_

Contents

Ι	Stat 240	2				
1	Introduction to Probability 1.1 Base definitions 1.2 Conditional probability	2 2 2				
2	Random variables 2.1 Measurable functions	2 2				
3	Distributions 3.1 Discrete distributions 3.2 Continuous distributions	3 3 3				
4	Multiple random variables 4.1 Independent random variables 4.2 Variance and covariance 4.3 Functions of a random variable	4 4 4				
5	CDF & PDF 5.1 Cumulative distribution function 5.2 Probability density function	4 4 4				
II	Stat 230	5				
6	Event arithmetic	5				
7	Distributions					
8	3 Distributions					

File I Stat 240

1 Introduction to Probability

1.1 Base definitions

Probability is a quantitative way to manipulate uncertainty..

Definition 1.1.1. A sample space is the connection of all possible results for an experiment. This is denoted by Ω . All elements in a sample space must be unique.

Remark 1.1.2. A sample space may contain more than all the possible results.

Definition 1.1.3. For a given sample space, an <u>event</u> A is any subset of Ω .

 $\begin{array}{ll} \hline \text{Operations of events.} & \text{For } A, B \in \Omega: \\ \hline A \cup B \equiv A + B & A \text{ or } B \\ \hline A \cap B \equiv A \cdot B & A \text{ and } B \\ \hline A - B & \text{ in } A \text{ but not in } B \\ \hline A^C \equiv \Omega - A \\ \hline \text{The set } F \text{ is the collection of all the even} \end{array}$

The set F is the collection of all the events we are interested in for an experiment.

Definition 1.1.4. F is termed a σ -algebra if:

1. For any $A \in F$, $A^C \in F$ 2. If $A_1, A_2, \dots, A_n, \dots \in F$, then $\bigcup_{i=1}^{\infty} A_i \in F$

Remark 1.1.5. (Ω, F) is termed a measurable space. For an Ω , there are two trivial σ -algebras: $F = \{\emptyset, \Omega\}$. If $|\Omega|$ is finite, then the power of Ω is used as the default σ -algebra. A power set of Ω is the set of all subsets of Ω .

1.2 Conditional probability

Definition 1.2.1. Given events $A, B \in \Omega$, the probability of event A occurring, given that event B has occurred, is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

2 Random variables

2.1 Measurable functions

Definition 2.1.1. Given a probability model (Ω, F, P) , a real-valued function X on Ω is termed a measurable function if it is a simple function or a limit of a sequence of simple functions.

Theorem 2.1.2. f is measurable $\iff f^{-1}((-\infty, a]) \in F$ for all $a \in \mathbb{R}$ = $\{\omega \mid f(\omega) \leq a\}$

Definition 2.1.3. A measurable function is termed a <u>random variable</u>.

Definition 2.1.4. The mean value operator E denotes the mean value of a random variable X. It is a linear operator.

3 Distributions

```
Definition 3.0.1. Given a random variable X, define
the <u>cumulative distribution function</u> (cdf): F_X(x)
the probability density function (pdf): f_X(x) = \frac{d}{dx}F_X(x)
```

3.1 Discrete distributions

Definition 3.1.1. A distribution is termed uniformly discrete if the distribution function $m(\omega)$ is defined to be 1/n for all $\omega \in S$, where S is the sample space of finite size n.

Definition 3.1.2. A Bernoulli trials process is a sequence of n chance experiments such that:

1. Each experiment has two possible outcomes

2. The probability of outcome 1, p, is the same for each experiment, and is not affected by previous experiments. The probability of outcome 2 is then q = 1 - p.

Definition 3.1.3. Given n Bernoulli trials with probability p of the first outcome, the probability of exactly j outcomes 1 is

$$b(n, p, j) = \binom{n}{j} n^j q^{n-j}$$

This is also termed the binomial distribution

Definition 3.1.4. Given a Bernoulli trials process repeated an infinite number of times, let T be the number of trials up to and including the first occurrence of outcome 1. Then

$$P(T=n) = q^{n-1}p$$

This is termed geometric distribution for the random variable T.

