either [x] ar [−x]. The space X has no orientation of and only if it has no generator for Z, or
equivalently, if Hn(X) = 0.

5 An introduction to cohomology

5.1 The universal coefficient theorem

Definition 5.1.1. Let X be a topological space. From previously we know that Cn(X), the singular chain
groups of X, fit into the singular chain complex of X:

· · · δ−−→ Cn+1(X)
δ−−→ Cn(X)

δ−−→ Cn−1(X)
δ−−→ · · · δ−−→ C1(X)

δ−−→ C0(X)
δ−−→ 0

Let Cn(X) = HomZ(Cn(X);Z), the let of linear functions on singular n-simpleces valued in Z. This is an
abelian group, or a Z-module. It is also denoted C∗n(X), and is the dual of Cn(X). These groups fit into
what is termed a cochain complex, given by

· · · δ∗←−− Cn+1(X)
δ∗←−− Cn(X)

δ∗←−− Cn−1(X)
δ∗←−− · · · δ←−−

∗
C1(X)

δ∗←−− C0(X)
δ∗←−− 0

The boundary operator is described by δ∗(f)(σ) = (f ◦ δ)(σ), where f ∈ Cn and σ is an (n− 1)-simplex.

Definition 5.1.2. Using the definitions above, define the nth cohomology group of a space X,

Hn(X) = ker(d : Cn → Cn+1)︸ ︷︷ ︸
contains n-cocycles

/
Im(d : Cn−1 → Cn)︸ ︷︷ ︸
contains n-coboundaries

Note in general Hn(X) 6∼= HomZ(Hn(X);Z), although it sometimes might be the case. The actual relation
is given by the following theorem.

Theorem 5.1.3. [Universal coefficient theorem]
Let G be a Z-module. Then there exists a split short exact sequnce

0→ Ext(Hn−1(X);G)→ Hn(X;G)→ Hom(Hn(X);G)→ 0

Equivalently, Hn(X;G) = Hom(Hn(X);G)⊕ Ext(Hn−1(X);G).

Definition 5.1.4. Let G be a Z-module. Define singular cohomology with coefficients in G to be the
cohomology groups of the complex

· · · ←−− Hom(Cn;G)
δ∗=d←−−−− Hom(Cn−1;G)

δ∗=d←−−−− · · · ←−− Hom(C0;G)←−− 0

The groups are denoted Hn(X;G). If G is omitted, it is understood that G = Z.

Definition 5.1.5. The group Ext has several important properties:

1. Ext(H ⊕H ′;G) = Ext(H;G)⊕ Ext(H ′;G)
2. Ext(H;G) = 0 if H is free
3. Ext(Z/nZ;G) = G/nG
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Example 5.1.6. Consider the effect of the universal coefficient theorem with G = Z and X = RP 2.
Then Hn(RP 2) ∼= Hom(Hn(RP 2);Z)⊕ Ext(Hn−1(RP 2);Z). From this and previously known facts we may
calculate the cohomology groups:

H0(RP 2) = Z =⇒ H0(RP 2;Z) = Hom(Z;Z)⊕ Ext(0;Z) = Z
H1(RP 2) = Z/2Z =⇒ H1(RP 2;Z) = Hom(Z/2Z;Z)⊕ Ext(Z;Z) = 0

H2(RP 2) = 0 =⇒ H1(RP 2;Z) = Hom(0;Z)⊕ Ext(Z/2Z;Z) = Z/2Z

Here we see a key facet of cohomology groups. The torsion part of the nth homology group is always shifted
to the (n+ 1)th cohomology group.

Definition 5.1.7. The object H• =
⊕
n

Hn(X;Z) is a graded ring, hence there exists a natural multiplica-

tion on it, termed the cup product, that respects the grading:

` : H•(X)⊗H•(X) → H•(X)(
α ∈ Hi(X)

)
⊗
(
β ∈ Hj(X)

)
7→ α ` β ∈ Hi+j(X)

If we consider the action on the chains,

Ci(X)⊗ Cj(Y ) → Ci+j(X × Y )
σ ⊗ τ 7→ σ × τ yields maps

Hi(X)⊗Hj(X) → Hi+j(X)
Hi(X)⊗Hj(X) → Hi+j(X)

This comes from functoriality. Then the cup product is the composition of the induced map on cohomology
(with X = Y ) with another map ∆∗:

` : Hi(X)⊗Hj(X)→ Hi+j(X ×X)
∆∗−−−→ Hi+j(X)

The second map ∆∗ is induced by the following inclusion map:

∆ : X ↪→ X ×X
x 7→ (x, x)

More explicitly, the cup product is given by:

(α ` β)([v0 v1 . . . vi+j ]) = α([v1 . . . vi]) · β([vi . . . vi+j ])

Multiplication is over Z, and [v0 v1 . . . vi+j ] is a singular (i + j)-simplex in X. This action is well defined
at the level of cohomology. That is, [α] ` [β] = [α ` β]. However, we require coefficients to be ins some ring
for ` to be defined. There is a cup product on H•(X;R) for any ring R.

Example 5.1.8. We wish to compute H•(M2;Z) as a ring. First we compute the cohomology groups.

Via the universal coefficient theorem, Hn(M2;Z) ∼= HomZ(Hn(M2);Z) ∼= Hn(M2), as Hn(M2) is free for
every n, i.e. has no torsion. Therefore the cohomology groups are

Hn(M2;Z) =


Z n = 0, 2

Z⊕4 n = 1

0 else

Next we need to pick out generators for these cohomology classes. For H0(M2;Z), the identity element is
e = 1 ∈ Z, which in H0(M2;Z) corresponds to the function assigning the value 1 to any point in M2.
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For H1(M2;Z/2Z), we first fix a simpliciation of M2 and define transverse curves αi, βi for i = 1, 2.

M2 =

b1

a1

b1

a1

b2

a2

b2

a2

=

b1

a1

b1

a1

b2

a2

b2

a2

=

b1

a1

b1

a1

b2

a2

b2

a2

α1

β1

β2

α2

Here, α1 represents the data of a 1-cocycle by the rule α1(τ) =
{

1 if α1 intersects τ
0 else

, where τ is a 1-simplex.
Now, using the explicit formula for the cup product, we may compute the following:

αi ` βj =

{
1 i = j

0 i 6= j
αi ` αj = 0 ∀ i, j βi ` αj = 0 ∀ i, j

Note that αi ` βj is generator of H2, and is the dual of a fundamental cycle, which is a generator of H2.
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