Compact course notes Professor: X.Zou, K.Moshksar

STAT 240/2307 FALL 2010 transcribed by: J. Lazovskis

University of Waterloo

PT’Ob(ZbZthy December 13, 2010
Contents
I Stat 240 2
1 Introduction to Probability 2
1.1 Base definitions . . . . . . . . . e 2
1.2 Conditional probability . . . . . . . . . 2
2 Random variables 2
2.1 Measurable functions . . . . . . . . . .. 2
3 Distributions 3
3.1 Discrete distributions . . . . . . . ... 3
3.2 Continuous distributions . . . . . . . . . .. 3
4 Multiple random variables 4
4.1 Independent random variables . . . . . . . . . ... L L e 4
4.2 Variance and covariance . . . . . . . . .. e e e 4
4.3 Functions of a random variable . . . . . . . . . ... e 4
5 CDF & PDF 4
5.1 Cumulative distribution function . . . . . . . . . . .. . .o 4
5.2 Probability density function . . . . . ... oL oL 4
II Stat 230 5
6 Event arithmetic 5
7 Distributions 5
8 Distributions 6



File I
Stat 240

1 Introduction to Probability

1.1 Base definitions

Probability is a quantitative way to manipulate uncertainty..

Definition 1.1.1. A sample space is the connection of all possible results for an experiment. This is denoted
by €. All elements in a sample space must be unique.

Remark 1.1.2. A sample space may contain more than all the possible results.
Definition 1.1.3. For a given sample space, an event A is any subset of 2.

Operations of events. For A, B € Q:
AUB=A+B AorB
AnNnB=A-B A and B
A-B in A but not in B
AC=0-A
The set F is the collection of all the events we are interested in for an experiment.

Definition 1.1.4. F' is termed a o-algebra if:
1. Forany Ac F, A° ¢ F

2. If Ay, Ag,..., Ay, € F, then | JA; € F
i=1

Remark 1.1.5. (Q, F) is termed a measurable space. For an (2, there are two trivial o-algebras: F' = {0, Q}.
If |Q] is finite, then the power of € is used as the default o-algebra. A power set of 2 is the set of all subsets
of Q.

1.2 Conditional probability

Definition 1.2.1. Given events A, B € €, the probability of event A occurring, given that event B has
occurred, is

P(AN B)

P(AIB) = =5 5

2 Random variables

2.1 Measurable functions

Definition 2.1.1. Given a probability model (Q,F,P), a real-valued function X on Q is termed a
measurable function if it is a simple function or a limit of a sequence of simple functions.

Theorem 2.1.2. f is measurable <= f~1((—o0,a]) € F for all a € R
={w| f(w) <a}

Definition 2.1.3. A measurable function is termed a random variable.

Definition 2.1.4. The mean value operator E denotes the mean value of a random variable X. It is a linear
operator.




3 Distributions

Definition 3.0.1. Given a random variable X, define
the cumulative distribution function (cdf): Fx(z)
the probability density function (pdf): fx(z) = 4L Fx(z)

3.1 Discrete distributions

Definition 3.1.1. A distribution is termed uniformly discrete if the distribution function m(w) is defined
to be 1/n for all w € S, where S is the sample space of finite size n.

Definition 3.1.2. A Bernoulli trials process is a sequence of n chance experiments such that:

1. Each experiment has two possible outcomes

2. The probability of outcome 1, p, is the same for each experiment, and is not affected by previous
experiments. The probability of outcome 2 is then g =1 — p.

Definition 3.1.3. Given n Bernoulli trials with probability p of the first outcome, the probability of exactly
7 outcomes 1 is

b(n,p,j) = (n) nlq"

J

This is also termed the binomial distribution

Definition 3.1.4. Given a Bernoulli trials process repeated an infinite number of times, let T be the number
of trials up to and including the first occurrence of outcome 1. Then

P(T=n)=¢""p

This is termed geometric distribution for the random variable 7.

Theorem 3.1.5. Given a random variable T with geometric distribution and r,s > 0,

P(T>r+s)
P(T > s| T>r)=———==¢°
(T>rts| e
Definition 3.1.6. Given n Bernoulli trials, let X be the random variable that represents the number of exper-
iments up to and including the kth result of outcome 1. Then X is said to have negative binomial distribution.

Note that for £ = 1, we have geometric distribution.

Definition 3.1.7. Suppose there is a set of N balls, with k£ red balls and N — k blue balls. When n balls
are chosen, X is the number of red balls in the chosen sample. Then X has hypergeometric distribution,
which is given by

k N—k
h(NJf,n,x) = (m)((]\:l)w)

3.2 Continuous distributions

Definition 3.2.1. Suppose (2, F, P) is a probability model. Let X be a random variable X : @ — R. Then

Pz < X <z + Ax)
Ax

X is termed continuous if f(z) = lim
Az—0+

Remark 3.2.2. Then for all 2, P(z) = 0.

} exists for all z € R.

Theorem 3.2.3. For a continuous random variable X, the expectation and variance is described by



Theorem 3.2.4. If X is a continuous random variable and E is any event with positive probability, then

f@)
define the continuous conditional probability of X given E to be f(z|E) = { P E)E) 1f1x €
else

4 Multiple random variables

4.1 Independent random variables

Definition 4.1.1. If X 1 Y, then P(X < z,Y <y) = P(X < z)P(Y < y). This implies that

P(X €AY € B)=P(X € A)P(Y € B) for all Borel sets A, B

Definition 4.1.2. If X 1Y, then E[g(x)h(y)] = E[g(x)]E[h(y)] for any measurable functions g, h on R.

