$\begin{array}{l} {\rm Compact\ course\ notes} \\ {\rm STAT\ 241,\ WINTER\ 2011} \end{array}$

Professor: M. Zhu transcribed by: J. Lazovskis University of Waterloo April 11, 2011

Statistics

Contents

1	Model review	2
2	Point estimation 2.1 General estimations	2
3	Distribution theory 3.1 Mean-squared error	_
	3.2 Asymptotic approach	3
4	Hypothesis testing	4
	Hypothesis testing 4.1 Interval estimation	4
	4.2 Hypothesis testing	4
	4.3 The $2\log(\Lambda)$ transformation	5
	4.4 <i>t</i> -tests	

1 Model review

Model 1.0.1. Bernoulli(p)

 \cdot Binary outcome

$$f(x) = p^{x}(1-p)^{1-x}$$

$$E(x) = p$$

$$Var(x) = p(1-p)$$

Model 1.0.2. Binomial(n, p)

 \cdot n independent Bernoulli trials with x successes

$$f(x) = \binom{n}{x} p^x (1-p)^{1-x}$$

$$E(x) = np$$

$$Var(x) = np(1-p)$$

Model 1.0.3. Poisson(λ)

· Limit of binomial model as $n \to \infty$

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

$$E(x) = \lambda$$

$$Var(x) = \lambda$$

Model 1.0.4. Exponential(λ)

· Continuous random variable

$$f(x) = \lambda e^{-\lambda x}$$

$$E(x) = 1/\lambda$$

$$Var(x) = 1/\lambda^2$$

Model 1.0.5. Multinomial $(n; p_1, p_2, \ldots, p_k)$

· Generalization of binomial

Constraints:
$$p_1 + p_2 + \dots + p_k = 1$$

 $X_1 + X_2 + \dots + X_k = n$
Joint probability function:

$$f(x_1, x_2, \dots, x_k) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$$

Model 1.0.6. Normal(μ, σ^2)

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\}$$

$$E(x) = \mu$$

$$Var(x) = \sigma^2$$

2 Point estimation

2.1 General estimations

Definition 2.1.1. Given $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$, the <u>likelihood function</u> is $L(\theta) = \prod_{i=1}^n f(x_i; \theta)$. The log likelihood is $\ell(\theta) = \log(L(\theta))$.

Definition 2.1.2. The <u>maximum likelihood estimation</u> is $\tilde{\theta} = \max_{\text{all } \theta} \{L(\theta)\} = \max_{\text{all } \theta} \{\ell(\theta)\}.$

Definition 2.1.3. Given $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x; \theta)$ and $\theta \in \mathbb{R}^d$, the kth moment is given by

$$E(X^k) = \int_{\text{all } x} x^k f(x; \theta) dx = g_k(\theta) = \frac{1}{n} \sum_{i=1}^n x_i^k$$

This is termed the method of moments.

Remark 2.1.4. In general, MLE is superior to MOM.

Definition 2.1.5. For the MLE method, the maximum of the function f may be estimated, given an initial guess θ_0 , by:

Newton's method:
$$\theta_i = \theta_{i-1} - \frac{\ell'(\theta_{i-1})}{\ell''(\theta_{i-1})}$$
 Fisher scoring: $\theta_i = \theta_{i-1} - \frac{\ell'(\theta_{i-1})}{E(\ell''(\theta_{i-1}))}$

2

3 Distribution theory

Definition 3.0.1. The quantity $\tilde{\theta}$ is an <u>estimator</u> for the quantity θ . In essence, both are random variables.

Remark 3.0.2. The distribution of $\tilde{\theta} = g(X_1, X_2, \dots, X_n)$ can be found through:

- 1. Simulation (performing the experiment)
- 2. *n*-dimensional integration
- 3. the moment generating function method
- 4. the asymptotic method (CLT)

3.1 Mean-squared error

Definition 3.1.1. If $E(\tilde{\theta}) = \theta$, then $\tilde{\theta}$ is an <u>unbiased</u> estimator for θ . Otherwise, define the <u>bias</u> to be

$$\operatorname{Bias}(\tilde{\theta}) = E[\tilde{\theta}] - \theta$$

Definition 3.1.2. If $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are both unbiased for θ , then $\tilde{\theta}_1$ is said to be more <u>efficient</u> if $Var(\tilde{\theta}_1) < V(\tilde{\theta}_2)$.

Definition 3.1.3. The mean-squared error of $\tilde{\theta}$ is defined to be $E[(\tilde{\theta} - \theta)^2]$, abbreviated MSE. It is used to evaluate the distribution of the estimator $\tilde{\theta}$.