Theorem 3.1.5. Given a random variable T with geometric distribution and $r, s \ge 0$,

$$P(T > r + s \mid T > r) = \frac{P(T > r + s)}{P(T > r)} = q^{s}$$

Definition 3.1.6. Given *n* Bernoulli trials, let *X* be the random variable that represents the number of experiments up to and including the *k*th result of outcome 1. Then *X* is said to have negative binomial distribution. Note that for k = 1, we have geometric distribution.

Definition 3.1.7. Suppose there is a set of N balls, with k red balls and N - k blue balls. When n balls are chosen, X is the number of red balls in the chosen sample. Then X has hypergeometric distribution, which is given by

$$h(N,k,n,x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$$

3.2 Continuous distributions

Definition 3.2.1. Suppose (Ω, F, P) is a probability model. Let X be a random variable $X : \Omega \to \mathbb{R}$. Then X is termed <u>continuous</u> if $f(x) = \lim_{\Delta x \to 0^+} \left[\frac{P(x \leq X \leq x + \Delta x)}{\Delta x} \right]$ exists for all $x \in \mathbb{R}$.

Remark 3.2.2. Then for all x, P(x) = 0.

Theorem 3.2.3. For a continuous random variable X, the expectation and variance is described by

$$\mu = E[x] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
$$\sigma^2 = V(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Theorem 3.2.4. If X is a continuous random variable and E is any event with positive probability, then define the continuous conditional probability of X given E to be $f(x|E) = \begin{cases} \frac{f(x)}{P(E)} & \text{if } x \in E \\ 0 & \text{else} \end{cases}$

4 Multiple random variables

4.1 Independent random variables

Definition 4.1.1. If $X \perp Y$, then $P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y)$. This implies that $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for all Borel sets A, B.

Definition 4.1.2. If $X \perp Y$, then E[g(x)h(y)] = E[g(x)]E[h(y)] for any measurable functions g, h on \mathbb{R} .

4.2 Variance and covariance

Definition 4.2.1. Let X be a numerically-valued random variable with expected value $\mu = E[x]$. Then the <u>variance</u> of X is given by: $V(X) = E[(x - \mu)^2]$

Note that V is not a linear operator.

Definition 4.2.2. Let X, Y be two random variables. Then the <u>covariance</u> of X and Y is a measure of the interdependency of X and Y. It is given by:

$$Cov(X,Y) = E [(x - \mu_x)(y - \mu_y)] = E [(x - E[x])(y - E[y])] = E[xy] - E[x]E[y]$$

Remark 4.2.3. If Cov(X, Y) > 0, then Y tends to increase as X increases. If Cov(X, Y) < 0, then Y tends to decrease as X increases.

Remark 4.2.4. $Cov(X, X) = V(X) = E[x^2] - E[x]^2$

Remark 4.2.5. If X and Y are independent, then Cov(X, Y) = 0. However, $Cov(X, Y) = 0 \not\Longrightarrow X \perp Y$. **Proposition 4.2.6.** Cov(X, Y) = Cov(Y, X)

4.3 Functions of a random variable

Theorem 4.3.1. Let X be a continuous random variable. Suppose $\varphi(x)$ is a strictly increasing function on the range of X. Let $Y = \varphi(x)$. Suppose X, Y have cdf's F_X, F_Y . Then

 $F_Y(y) = F_X(\varphi^{-1}(y))$

If $\phi(x)$ is strictly decreasing on the range of X, then $F_Y(y) = 1 - F_X(\varphi^{-1}(y))$

If $\phi(x)$ is neither strictly increasing nor strictly decreasing on the range of X, then

 $F_Y(y) = F_X(\varphi_+^{-1}(y)) - F_X(\varphi_-^{-1}(y))$

where $\varphi_{+}^{-1}(y)$ describes φ^{-1} where it is strictly increasing, and $\varphi_{-}^{-1}(y)$ describes φ^{-1} where it is strictly decreasing.

5 CDF & PDF

5.1 Cumulative distribution function

5.2 Probability density function

If X is a continuous random variable with density function f(x), and E is an event with positive probability, then the conditional density function is given by

$$f(x|E) = \begin{cases} f(x)/P(E) & x \in E \\ 0 & else \end{cases}$$

File II Stat 230

6 Event arithmetic

Definition 6.1. Two events A, B are said to be <u>mutually exclusive</u> when $AB = \emptyset$. In this case, either one of two events will occur, or neither will occur.

