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1 Model review

Model 1.0.1. Bernoulli(p) Model 1.0.4. Exponential(\)
- Binary outcome - Continuous random variable
fl@) = p"(L-—p flx) = de™
E(@) = p E(z) = 1/A
Var(z) = p(1-—p) Var(z) = 1/)\2
Model 1.0.2. Binomial(n, p) Model 1;0'5.' Multi'nomi'al(n;phpz, -3 Dk)
- n independent Bernoulli trials with x successes - Generalization of binomial
n\ . - Constraints: py +po+ - +pp =1
flx) = (x>p1(1—p) i Xi+Xo+ - +Xp=n
E(x) = np Joint probability function:
!
Var(z) = np(l— _ n T1, @ T,
(2) p(1—p) f(xhx?’“"xk)_xllxg!...xk!pllpf“'pkk

Model 1.0.3. Poisson(\)

2
- Limit of binomial model as n — co Model 1.0.6. Normal(y, o)

e\ _ 1 —(@—p)?
@) = = 10 = el =5
E(xz) = A E(z) = p
Var(z) = A Var(z) = o2

2 Point estimation
2.1 General estimations

Definition 2.1.1. Given X1,..., X, < f(z;8), the likelihood function is L(6) = H fz;6).

The log likelihood is £(0) = log(L(#)).

Definition 2.1.2. The maximum likelihood estimation is § = rrhagc{L(H)} = H}lagc{f(e)}.

Definition 2.1.3. Given X;,..., X, i f(x;0) and 6 € R?, the kth moment is given by

n

B = [ fast)ds = gu(6) = = >t

This is termed the method of moments.

Remark 2.1.4. In general, MLE is superior to MOM.

Definition 2.1.5. For the MLE method, the maximum of the function f may be estimated, given an initial
guess 6y, by:
(6;—1)

0(0;—
Newton’s method: 6;, = 6,1 — Wz—ll) Fisher scoring: 0; = 6,1 — E(z/(/(ezi)l))



3 Distribution theory

Definition 3.0.1. The quantity 6 is an estimator for the quantity 6. In essence, both are random variables.

Remark 3.0.2. The distribution of § = 9(X1, Xa,...,X,) can be found through:
. Simulation (performing the experiment)

2. n-dimensional integration

3. the moment generating function method

4. the asymptotic method (CLT)

-

3.1 Mean-squared error

Definition 3.1.1. If E() = 6, then 6 is an unbiased estimator for . Otherwise, define the bias to be
Bias(0) = E[0] — 6

Definition 3.1.2. If 6; and 0, are both unbiased for 6, then ; is said to be more efficient if Var(él) < V(ég).

Definition 3.1.3. The mean-squared error of 6 is defined to be E[(6 — 6)2], abbreviated MSE. It is used to
evaluate the distribution of the estimator 6.

Theorem 3.1.4. MSE(§) = Bias?() + Var(f)

Theorem 3.1.5. [JAMES-STEIN] } }
Let X ~ N(0,0%I € M,,»,,) for #,0 € R™. For n > 3, MSE(0;5) < MSE(0)/1.r), where

~ - ) 2
GZMLE =X and QJS: (1W)$
xT

The above is termed biased estimation.

Theorem 3.1.6. For Y = X + Xo + - + X, with X; L X for all i # j, mgf, (t) = ngfxi(t).
i=1
Theorem 3.1.7. For Y = aX + b, the moment generating function of V" is mgf, (t) = e'mef  (at).

3.2 Asymptotic approach

Definition 3.2.1. If mgf, () — mgf, () as n — oo, then X,, 2 X.
This is termed convergence in distribution.

Definition 3.2.2. If for every € > 0, P(|z, —c¢| > €) — 0 as n — oo, then X,, -2 c.
This is termed convergence in probability.

Theorem 3.2.3. [CENTRAL LIMIT THEOREM]

Let X1, X, ..., Xn 4 some distribution. For E(X;) = p and V(X;) = 02 < 0o and S, = in,
=1

Sn—ni p anu
—— — N(0,1
Vno 0,1) o o/\/n

Remark 3.2.4. If mgfy (t) — mgfy () as n — oo, then X,, 2 X.

L, N(0,1) for X, =&

n
n

Remark 3.2.5. If F,,(z) — F(z) as n — oo, then X,, -2 X.
Here F,, is the cumulative distribution function for X,,, and F' is the cdf for X.

Theorem 3.2.6. [CHEBYSHEV’S INEQUALITY]
Let X be a random variable and € > 0 such that F(X) = pu and Var(X) = 02 < co. Then

2
ag
Ple-ul <<%



Theorem 3.2.7. [WEAK LAw OF LARGE NUMBERS]

i . . = 1<
Let X1, Xo,..., X, "4 some distribution with E(X;)=pand V(X;) =02 <ooand X,, = E X;. Then
n
i=1
Xn L) M

Remark 3.2.8. For the special case where g =0 and 02 =1,
CLT: /nX, -2 N(0,1)
WLLN: X, 250

4 Hypothesis testing

4.1 Interval estimation

This is the canonical setting:
- Assume that o2 is known.