Theorem 3.1.4. $MSE(\tilde{\theta}) = Bias^2(\tilde{\theta}) + Var(\tilde{\theta})$

Theorem 3.1.5. [James-Stein]

Let $X \sim N(\theta, \sigma^2 I \in M_{n \times n})$ for $x, \theta \in \mathbb{R}^n$. For $n \geqslant 3$, $\text{MSE}(\tilde{\theta}_{JS}) < \text{MSE}(\tilde{\theta}_{MLE})$, where

$$\tilde{\theta}_{MLE} = x$$
 and $\tilde{\theta}_{JS} = \left(1 - \frac{n - 2\sigma^2}{||x||^2}\right)x$

The above is termed biased estimation.

Theorem 3.1.6. For $Y = X_1 + X_2 + \dots + X_n$ with $X_i \perp X_j$ for all $i \neq j$, $\text{mgf}_y(t) = \prod_{i=1}^n \text{mgf}_{x_i}(t)$.

Theorem 3.1.7. For Y = aX + b, the moment generating function of Y is $\operatorname{mgf}_y(t) = e^{bt}\operatorname{mgf}_x(at)$.

3.2 Asymptotic approach

Definition 3.2.1. If $\operatorname{mgf}_{x_n}(t) \to \operatorname{mgf}_x(t)$ as $n \to \infty$, then $X_n \xrightarrow{D} X$.

This is termed convergence in distribution.

Definition 3.2.2. If for every $\epsilon > 0$, $P(|x_n - c| > \epsilon) \to 0$ as $n \to \infty$, then $X_n \xrightarrow{P} c$.

This is termed convergence in probability.

Theorem 3.2.3. [CENTRAL LIMIT THEOREM]

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ some distribution. For $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$ and $S_n = \sum_{i=1}^n X_i$,

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{D} N(0,1) \qquad \text{or} \qquad \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N(0,1) \text{ for } \bar{X}_n = \frac{S_n}{n}$$

Remark 3.2.4. If $\operatorname{mgf}_{X_n}(t) \to \operatorname{mgf}_X(t)$ as $n \to \infty$, then $X_n \stackrel{D}{\longrightarrow} X$.

Remark 3.2.5. If $F_n(x) \to F(x)$ as $n \to \infty$, then $X_n \xrightarrow{D} X$.

Here F_n is the cumulative distribution function for X_n , and F is the cdf for X.

Theorem 3.2.6. [Chebyshev's inequality]

Let X be a random variable and $\epsilon > 0$ such that $E(X) = \mu$ and $Var(X) = \sigma^2 < \infty$. Then

$$P(|x - \mu| < \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

Theorem 3.2.7. [Weak Law of Large Numbers]

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim}$ some distribution with $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$ and $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$\bar{X}_n \xrightarrow{P} \mu$$

Remark 3.2.8. For the special case where $\mu = 0$ and $\sigma^2 = 1$,

CLT: $\sqrt{n}\bar{X}_n \xrightarrow{D} N(0,1)$ WLLN: $\bar{X}_n \xrightarrow{P} 0$

4 Hypothesis testing

4.1 Interval estimation

This is the canonical setting:

- Assume that σ^2 is known.
- We know also that $\tilde{\mu}_{MLE} = \tilde{\mu}_{MOM} = \bar{x}$.

We want to find bounds L, U such that $P(L < \mu < U) = 1 - \alpha$ for α small.

Definition 4.1.1. A quantity that depends upon the given data and a single unknown parameter with known distribution (and no other unknowns) is termed a pivotal quantity.

Definition 4.1.2. Wrt the above constants, define the <u>threshold value</u> C_{α} so that $(\mu - C_{\alpha}, \mu + C_{\alpha}) = (L, U)$.

Definition 4.1.3. The interval $(\mu - C_{\alpha}, \mu + C_{\alpha})$ is termed the <u>confidence interval</u>.

Theorem 4.1.4. Let $\tilde{\theta}_n$ be the MLE of θ based on n iid observations. Under certain regularity conditions,

$$\sqrt{nI(\theta)}(\tilde{\theta}_n - \theta) \xrightarrow{D} N(0, 1) \quad \text{for} \quad I(\theta) = E\left[\frac{d^2}{d\theta^2}\log(f(x_i, \theta))\right]$$

where $I(\theta)$ is the Fisher information.

Remark 4.1.5. In the above, $I(\theta)$ may be replaced with $I(\tilde{\theta}_n)$.

Corollary 4.1.6. Above, $\sqrt{nI(\theta)}(\tilde{\theta}_n - \theta)$ is an approximate pivotal quantity.

Corollary 4.1.7. Let X be a random variable with $E(X) = \mu$ and $Var(X) = \sigma^2$. Then

$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N(0,1)$$

4.2 Hypothesis testing

Hypothesis testing involves the evaluation of the <u>null hypothesis</u> H_0 against the <u>alternative hypothesis</u> H_A . The null hypothesis predicts that there is no relation between observed variables, and the alternative hypothesis either denies the null hypothesis, or predicts a specific relationship between observed variables.