If A, B are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$.

Theorem 6.2. [DE MORGAN'S LAWS] Let $I \subset \mathbb{N}$. Then for all events or sets A_{α} for $\alpha \in I$,

$$\cdot \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c}$$
$$\cdot \left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}$$

Theorem 6.3. [BAYES' THEOREM] Given events A, B, the conditional probability of A given B may be expressed as

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A^c)P(A^c) + P(B|A)P(A)}$$

7 Distributions

For a discrete random variable X, $f_X(x)$ is the mass probability function. For a continuous random variable X, $f_X(x)$ is the probability density function. For a compound random variable $X = X_1 + \cdots + \overline{X_k}, f_{X_1,\ldots,X_k}(x_1,\ldots,x_k)$ is the joint probability function.

Remark 7.1. The three assumptions made when using a Poisson process distribution are:

- · Independence
- \cdot Individuality
- · Homogeneity

Definition 7.0.1. For a discrete random variable X with probability function f(x), the moment generating function of X is defined to be

$$M(t) = E(e^{tX}) = \sum_{x} e^{tx} f(x)$$

8 Distributions

Notation	Function	Mean	Variance	Moment Gen Func
$\begin{array}{l} \textit{Binomial}(n,p,x) \\ 0$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	$(pe^t + q)^n$
$Bernoulli(p)0$	$p(1-p)^{x-1}$	p	p(1-p)	$(pe^t + q)$
Negative $binomial(k, p, x)$ 0	$\binom{x-1}{k-1} p^k q^{x-k}$	$\frac{kq}{p}$	$\frac{kq}{p^2}$	$\left(\frac{p}{1-qe^t}\right)^k$
$\begin{aligned} Geometric(x) \\ 0$	pq^x	$\frac{q}{p}$	$\frac{q}{p^2}$	$\left(\frac{p}{1-qe^t}\right)$
$\begin{split} & Hypergeometric(N,k,n,x) \\ & k < N, n < N \end{split}$	$\frac{\left(\begin{smallmatrix}k\\x\end{smallmatrix}\right)\left(\begin{smallmatrix}N-k\\n-x\end{smallmatrix}\right)}{\left(\begin{smallmatrix}N\\n\end{smallmatrix}\right)}$	$\frac{nk}{N}$	$\frac{nk}{N}\left(1-\frac{k}{N}\right)\frac{N-n}{N-1}$	-
$\begin{aligned} Poisson(\mu, x) \\ \mu > 0 \end{aligned}$	$\frac{e^{-\mu}\mu^x}{x!}$	μ	μ	$e^{\mu(e^t-1)}$
Notation	PDF	Mean	Variance	MGF
$Uniform(a, b) \\ a < b$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
$\begin{aligned} & Exponential(\lambda) \\ & \lambda > 0 \end{aligned}$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\left(\frac{1}{\lambda}\right)^2$	$\frac{\lambda}{\lambda-t}$
$\begin{aligned} & \textit{Normal}(\mu, \sigma^2) \\ & -\infty < \mu < \infty, \sigma^2 > 0 \end{aligned}$	$\frac{1}{\sqrt{2\pi\sigma}} exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$	μ	σ^2	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$

Definition 8.1. A Bernoulli trials process is a sequence of n chance experiments such that

1. Each experiment has two outcomes, success and failure

2. Probability p for success stays constant for successive experiments, which are independent

Definition 8.2. The <u>binomial distribution</u> is the probability of exactly x successes in n Bernoulli trials.

Definition 8.3. If X is the number of trials until the kth success of a Bernoulli trials process, then X has negative binomial distribution.

Definition 8.4. If X is the number of trials (possibly infinite) until the 1st success of a Bernoulli trials process, then X has geometric distribution.

Definition 8.5. Suppose in a set of N items, k are type A, N - k are type B. If n items are chosen at random, the probability that exactly x will be type A has hypergeometric distribution.

Definition 8.6. If a certain event occurs randomly with probability p over a period of time t at a constant rate of λ per some time interval, then it has <u>Poisson distribution</u>.