4.2 Variance and covariance

Definition 4.2.1. Let X be a numerically-valued random variable with expected value yp = E[z]. Then the
variance of X is given by: V(X) = E[(z — u)?]

Note that V is not a linear operator.
Definition 4.2.2. Let X, Y be two random variables. Then the covariance of X and Y is a measure of the
interdependency of X and Y. It is given by:

Cou(X,Y) = E[(x — pa)(y — 1y)]

= El(z - El2])(y — Ely])]

= Elzy] - Elz]Ey]
Remark 4.2.3. If Cov(X,Y) > 0, then Y tends to increase as X increases. If Cov(X,Y’) <0, then Y tends
to decrease as X increases.
Remark 4.2.4. Cov(X,X) =V (X) = E[2?] — E[x]?
Remark 4.2.5. If X and Y are independent, then Cov(X,Y) = 0. However, Cov(X,Y) =074~ X LY.
Proposition 4.2.6. Cov(X,Y) = Cov(Y, X)

4.3 Functions of a random variable

Theorem 4.3.1. Let X be a continuous random variable. Suppose () is a strictly increasing function on
the range of X. Let Y = ¢(x). Suppose X,Y have cdf’s Fx, Fy. Then
Fy(y) = Fx (¢~ '(y))
If ¢(x) is strictly decreasing on the range of X, then
Fy(y) =1-Fx(¢ ()
If ¢(x) is neither strictly increasing nor strictly decreasing on the range of X, then
Fy(y) = Fx(¢3'(y)) — Fx(¥Z'(y))
where w;l(y) describes ¢! where it is strictly increasing, and ¢~ '(y) describes o~
decreasing.

I where it is strictly

5 CDF & PDF

5.1 Cumulative distribution function

5.2 Probability density function

If X is a continuous random variable with density function f(z), and F is an event with positive probability,
then the conditional density function is given by

f(z|E) = { (J)‘(x)/P(E) z€E

else
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6 Event arithmetic

Definition 6.1. Two events A, B are said to be mutually exclusive when AB = (). In this case, either one
of two events will occur, or neither will occur.

If A, B are mutually exclusive, then P(AU B) = P(A) + P(B).

Theorem 6.2. [DE MORGAN’S LAws)]
Let I € N. Then for all events or sets A, for « € I,

(4 0

acl . acl
(na) -y
acl acl

Theorem 6.3. [BAYES’ THEOREM]

Given events A, B, the conditional probability of A given B may be expressed as
P(B|A)P(A)

(B|A)P(Ac) + P(B|A)P(A)

P(AB) =

7 Distributions

For a discrete random variable X, fx(z) is the mass probability function.
For a continuous random variable X, fx(x) is the probability density function.
For a compound random variable X = X1 +--- + X, fx,,.. x,(z1,..., %) is the joint probability function.

Remark 7.1. The three assumptions made when using a Poisson process distribution are:
- Independence
- Individuality
- Homogeneity

Definition 7.0.1. For a discrete random variable X with probability function f(z), the moment generating function
of X is defined to be

M(t) = E(e™*) =3, e f ()



8 Distributions

Notation Function Mean Variance Moment Gen Func
Binomial(n,p, x) n\ z/1 \n-=z _ t n
O<p<lgel—p L) P =p) np np(1 —p) (pe’ +q)
Bernoulli(p) 1 B .
O<p<lgel—p p(1—p) p p(1—p) (pe’ +q)
Negative binomial(k, p, ) =1\ & ok kq kq P 4§
O<p<l,g=1-p p—1)P1 ) p? 1— get
Geometric(x) . q q D
O0<p<l,g=1-p P P p? 1 — get
Hypergeometric(N, k,n, x) (%) (],\L]:f) nk nk 1 k\N-n i
k<N,n<N ) N N N)N-1
Poisson(p, x) e Hu® (et —1)

Notation PDF Mean Variance MGF
Uniform(a,b) 1 ath (b—a)? ebt — eat
a<b b—a 2 12 (b—a)t
Ezxponential(\) N e 1 1 2 A
A>0 A A A—t
Normal(p, o) 1 1 (z—pn 9 { 0242 }
—00 < < 0070'2 >0 271_061']9 5 pu M o exp q put + T5-

Definition 8.1. A Bernoulli trials process is a sequence of n chance experiments such that

1. Each experiment has two outcomes, success and failure
2. Probability p for success stays constant for successive experiments, which are independent

Definition 8.2. The binomial distribution is the probability of exactly = successes in n Bernoulli trials.

Definition 8.3. If X is the number of trials until the kth success of a Bernoulli trials process, then X has
negative binomial distribution.

Definition 8.4. If X is the number of trials (possibly infinite) until the 1st success of a Bernoulli trials
process, then X has geometric distribution.

Definition 8.5. Suppose in a set of N items, k are type A, N — k are type B. If n items are chosen at
random, the probability that exactly x will be type A has hypergeometric distribution.

Definition 8.6. If a certain event occurs randomly with probability p over a period of time ¢ at a constant

rate of A per some time interval, then it has Poisson distribution.