Definition 4.2.1. Define the following terms:

 $\underline{\text{type I error}}$: reject H_0 when H_0 is true type II error: accept H_0 when H_0 is false

 $\underline{\underline{\text{significance level}}}: P(\text{type I error}) \\
\underline{\text{power}}: 1 - P(\text{type II error})$

Definition 4.2.2. The <u>likelihood ratio test</u> compares the value of a certain parameter under the hypotheses:

$$\Lambda = \frac{L(\theta_A)}{L(\theta_0)}$$

Then the LRT rejects H_0 if $\Lambda > C = C_\alpha$ such that $P(\text{type I error}) = \alpha$.

Theorem 4.2.3. [NEYMAN-PEARSON LEMMA]

Among all tests with a significance level of α , the LRT has the highest power.

The canonical setting used below is $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$.

Remark 4.2.4. The LRT in the canonical case rejects H_0 if $\bar{x} > \mu_0 + C_\alpha \frac{\sigma}{\sqrt{n}}$.

Further, the power in the canonical case is $1 - \Phi\left(C_{\alpha} - \frac{\mu_{A} - \mu_{0}}{\sigma/\sqrt{n}}\right)$ for $\Phi(\cdot)$ the cdf of N(0,1).

Definition 4.2.5. The generalized likelihood ratio test assumes that $\tilde{\mu}_{MLE}$ is the MLE if $\mu \neq \mu_0$.

$$\Lambda = \frac{L(\tilde{\mu}_{MLE})}{L(\mu_0)}$$

Remark 4.2.6. GLRT rejects H_0 is Λ is too large $\iff 2\log(\Lambda)$ is too large.

4.3 The $2\log(\Lambda)$ transformation

Theorem 4.3.1. Under regularity conditions, for Λ a GLRT statistic and $df = \dim(H_A) - \dim(H_0)$,

$$2\log(\Lambda) \xrightarrow{D} \chi^2_{(df)}$$

Note that Λ depends upon a sample of size n, and the above holds as $n \to \infty$.

Remark 4.3.2. The above theorem allows us to find C_{α} using the asymptotic distribution.

Definition 4.3.3. If $Z_1, Z_2, \ldots, Z_n \stackrel{iid}{\sim} N(0,1)$, then $\sum_{i=1}^n Z_i^2 \sim \chi_{(n)}^2$. This is the <u>chi-squared distribution</u>.

Remark 4.3.4. For $N(\mu, \sigma^2)$ with σ^2 known, $2\log(\Lambda) = \left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2_{(1)}$

Definition 4.3.5. The rejection region is the complement of the confidence interval.

Rejection region : $\{\theta \mid 2\ell(\tilde{\theta}_{MLE}) - 2\ell(\theta_0) > C_{\alpha}\}\$ Confidence set : $\{\theta \mid 2\ell(\tilde{\theta}_{MLE}) - 2\ell(\theta_0) \leqslant C_{\alpha}\}\$

The above has demonstrated that $2\log(\Lambda) = 2\ell(\tilde{\theta}_{MLE}) - 2\ell(\theta_0)$ is an approximate pivotal quantity.

4.4 *t*-tests

Using the t-test for $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, neither μ nor σ^2 are known. In this case σ^2 is termed a <u>nuisance parameter</u> - it is an unknown, but we do not want to say anything about it. It will be replaced by an estimate.

With respect to the hypotheses, $H_0: \mu = \mu_0$ and $H_A: \mu \neq \mu_0$.

Remark 4.4.1. Replace $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$ with $T=\frac{\bar{x}-\mu}{S/\sqrt{n}}\sim t_{(n-1)}$ which is a pivotal quantity for $S^2=\frac{1}{n-1}\sum (x_i-\bar{x})^2$.

Definition 4.4.2. Let $U \sim N(0,1)$, $V \sim \chi^2_{(n)}$ with $U \perp V$. Then $\frac{U}{\sqrt{V/n}} \sim t_{(n)}$ has the <u>t-distribution</u>.

Theorem 4.4.3. Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Then 1. $\frac{\sum (x_i - \bar{x})^2}{\sigma^2} \sim \chi^2_{(n-1)}$ 2. $\bar{x} \perp \sum (x_i - \bar{x})^2$

Corollary 4.4.4. Then S is an unbiased estimator for σ^2 , whereas $\tilde{\sigma}_{MLE}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$ is slightly biased.

Definition 4.4.5. The <u>p-value</u> is defined to be $P(\Lambda \geqslant \Lambda_{observed} \mid H_0)$.