- We know also that fipypp = fivvor = -
We want to find bounds L, U such that P(L < p < U) =1 — o for a small.

Definition 4.1.1. A quantity that depends upon the given data and a single unknown parameter with
known distribution (and no other unknowns) is termed a pivotal quantity.

Definition 4.1.2. Wrt the above constants, define the threshold value C,, so that (u—Cy, u+Cy) = (L,U).

Definition 4.1.3. The interval (u — Cq, 1t + Cy) is termed the confidence interval.

Theorem 4.1.4. Let 6,, be the MLE of  based on n iid observations. Under certain regularity conditions,

nl0) (0, —0) =+ N(0,1) for I()=E L;; log( f(a:i,e))}

where I(6) is the Fisher information.

Remark 4.1.5. In the above, I(6) may be replaced with I(6,,).

Corollary 4.1.6. Above, \/nI(0) (6, — 0) is an approximate pivotal quantity.
Corollary 4.1.7. Let X be a random variable with E(X) = p and Var(X) = 02. Then
X —p

NG L5 N, 1)

4.2 Hypothesis testing
Hypothesis testing involves the evaluation of the null hypothesis Hy against the alternative hypothesis H 4.

The null hypothesis predicts that there is no relation between observed variables, and the alternative
hypothesis either denies the null hypothesis, or predicts a specific relationship between observed variables.

Definition 4.2.1. Define the following terms:

type I error : reject Hy when Hj is true
type II error . accept Hy when Hj is false
significance level : P(type I error)

power : 1 — P(type II error)



Definition 4.2.2. The likelihood ratio test compares the value of a certain parameter under the hypotheses:

 L(04)
A=To

Then the LRT rejects Hy if A > C = C,, such that P(type I error) = a.

Theorem 4.2.3. [NEYMAN-PEARSON LEMMA]|
Among all tests with a significance level of «, the LRT has the highest power.

The canonical setting used below is X1, Xs,..., X, i N(u,0?).

Remark 4.2.4. The LRT in the canonical case rejects Hy if Z > pg + C’aﬁ.

Further, the power in the canonical case is 1 — @ (C’a - “g“‘/T/%O) for ®(-) the cdf of N(0,1).

Definition 4.2.5. The generalized likelihood ratio test assumes that fiy;r g is the MLE if g # po.

L(fivre)
L(po)

Remark 4.2.6. GLRT rejects Hy is A is too large <= 2log(A) is too large.

A:

4.3 The 2log(A) transformation
Theorem 4.3.1. Under regularity conditions, for A a GLRT statistic and df = dim(H4) — dim(Hy),
2log(A) -2 Xtar)
Note that A depends upon a sample of size n, and the above holds as n — co.
Remark 4.3.2. The above theorem allows us to find C,, using the asymptotic distribution.
iid

Definition 4.3.3. If Z1,25,...,Z, ~ N(0,1), then Z VARS X%n)‘ This is the chi-squared distribution.
i=1

i} 2
Remark 4.3.4. For N(u,0?) with 02 known, 2log(A) = (%) ~ X%l)

Definition 4.3.5. The rejection region is the complement of the confidence interval.
Rejection region : {0 | 2(0rrpE) — 20(00) > Co}
Confidence set = {0]20(0nrrr) — 20(60) < Ca}

The above has demonstrated that 2log(A) = 20(Arr1) — 20(6,) is an approximate pivotal quantity.

4.4 t-tests

Using the t-test for Xy, Xo,..., X, (S N(u,0?), neither y nor o2 are known. In this case o2 is termed

a nuisance parameter - it is an unknown, but we do not want to say anything about it. It will be replaced
by an estimate.
With respect to the hypotheses, Hg : = pg and Ha : u # pio-

Remark 4.4.1. Replace f/_\’;% with T' = % ~ t(n,—1y which is a pivotal quantity for % = L 3" (z; — )2



U
with U L V. Then —== ~ {(,) has the ¢{-distribution.

) VV/n
iid

Theorem 4.4.3. Let X1, X, ..., X, ~ N(u,02). Then
1. Z(fmx;i)z

Definition 4.4.2. Let U ~ N(0,1), V ~ X%’n

~ X%n—l)
2. 7 1Y (2; —7)2

Corollary 4.4.4. Then S is an unbiased estimator for o2, whereas 63,; ; = % S (x; — 7)? is slightly biased.

Definition 4.4.5. The p-value is defined to be P(A > Agpserved | Hy).




